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This paper deals with the robustness of the class of nonlinear piecewise deterministic systems
with unknown but bounded uncertainties. Under the assumption that all the modes of the
markovian jump process (disturbance) communicate, the complete access to the system state
and the boundedness of the uncertainties, a sufficient condition for stochastic stability of this
class of systems is given. An example is presented to validate the proposed results.
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1 INTRODUCTION

It is well known that the physical systems are nonlinear in nature. Some-
times it is possible to describe these physical systems by a set of linear
ordinary differential equations and consequently the well established re-
sults of linear systems can be used to analyze and design them, this will
be true if their mode of operation does not deviate too much from the
normal set of operating conditions. But in practice, one often encounters
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situations where the linearized model is inadequate or inaccurate and the
use of a nonlinear model is then more suitable to describe the physical
system.

Many approaches have been proposed to analyze and design this class
of systems. However the problem concerning the robustness of this class
of systems is still an open question. Some papers dealing with this ques-
tion have been published, among them, we quote the paper of Barmish et
al. [1].

Robust control offers the advantage to design a controller which enable
us to cope with the uncertainties which appeared in the more realistic
models. This problem has been investigated in the linear case by several
authors, see Dorato et al. [10]. The nonlinear class of systems we consid-
ered in this paper belongs to the class of piecewise deterministic systems.
This class has some particularities. In fact, the system state vector has two
components, the first one is continuous in nature, the second one is dis-
crete and random, taking values in a finite set and referred to as the mode.
For the research papers in this area, see, for example, the works of
Sworder [16], Wonham [19], Rishel [15], Davis [8], Vermes [18], Mariton
and Bertrand [14], Boukas and Haurie [4], Boukas [3], Ji and Chizek [12],
Boukas and Mignanego [2] and Boukas et al. [6].

Few results concerning the robustness of this class of systems have
been reported. Boukas [S5] considers the robustness of a class of linear
piecewise deterministic systems whose uncertainties are upper bounded.
A sufficient condition for stochastic stability of this class of systems is
given. Under the complete access to the state variables and the mode, the
H™ control problem has been investigated by De Souza and Fragoso [9].

In this paper, we consider a nonlinear piecewise deterministic systems.
The sufficient conditions which guarantee the stability of a class of piece-
wise deterministic nonlinear systems are described. The paper is organized
as follows: In section 2, we give a brief description of the class of piece-
wise deterministic nonlinear systems and give some assumptions. In sec-
tion 3, we construct the controller and recall the definition of the stochastic
stability of this class of systems. In section 4, the sufficient condition for
the robust stability of the piecewise deterministic systems under matching
conditions is given. In section 5, an example is presented to illustrate these
results.
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2 SYSTEM AND ASSUMPTIONS

We consider an uncertain piecewise deterministic nonlinear system de-
scribed by:

x(t) = A(x(D), &), 1) + SA((2), £(1), a, 1) + [B(x(2), (1), 1)
+ 3B(x(1), &(1), a, 1) Ju(t) (D

where the n-dimensional vector x(f) € R" stands for the state of the system
and the m-dimensional vector u(f) € R™ is the control. A(x, &, 1), dA(x, &,
a, t), B(x, & t) and d3B(x(t), &(1), a, t) are matrices of appropriate dimen-
sions. &(7) represents a continuous discrete-state Markov process taking
values in a finite set B = {1, 2,..., s} with transition probability Pr{&(r +
dt) = Bl&(t) = a} given by:

B qopdt + 0(31), ifa# B

Prig(t + 81) = Bl&(0) = o} = 1 "1 4Ot + 031, ifa=p

@

In this relation, g,g stands for the transition probability rate from state o
to state 3 and satisfies the following relations:

Gop =0 3)

9o = " Yaa = 2 an (4)
BEB,a#B

For each a € B, dA(x(?), &(¥), a, t) and dB(x(), &(1), a, t) represent the
system’s uncertainties. The vector parameter a lies within a specified
bounded and connected set 2 C R”.

In the rest of this section, we will give some assumptions which will
allow us to state the sufficient conditions for the robustness of the stochas-
tic stabilizability of the class of piecewise deterministic nonlinear systems.
Our first assumption is introduced to guarantee the existence of solutions
of the state equations.
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AssumpTiON 1 For each a € B, A(.), B(.), dA(.) and 8B(.) are Lipchitz
continuous in (x, a, t).

Next assumption is called matching conditions. In deterministic case,
the matching conditions are properties of the system’s structure only. They
guarantee that the uncertainty vector does not influence the dynamics more
than the control vector u (See Gutman [11], Leitmann [13], or Thorp and
Barmish [17]). In our case, we will assume that the matching conditions
hold for each mode. Since we assume the complete access to the system’s
state and its mode, the assumption is reasonable too.

AssumptioN 2 For each a € B, there are mappings D(x, a, a, t) and E(x,
a, a, t) such that

dA(x, o, a,t) = B(x, o, t)D(x, a,a,t) 5)
3B(x,a,a,t) = B(x,a, )E(x, a,a,t) 6)
|E(x, o, @, )] < 1 @)

where D(.) and E(.) are matrices of appriorate dimensions which are
continuous in (x, a, t) for each o € B.
Let the stochastic Lyapunov function V(a, x) be defined by

V(a, x) = x'P(o)x 8)
where P(a) is a symmetric positive definite matrix.

AssumptioN 3 Let A,V(a, x) be defined by:

AV(a, x) = ViV(a, x)A(x, a, 1) + > 9apV(B, X) 9
BEB

where V', denotes the transpose of gradient operation. We also require that
there is a constant 'y; > 0 such that

AV, x) = =y, V(a, %) (10)
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3 CONTROLLER CONSTRUCTION AND THE CONCEPT OF
STABILITY

In this section, we proceed to construct a control law u*(.) which will later
be shown to stabilize the class of systems under study. The first step in the
construction of the control law is to select two functions A;(.) and A,(.)
such that

max ||D(x, a, a, D] = A(x, a, 1) (11)
aEQ
max |[E(x, a, a, 1)|| = Ay(x, o, 1) (12)
a€

The standing assumptions 1-3 assure that there is a A,(x, o, ?) such that
Ay(x, o, £) < 1 for each o € B and (x, 1) € R" X R, and we can choose
A,() and A,(.) to be continuous in (x, f) for each o € RB.

Now, for each o € B we choose any nonnegative function y(x, o, f)
which is continuous in (x, f) and satisfying the following inequality:

A%(X, a, t) 13
Yo o, 1) = 4C [AV(a, x) + 1][1 = Ay(x, o, 1)] )

where 0 < C; < 1.

Remark 3.1 Notice that A,(.) and A,(.) are the upper bound functions of
the uncertainties functions AA(.) and AB(.). In practice, it is all the time
possible to get the expression of these two functions.

We define the controller by the following expression:

u*(x, o, 1) := —vy(x, o, £)B'(x, o, )V V(a, x) (14)

Remark 3.2 Since we assume the complete access to the state and the
mode of the system, it is then always possible to compute the control law
defined by Eq. (14).

The aim of the control system is to stabilize the system under consid-
eration. In the deterministic case, this problem have received much atten-
tion from the researchers of the control community. In the stochastic case,
particularly for the case of the class of systems under consideration, there
is in the literature few results regarding the stabilizability or the stability



208 E. K. BOUKAS and H. YANG

concepts. In the rest of this paper the definition 3.1 will be used to define
the stabilizability of our class of systems.

DeriniTioN 3.1 - The system (1)—(2) is said to be stochastically stabilizable
if, for all finite x, € R" and o € %, there exists a state feedback control,
1e. u = u*(x, o, t) := —y(x, o, HB'(x, a, 1)V, V(v x), such that there exists
a symmetric positive definite matrix 2 satisfying:

T -
lim E,, {fo x'(t, Xg, &, @, u)x(t, Xo, @, a, u)dt|x,, a} = x(Px, (15)
s

where x(t, x, o, a, u) represents the corresponding solution of system (1)
at time ¢ when the control u(.) is used and the initial conditions are respec-
tively x, and o.

4 MAIN RESULT

In this section, we first consider the stochastic stabilizability of certain
nonlinear piecewise deterministic systems, then proof the same result for
the uncertain nonlinear piecewise deterministic system.

4.1 Stochastic Stabilizability of Certain Nonlinear Piecewise
Deterministic Systems

We first consider the certain piecewise deterministic nonlinear systems
described by

x(1) = A(x(0), &), 1) + B(x(1), £(1), Hu(?) (16)
Then we have the following result:

THEOREM 4.1 Subject to assumptions 1 and 3, and the use of the control-
ler constructed in section 3, (in this case vy can be any positive constant)
the certain piecewise deterministic nonlinear system (16) and (2) is sto-
chastically stabilizable.

Proof Consider the weak infinitesimal operator A of the process {&, x(¢),
t € [0, T]}, which is given by (see C.E.De Souza and M.D. Fragoso [9]):
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AV(a, x) = V,V(e, D{A(x, &, 1) + Bx, o, Du} + X qogV (B, X)
BEB

= A V(a, x) — ViV(a, x)B(x, a, )y(x, o, )B'(x, o, )V, V(a, x)

= AgV(a, x) — y(x, &, 1)|B(x, &, )V, V(a, x)|
Therefore, we have
AV(a,x) = AV(a, x) = — vy, V(a, x) (17)

Then by Dynkin’s formula and the Gronwall-Bellman lemma, we have
for all @ € B,

E[V(a, x)] = exp(—v,8)V(a, X) (18)

Therefore

E[V(et, x)|x0, £(0) = o] = E[x'P(e)x]xy, £(0) = o] = exp
(=v12) xpP(e)xo (19)

Thus we have,
g [ Zx’(z)P(a)x(t)dz\xo, a} =" exp(— ) JroP ()%,

=- Yi[exm—m — 1xpPla)xy
1

(20)
Let T — > we have,
T 1
lim £, { f X (OP(@)x(0dixy, o} =~ xiPle)x, @1)
T—x 0 Y1
Let
~ P(a
_ (v) 22)

max ———
«€B v, [P()]
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we have
T ~
tim E,, { [} 2 (0x(0dtlxg, of = xgfry (23)
T—x% 0
This completes the proof of the theorem. ¢

In the following we will show that the controller constructed in section
3 also stabilizes the uncertain systems which guarantees that the nonlinear
piecewise deterministic systems’ stochastic stability has robust property.

4.2 Stochastic Stability of Uncertain Nonlinear Piecewise
Deterministic Systems

The following result states the sufficient conditions which guarantee the
stability of the class of piecewise deterministic nonlinear system (1)—(2).

THEOREM 4.2 Subject to assumptions 1-3, and use the controller con-
structed in section 3, the uncertain piecewise deterministic nonlinear sys-
tem (1)—(2) is stochastically stabilizable.

Proof Again, we consider the weak infinitesimal operator A of the pro-
cess {&, x(9), t € [0, T]}, which is given by:
AV(a, x) = VV(a, x) {A(x, a, 1) + BA(x, o, a, 1)
+ [B(x, o, ) + 3B(x, @, a, 1) Ju*} + BZ,B 9apV (B X)
= A V(a, x) + V. V(a, x)A(x, o, a, 1)
= V:V(a, x) [B(x, a, t)
+ 3B(x, a, a, 1) Iy(x, a, 1)B'(x, a, )V, V(a, x)
= AV(o, x) — y(x, a, 1)||B'(x, &, )V, V(ax, x)|[*
+ V. V(a, x)B(x, o, t) [D(x, a, a, )
- vy(x, a, HE(x, a, a, )B'(x, o, )V, V(, x)]

let
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&(x, a, f) = B'(x, a, )V V(a, x), 24)

and recalling the definition of A;(.) and A,(.), we have

AV(a,x) = AV, x) + Ay(x, a, D] d(x, o, 1)

— y(x, &, D blx, o, D1 — Aylx, «, £)] (25)

If Aj(x, a, £) = 0O, then
AV(a,x) = AV(a, x) (26)
If Aj(x, o, £) # 0, then y(x, , £) > 0 and

AV(a, x) < AV(a, x) + Ay(x, o, D] (x, o, 1)
= ¥ o, )bl o, D1 = Aylx, @, 1]
A(x, a, 1)
4y(x, o, 1) [1 — Ay(x, a, 1)]
B [1—=A(x o O]y, o, 1)

Al(x, o, 1)

Al(x, a, 1) T
a 2v(x, o, 1) [1 = Ay(x, e, 1)]

=AV(a, x) +

PﬂaﬁM@mw

Ai(x, , 1)
4y(x, o, 1) [1 — Ay(x, a, 1)]

=(1 - Cp A V(a, x) 27

=AW, x) +

Combining cases A;(.) = 0 and A;(.) # 0, and noting that C;, < 1, we
have

AV(a,x) = AV(a, x) = — y,V(a, x) (28)

Then by the same argument with theorem 4.1, we have
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T L~
tim E,, { [ (001 o} = 5y 29)
T—x : 0
This completes the proof of the theorem. v

5 ILLUSTRATIVE EXAMPLE

To illustrate the proposed results, let us consider the following piecewise
deterministic system:

e mode 1:

(1) = —x(0)

a,(t)sinx,(?)

)&2(1‘) = —x(t) tu-— L

where [, is a positive constant and a,(?) is the uncertainty.

e mode 2:

x,(f) = —x(1)

ay(1)sinx, ()

X)) = —x,(t) + u — L

where 1, is a positive constant and a,(f) is the uncertainty.
Let the jump Markov process be described by the following transition
matrix:

Let
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for all @ € B. In this example, for both mode 1 and mode 2,

o]

A

_To
o8 = [¢]
for mode 1,
0
sAa=|_ a,(t)sinx,(?) (30)
L
for mode 2,
0
84 = | _ @0)sinx (1) (31)
L

and for both mode 1 and mode 2 we have,

AV(1, x) = AV(2, x) = —2x] — 2x] (32)

Therefore, we can choose y, = 1, A; = T|sinx,(t)|, where 7 is a con-

la, () lay(t)! 1
stant, such that max (—61715—) azl(z) = 1,4, = 0.LetC; = 5and satis-

fying

Tzsinle

> 0 (33)
T2t

Then all the assumptions of theorem 4.2 are satisfied, and the system is
stochastically stabilizable.
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6 CONCLUSION

In this paper, we have dealt with the class of uncertain piecewise deter-
ministic nonlinear systems. Under some appropriate assumptions, a robust
controller design approach has been presented for the class of nonlinear
uncertain piecewise deterministic systems using the matching conditions.
These results can be easily extended to other type of uncertainties.
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