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We construct analytical solutions for the problem of nonlinear supersonic flow past slender
bodies of revolution due to small amplitude oscillations. The method employed is based on
the splitting of the time dependent small perturbation equation to a nonlinear time indepen-
dent partial differential equation (P.D.E.) concerning the steady flow, and a linear time de-
pendent one, concerning the unsteady flow. Solutions in the form of three parameters family
of surfaces for the first equation are constructed, while solutions including one arbitrary
function for the second equation are extracted. As an application the evaluation of the small
perturbation velocity resultants for a flow past a right circular cone is obtained making use of
convenient boundary and initial conditions in accordance with the physical problem.
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MAIN NOTATION

(X, r, 0) = nondimensional cylindrical co-ordinates, normalized
by the true body length;

= freestream velocity;

true time;

= TU/L, nondimensional time;

= true angular frequency;
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= wL/U, reduced frequency;

= total and perturbed potentials, both normalized by
(UL)™

= maximum body radius/L, the body thickness ratio;

freestream Mach number;

= ratio of specific heats (1.40);

= distance of the nonlifting position, normalized by

L

oscillation amplitude.
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1. INTRODUCTION

In a great number of aerodynamic problems one is interested in the per-
turbation of known fluid motion. The most common and obvious case is
that of a uniform steady flow. Especially, the small perturbation theory is
one of the most discussed items of aerodynamics. The major difficulty in
obtaining analytical solutions of the general small perturbation steady or
unsteady differential equations is the nonlinearity. In the past, the steady
transonic flow problem for a two dimensional or an axisymmetric body
has been treated by various analytical methods; see Oswatitsch and Keune
[1955], Spreiter and Alksne [1959], Liepmann and Roshko [1957]. The
method employed was based on the elimination of the nonlinear terms
appearing in the nonlinear P.D.E. governing the steady perturbation veloc-
ity potential. More recent studies of this problem mostly adopted numeri-
cal techniques, notably the type sensitive difference sceme (Krupp and
Murman [1972]), involving the flowfield calculations. However, for the
unsteady flow problems, apart from the work by Stahara and Spreiter
[1976], which is an extension of the earlier work by Liu, Platzer and Ruo
[1970], efforts have been made in constructing analytical solutions making
use of several approximate methods and techniques. We mention here the
work by Liu, Platzer and Ruo [1977], which based on the linearized model
according to Oswatitsch and Keune [1955] (the parabolic method) suc-
ceeded in obtaining approximate near-field solutions for slender bodies of
revolution in unsteady transonic flow. Several other works which have
used the same extensive concept of parabolic method for solving the sonic
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flow problem should be mentioned here (Kimble, Liu, Ruo and Wu
[1977]; Ruo [1974], Platzer [1966] and Zierep [1965]).

In the present theoretical investigation, based on the work by Liu,
Platzer and Ruo [1977], a successful attempt is made to solve analytically
for supersonic flow the small perturbation unsteady transonic P.D.E. ap-
pearing in the harmonic small amplitude pitching oscillations of a body of
revolution around its nonlifting position. Contrary to existing solution
methodologies the only necessary approximation is the elimination of the
nonlinear term appearing in the oscillatory perturbed potential. This ap-
proximation results from the application of the well known small pertur-
bation procedure described by Liepmann and Roshko [1957]. The method
employed is based on the splitting of the nonlinear time dependent tran-
sonic small perturbation equation to a nonlinear time independent P.D.E.
concerning the steady axisymmetric potential, and a linear time dependent
P.D.E. concerning the oscillatory potential.

Making use of a convenient ad hoc assumption a three parameters fam-
ily of surfaces solution for the first equation is obtained, while an analyti-
cal solution including one arbitrary function for the second is constructed
in case of supersonic flow. For both previous constructions, the Monge
method was used (Ames [1965]), while for the second one the separation
of variables technique was in addition used (Koshlyakov, Smirnov and
Gliner [1964]). As an application of the developed analysis the evaluation
in a closed-form of the perturbation velocity resultants for a right circular
cone are obtained, using convenient boundary and initial conditions in
accordance with the physical problem.

We must point out that the advantage of the proposed herein method-
ologies is the introduction of a time-distance dependent arbitrary function
in the constructed solutions, by means of which one easily evaluates ana-
lytical expressions for arbitrary geometrical boundaries of the bodies un-
der consideration.

2. MATHEMATICAL FORMULATION

Consider a rigid pointed body of revolution exposed to a steady uniform
transonic flow U. The body performs harmonic, small amplitude pitching
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oscillations around its nonlifting position M, while it is assumed to be
smooth and sufficiently slender so that the small disturbance concept can
be applied. For the description of the problem we consider a space-fixed
cartesian co-ordinate system M(X,, Y,, z), the axis x, of which coincides
with the central axis of the body in its steady position (Fig. 1). The small
amplitude oscillations occur in the X, y,-plane and so a body-fixed carte-
sian co-ordinate system M(x, y, z) is necessary to be introduced for our
analysis. Finally, we consider a body-fixed cylindrical co-ordinate system
(x, 1, 8), where r is parallel to the yz-plane as Fig. 1 shows. The total
velocity potential ((x, 1, 6, t) can be related to a perturbed velocity po-
tential &(x, 1, 0, t) by the equation (Liu, Platzer and Ruo [1977])

Q(x,r1, 0, t) = xcosd + rsindcosd + P(x,r, 6, t) 2.1

in which 8 = §,exp(ikt); 8, is the oscillation amplitude and k denotes the
reduced frequency of the pitching motion. Using (2.1) one extracts the
cylindrical velocity components

FIGURE 1 Geometry and sign convention of a rigid body of revolution under uniform flow.
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u Q, cosd + @,
0 sindcosf + P
Vlcylindrical =l V= 1 = 1 Tl 2.2)
=y —sindsind + = P,
w r r

Introducing the expression for § into (2.2), retaining only the real part and
considering small-amplitude oscillations (3, << 1), we succeed in trans-
forming relation (2.2) into the simpler one

u 1+ P,

d,cosktcosd + P
V|cylindrical =V = 0 ! . (2.3)

—dcosktsinf + 1 D,
w r

The time dependent transonic equation for small perturbations reads (Liu,
Platzer and Ruo [1977])

B Dy, + B, + = Dy — M, — 2MD,, + %cpr — (v + DMD, D,
r
=0 2.4)

where M is the freestream Mach number and B = 1 — M2

Note that the nonlinear term in (2.4) can be ignored only if the flow is
sufficiently unsteady.

We assume now that the potential ® splits into two terms; the first
expresses the steady axisymmetric potential due to the geometry of the
body, while the second represents the perturbed potential due to the oscil-
lations of the body (Liepmann and Roshko [1957]; Liu, Platzer and Ruo
[1977])

d(x,1,0,t) = d(x, 1) + Y(x, 1,0, t). 2.5)

Differentiating (2.5) and inserting the results into (2.4) we deduce
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B(d + W) + (b + W)y + = gy ~MAl, —2MAs, + = (b + )~
? r

— (v + DM, by, —(y + DM (b, + by ) —

(y + DM* Y, = 0. 2.6

In this equation, for small-amplitude oscillations one can neglect the non-
linear term (y + )My, (Liu, Platzer and Ruo [1977]). Thus, we
derive a simpler nonlinear P.D.E. which further can be splitted into one
nonlinear P.D.E. concerning the steady flow, and one linear P.D.E. con-
cerning the unsteady flow, namely

B + by + 10, = (v + DV, @7

Blbex + ¥ + rlz‘l’ee =M, = MR+ T = (7 + DM,
+ byli). (2.7b)

In a large number of previous publications analytical solutions of both
equations (2.7a, b) were obtained by means of approximate analyses and
techniques. We mention here the papers by Oswatitsch and Keune [1955];
Spreiter and Alksne [1959]; Stahara and Spreiter [1976]; Liu [1968]; Liu
and Platzer [1969]. In this paper, contrary to the above developed meth-
odologies and techniques, we shall try to construct analytical solutions for
both previous equations. Our attempt will be focussed on the formulation
of solutions including one arbitrary function, which will permit us to de-
fine special solutions in accordance with the boundary and initial condi-
tions of every physical problem under consideration.

3. ANALYTICAL SOLUTIONS OF EQNS (2.7 a,b)
3.1 Solutions of Equation (2.7a)

Since the function ¢(x, r) resulting from the solution of Eq. (2.7a), must
be used for the second equation (2.7b) a convenient solution of (2.7a)
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would be expressed in the form of a three parameters family of surfaces.

Such a type of solution can be constructed as follows.
Using the well-known notation (Ames [1965])

P=dpq=0,1= ¢y 8 = &y t = Gy
one writes the nonlinear P.D.E. (2.7a) in the Monge form

Rr+Ss+Tt=V

where

R=B—(y+1)M*p,$=0,T=1,V=—qg.

The corresponding to (3.1) Monge equations are
[B — (y + 1)M*p]dpdr + dqdx + %dxdr =0,

[B — (v + DM’pldr* + dx* = 0;
dd = pdx + qdr.
Making use of the ad hoc assumption

p = A = constant

3.1)

(3.2)

(3.3a)

(3.3b)

(3.3¢)

34

we distinguish the following two cases concerning the solutions of the

above system.

Case a

For

B—(y+ )M*A <0,

(3.5)

the equation (3.1) becomes of hyperbolic type valid only for supersonic

flow and the solution of (3.3b) for dx/dr furnishes
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dx/dr = =[(y + DM? A — [3]%.

The integration of this equation results in

x=*[(y + l)MzA—B]§r+a

where a is an integration constant. On the other hand, since p is considered
to be constant, the integration of (3.3a) leads to the equation

rq=>,

where b is a new constant of integration. Noting that a and b are arbitrary,
we derive

q= %H(x F[(y + DM*A - Blr) (3.6)

in which H is an arbitrary function of its argument.
Therefore, the fundamental Monge equation (3.3c) becomes

db = Adx + %H(x = [(y + DM A — BJ rydr.

This equation can be integrated in case when

H = A = constant

and consequently one obtains a solution of the nonlinear PDE under con-
sideration in the form

¢ = Ax + Alnr + B (3.7

where B is a third constant.

Case b

For
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B—(y+ DM*A>0 (3.8)

the equation (3.1) is of elliptic type valid only for subsonic flow and the
previously developed procedure furnishes the following solution for the
steady potential

¢=Ax+£lnr+§ 3.9)

where A and B are new constants with A complex.
Both solutions (3.7) and (3.9) are of the same type and they can be
rewritten in the following three parameters family of surfaces forms

F(x,r;A,A,B)=¢—Ax—-Alnr—B=0;l§(x,r;A,A,B)=¢—Ax

~Amr-B=0. (3.10)

3.2 Solutions of Equation (2.7b)
For this equation we assume solutions of the separate form
Y(x, 1, 0, t) = f(x, t)h(r)g(0), (3.11)

where f, h and g are arbitrary smooth functions. By means of (3.11), as
well as the steady solution (3.10), equation (2.7b) becomes

1%
2

2 b + M2 fl_t’
f f
(3.12)

fre
+-=+ =Uy+nwm—s] +2M° —

= il e Y
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in which dot means differentiation with respect to r and asterisk with
respect to 0. Since in (3.12) the left-hand side is a function of r and 6, and
the right-hand side a function of x and t only, the equality is possible if
both members are equal to the same constant N2 (A > 0) (separation
constant). Consequently, (3.12) splits into the following two equations

1

T

+V=0; (3.13a)

= s
+
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-
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[(y + DM? A — BIf,, + 2M*f, + M*f, + N> f=0. (3.13b)
Relation (3.13a) can be further written in the separate form

*

2ﬁ h 2 g
—+r-+ =-= .
rh rh (\r) o’ (3.14)

*

which, taking into account that g(6) reads as a periodic function of 0, splits
into

= —n"; (3.15a)

P?h+rth+[(A\r)> —n*lh=0 (3.15b)

where n is an integer.
The general solution of Eq. (3.15a) is given by

2.,(0) = ¢ ,cosnb + c,,sinnb, (3.16)
while the corresponding solution for Eq. (3.15b) reads

h(r) = C3an()\r) + C4nYn()\r)’ (317)
in which J,, and Y, are the Bessel functions of integer order of the first and
second kind respectively, while ¢, (i = 1,..., 4) are suitable constants of
integration for each integer n.

Concerning now the linear PD.E. (3.13b) the corresponding Monge
equations are written as

[(y + )M?A — B]dpdt + M?dqdx + N*fdxdt = 0;  (3.18a)
[(y + DM?A — B]dt* — 2M?dxdt + M*dx* = 0; (3.18b)
df = pdx + qdt, (3.18¢)

p=f,q=*.
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Equation (3.18b), satisfying the characteristic directions, can be written
under the form

M*(dx/dt)* — 2M?(dx/dt) + [(y + 1)M?A — B] =0 (3.19)
with discriminant 4D given by
D = MZ1 - (y + )M?A].

According to the sign of this discriminant we distinguish the following
three cases.

Case a (Parabolic type)

In this case D = 0, that means
A= 1/[(y + 1)M?]. (3.20)
Then, Eq. (3.19) furnishes

dx=dt or x=t+a (3.21)

where a is an integration constant.
Case b (Elliptic type)
In this case the inequality

D<0 or A>1/(y+ 1M*>0 (3.22)

holds true, and Eq. (3.19) extracts the solutions

M = i[(y + DM?A — 1}
X = t

Y + a. (3.23)
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Case c (Hyperbolic type)

Here we have the inequality

D>0 or A<1/(y+ 1)M? (3.24)

and Eq. (3.19) gives

M *[1 — (y + )M?A}:
= M t+a

X (3.25)

We shall prove now that in case (a), where equation (3.19) is of para-
bolic type, it is possible to obtain an analytical solution of (3.13b) includ-
ing one arbitrary function. In fact, since (3.21) holds true, the Monge
equation (3.18a), specifying the relations along the characteristics, leads to

dt = —M*d(p + q)/\*f. (3.26)
On the other hand, the fundamental equation (3.18c) becomes
dt = df/(p + q). (3.27)

Combination of (3.26) and (3.27) results in

M3(p + q)d(p + q) = =\ df. (3.28)

Since an integration constant a has been already introduced in (3.21), the
integration of (3.28) results in

p+q= *iM/M (3.29)

in which the integration constant has been depressed because the final
solution must include only two constants of integration. Equation (3.29) is
of quasi-linear form. Making use of the corresponding subsidiary
Lagrange’s equations
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dx _dt _ _ . Mdf
C=T= T (3.30)

and integrating, we deduce

X—t=a; xii—I;\-/[—lnf=b (3.31)

in which a and b are arbitrary constants. Combination of these equations
results in

f(x,t) = exp{*= iﬁ[x — F(x —t)]} (3.32)

where F is an arbitrary function.

In the Appendix I we verify that expression (3.32) constitutes a solution
of the linear P.D.E. (3.13b).

By now, we are able to construct the solution for the unsteady potential
¥, including one arbitrary function. In fact, taking into account that there
are no restrictions on the positive separation constant A, we may combine
expressions (3.16), (3.17) and (3.32), and take the sum of all particular
solutions of the form (3.11). Thus, we deduce the solution for the unsteady
potential {s as follows

Wxr 6.0 =3 [( J 1a,00,00) + BOOY, 0] exp
n=0 0

{£i—=[x — F(x = t)]} d\) cosnf

<>

+ f [A,MT,(\1) + B, (VY (Ar)] exp{ + iﬁ[x ~ F(x
0

— t)] }dN\) sinn6.] (3.33)

We note here that the solution (3.33) for the unsteady perturbation equa-
tion (2.7b) concerns only the parabolic case in which the parameter A is
defined by the relation (3.20). This means that the steady nonlinear PDE
(2.7a) becomes of hyperbolic type since for A = 1/(y + 1)M? only the
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inequality (3.5) holds true. Therefore, we conclude that the developed
herein solutions of the problem under consideration concern only the case
of supersonic flow.

In the next section, applying convenient boundary and initial conditions,
we shall try to specify the analytical expressions of the flow velocity
resultants given in (2.3) for a slender body of revolution with a given
geometry of its boundary.

4. BOUNDARY AND INITIAL VALUE PROBLEM-SPECIAL
SOLUTIONS

Let us consider the rigid, slender pointed body of revolution with configu-
ration of a right circular cone shown in Fig. 2. The equation of the merid-

ian of the body is given by

r=¢(x + a) 4.1)

Mrx)= r- €(x+«q) = 0

FIGURE 2 A right circular cone under uniform flow.
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where € denotes the body thickness ratio. We consider also at a generic
point of the surface of the body the local right-handed Darboux co-
ordinate system (t, n, ey); where t is the tangent and n the normal to the
surface unit vectors. The direction of the unit vector e, coincides with the
corresponding direction of the cylindrical co-ordinate system (e,, e, €g)
(Fig. 2). For an arbitrary vector G expressed in both previous systems, we
have the relation

G, G,
G=|G,|=A|G, (4.2)
Gy Gy

in which A is the 3 X 3 transformation matrix

1 e O
A=|-€ 1 0 4.3)
0 0 1

In order to specify the already constructed solutions for the configuration
of the circular cone shown in Fig. 2 we introduce the following boundary
and initial conditions.

4.1 First Boundary Condition

The first set of boundary conditions concerns the velocity resultants, Eq.
(2.1), at infinity. We read

Q, =1+ &g + U; Q, = § cosktcosd + &, + Y, finite at infinity.( ‘s

These conditions are satisfied since the Bessel functions J, (Ar) and Y, (Ar),

as well as the elementary function exp{=* iﬁ[x — F(x — t)]} are bounded
as r — % and x — % respectively.
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4.2 Second Boundary and Initial Condition

We consider that for t = 0 the body, performing small amplitude oscilla-
tions around its nonlifting position M (Fig. 1), takes its maximum incli-
nation 8. Also, in this position the flow is tangential to the solid surface.
The above condition can be described by the well-known equation (Liep-
mann and Roshko [1957])

Fort =0, u-gradh =0 4.5)
where

u=(uv);hx,r)=r—€x+a)=0. (4.52)

Combination of the above equations together with relations (2.3) and (2.5)
leads to

Fort=0, €1+ d,+ ¢X)|body = §,c0s0 + (b, + \br)lbody- 4.6)

Furthermore, according to the formulation of the P.D.E.s (2.7a, b), relation
(4.6) splits in the following two parts:

Fort = 0’ 6(1 + cbx)’body - ¢r‘body =0 (473)
and
Fort =0, 50COSG - el'l’x|body + l<‘Jr|body =0. (47b)

By means of the solution (3.7) concerning the steady axisymmetric poten-
tial, as well as Eq. (3.20), the boundary condition (4.7a) reads

s=—2 oA=L @8)
€(1+4) (y+ 1M
where a parameter s has been already introduced such that
S
r=s, Xx=--—a. 4.9)
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On the other hand, the solution (3.7) becomes

F(b,s; A, B, 1/(y + DM?) = ¢ — ————1—-——5(§ —a)— Alns — B =0.
(y+ 1)M" €
(4.10)

Eliminating the parameter s between (4.9) and (4.10) we derive an equa-
tion of the form

F(b: A, B, (y + DMY) =0

which together with the equation

of/0A = 0

results in the evaluation of the parameter A, namely

P, SN S —
€(1 +4) €X(1 + A) eX(1 + A)

and hence

1

A=¢[l + —— -
«l (y + 1)M2] expl €1 + (y + YM?]

1. @.11)

Therefore, our solution concerning the steady potential ¢ can be written in
the following one parameter family of surfaces form

1

1
d)(x,r)=——————2x+el+m]

(y+ 1)M
1 1
€[l + (y + HM?]

exp{ nr + B. “4.12)

Furthermore, the boundary condition (4.7b) can be approximated by
noting that the product els, is of lower order than the term {5, and may be
neglected giving (Liepmann and Roshko [1957], p. 241)
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Fort = 0, y,

body + d,cos6 = 0. (4.13)

Substituting the solution (3.33) into the last equation and taking into ac-
count the linear independence of 1; cosnf; sinnf (n = 0, 1,...) we deduce

A MNI(x) + B, (MY, (x;) =0;n=0,2,3,...
_ _ Vx4 (4.14)
AN (%) +B,MNY,(x;) =0;n=0,1,2,...

and

dgcosh + (f N [Al()\);l(xl) + Bl()\){fl(xl) exp{=* iA[x
0 M
—F(x)]} d\) cos6 =0 V x, 4.15)
in which
X; = Ne(x + a); (x + a)e(0, 1]

while dot means differentiation with respect to the argument x;. Since J,
and Y, are linearly independent, Eqs. (4.14) furnish

»=0n=0,23,... (4.16)

=

>
I

o
Il

,=0n=0,1,2,...

=

> |
Il
o |
I

4.3 Third Boundary and Initial Condition

This condition concerns the singularity of the already constructed solu-
tions appearing for r — 0, namely near the axis of the slender body. In
fact, for r — 0, the Bessel function of the second kind Y, (Ar) introduced in
the expression of the unsteady potential ¢, (Eq. (3.33)), as well as the
logarithm function included in the expression of the steady potential &,
(Eq. (3.7)), become unbounded. In order to remove this peculiarity, we
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make use of the estimation of the radial velocity v near the axis of the
body. According to Liepmann and Roshko [1957, p. 223] near the axis the
resultant v is of the order 1/r. Thus, one writes

For t = 0, lim(vr) = a, 4.17)

r—0

where a, is a function of the variable x only, or a constant.
On the other hand, the expression for the velocity resultant v is given by
(2.3), namely

For t=0, v =29§,c0s0 + ¢, + .. (4.18)
Using (3.33), (4.12) and (4.14), as well as the last equation, we obtain

Fort = 0, lim(vr) = lim(r8,cos6) + lim(rd,) + lim(ry,)

—0 -0 —0 r—0
i+ ——]
(y + HM? p
- —tim | [ (A0 = AT+
exp[ 1 ’ r—0 0
&1 + (y + )M?]

cosf.

+ B,OVIY, (M) — MYo(A)] {exp = iﬁ[x — ()]} A

Taking into account that for r — 0, J;(0) = 0; Jo(0) = 1; Y,(0) = Y,(0) =
—x, the last equation is compatible with (4.17) if

B,(\) =0, (4.19)
giving
lim((\)/r) = ¢{l + [1/(y + )M} exp{—1/ €71 + (y + 1)M*]} = const.

By now, relation (4.15) can be rewritten in the form
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[ - DN
‘ JO' ; +0)\)2 + M GepJexpl = i [x = F(x)]}dN| cosd = 0

which, since it must be valid for every 0, furnishes

d
N1+ N2A, (T (x)

exp{=* iﬁ[x -Fx)]} = - (4.20)

Therefore, the arbitrary function included in the expression for the poten-
tial s, Eq. (3.33), is evaluated by the equation

exp{= iA[X —Fx—-t]} = - % exp[= iAt]'
M NLHNANGG) M
4.21)

s=e\(x —t+ a),
where dot here means differentiation with respect to the argument s =

eAx — t + ).

4.4 Fourth Boundary and Initial Condition

This condition is based on the fact that the flow has been already stabilized
when it abandones the rigid cone. Considering the expression for the tan-
gential velocity v, (Fig. 2)

V.=u+ev (4.22)
resulting by the transformation matrix (4.3), the above condition means

that the tangential gradient of v, forx = 1 — a;r = €; t = 0, is equal to
zero, namely

d(u + ev) I(u + ev)
Forx=1-or=eat=0 " hoay "€ ar lbody .
Y Y (423

Combining (4.23) with (2.3) and (2.5) we obtain
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(d)xx + l!”xx + e(bxr + e‘bxr) bOdy = (—ed)xr - €lI"xr - E2(t)rr - ezd"rr) body

Observing that ¢,, = ¢,, = 0 and noting that € << 1 the above equation
can be approximated in the form

Forx=1=oar=¢€t=0, (Y, + 2ey,,) body =0. (4.24)

From now on, taking into account (4.21), (4.19) and (4.14), and retaining
according to (2.3) only the real part in (4.21), we succeed in giving the
final expression for the unsteady potential | as follows

kS

f 1 J ()\r)cos M dA

,1,0,1) = —98
Y(x,1,0,1) 0 N+ V)

cos6;

s=€e\N(x —t+ a). (4.25)

Differentiating twice (4.25) with respect to x and r, introducing the results
into (4.24) and using the well-known reccurence formulae for the deriva-
tives of the Bessel function J;, we deduce, after some algebra, an equation
which, since it must be valid for every 6, results in the following transcen-
dental equation

3 ’ JM’ WA
=—1f |1+ T(w) + 2A e
‘uz ’ H(p) (1) (w) |1 )
4.26)
where
2 1
H(p) = Ji(w) = pJo(p); Alp) = l—; - ll i) = = Jow)s
T8 M
L = €A. (4.26a)

By means of Eq. (4.26) we estimate an infinite number of positive eigen-
values u; (i = 1, 2,...) to which correspond the values \;.
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5. FINAL SOLUTIONS

Combination of equations (2.5), (4.12), (4.25) and (4.26, 26a) results in
the following expression for the perturbed potential b(x, r, 6, t)

e+ ——]

X +
(v + HM? 1
eXPle71 + (y + HM?]

d(x,1,0,1) =

Inr + B—

z M ]
———~l——;Jl(—r) cos(—t) |cosb; 5.1

BT

M €

where dot means differentiation with respect to the argument s;.

Introducing the solutions (5.1) into the matrix-equation (2.3) we derive,
after some algebra, the following analytical expressions for the velocity
resultants u, v and w

1 =1 1
u=14+——+3e>
y+1M2 S ‘1 |2 H(s))

(1- s?)h(si)‘
X
H(Si)

€

M Mt
X Ji(: r)cos(e—M) cosb;

1
(v + 1)M2]
v = Jycoskt cos® + L L

1 r
exp
el + (y + HYM?]

1+
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806 * 1 }.L p“t
B Ti=1 l yz H( ) )COS( M) cosb; 5.2)
w = —§,cosktsinf — 2 {_—]—zH( ) r)cos(&) sin®,

in which H as in (4.26a) and s; as in (5.1).

6. CONCLUSIONS

We have constructed analytical solutions for the problem of nonlinear
supersonic flow analysis for slender bodies of revolution due to small
amplitude oscillations. The above solutions refer to the nonlinear time
independent P.D.E. concerning the steady flow potential, and the linear
time dependent P.D.E. concerning the unsteady one. The total solution
includes one arbitrary function, fact that permits us to investigate any
boundary of the slender body under consideration. The evaluation of the
flow velocity resultants is achived through a set of four boundary and
initial conditions in accordance with the physical problem.

We underline that, contrary to the existing approximate and numerical
techniques in obtaining solutions of the examined problem, the developed
herein methodology succeeds in constructing analytical solutions in ex-
plicit form of the flow velocity resultants.

Finally, we believe that the suggested herein technique may proved
powerful in the investigation of relative problems in fluid mechanics and
gas dynamics, as well as in other domains of mechanics.
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APPENDIX |

We shall prove that the expression
. A
f(x, t) = exp{= 1-—M—[x - F(x — t)]}

in which F is an arbitrary function, constitutes a solution of the linear
PD.E.

M3f,, + 2MPf, + MPf, + N = 0.

We compute the following partial derivatives
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£ = =i (1— FOK(. 0
X M
N
f==* lﬁF K(x, t);

fo=(FitF - (1 - PR, 0
XX_[+1M Mz( )] (X,t),

f—+'£F”——)\iF’1—F’K ;
xt_[-‘lM M2 ( )] (X,t),
f, = _'AF”~)\—2F’2 K
tt [+ 1M MZ ] (X7 t)

in which prime means differentiation with respect to the argument (x — t),
while

K(x, t) = exp{= iﬁ [x — F(x — t)]}.

Introducing the above expressions into the P.D.E. under consideration we
verify that the function f(x, t) is a solution of this equation.



