Mathematical Problems in Engineering © 1997 OPA (Overseas Publishers Association)

Volume 3. pp. 255-265 Amsterdam B.V. Published in The Netherlands
Reprints available directly from the publisher under license by Gordon and Breach Science Publishers
Photocopying permitted by license only Printed in Malaysia

Relaxation Process Modeling in a
Turbulent Boundary Layer with
Nonzero Free Stream Turbulence

EUGEN DYBAN®? and ELLA FRIDMANP*

&Institute of Thermophysics, Ukraine Academy of Science, Kiev, Ukraine;
®College of Engineering, The University of Toledo, Toledo, Ohio 43606

(Received 20 May 1996; Revised 22 August 1996)

In order to analyze the relaxation effects in a turbulent boundary layer with zero and nonzero
free stream turbulence, the Reynolds-averaged equations of motion and energy are solved. As
the closure of the Reynolds-averaged equations, the transport equation for turbulent shear
stresses is used. The proposed approach leads to calculation of the relaxation scales in the
turbulent boundary layer with zero and nonzero free stream turbulence. Results for friction
coefficients, velocity profiles, shear stresses, thickness of the boundary layer and so called
“superlayer” in a flat-plate turbulent boundary layer are presented. The results obtained are in
agreement with those available from the experimental data.
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1. INTRODUCTION

The present study is based on the approach proposed by Dyban and Frid-
man [1] with regard to the numerical solution of the momentum and heat
transfer equations in a turbulent boundary layer with nonzero free stream
turbulence. This approach is based on the Reynolds-averaged equations of
motion and energy:
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Unknown effective shear stresses 7,,and effective heat flux g, are defined
as

Ty=T+T=17—pu'v,
4=q+t qr=q = pcy'T. 3)

Then, as a closure for the system (1), instead of the usually employed
Boussinesqhypothesis —u'v’ = vy ou/dy = (v, — v) du / 9y, Dybanand
Fridman [1] used the relaxation equations for turbulent shear stresses and
for turbulent heat flux
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where L, Ly are relaxation scales in longitudinal and transverse directions,
respectively, and L., L, are thermal relaxation scales in longitudinal and
transverse directions, respectively.

Equation (4) was proposed by Hinze [2] in order to account for memory
effects which, as he has shown, could be significant in a turbulent bound-
ary layer flow. To account for memory effects, Hinze [2] represented tur-
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bulent stresses as consisting of two parts: the first one was defined by the
local gradients of averaged motion (Boussinesq hypothesis), and the sec-
ond by memory effects.

There are two reasons for using the relaxation equation (4) in the case
of the boundary layer with nonzero free stream turbulence. The first reason
is that the Boussinesq hypothesis does not work for flow patterns where
the time averaged product of the velocity fluctuations |u'v’| and the gra-
dient du/dy do not simultaneously approach zero. As Fig. 1 shows, such a
situation exists in a turbulent boundary layer with nonzero free stream
turbulence. Indeed, when y = 9, the value of !17\7] differs considerably
from zero, and this difference increases with the increasing of the param-
eter vz /vz,. The latter parameter is a ratio of the turbulent viscosity in the
free stream, v, and the value of turbulent viscosity in a “reference”
turbulent boundary layer with zero free stream turbulence, vr; _i_t~reﬂects
the level of turbulence in a free stream [3]. While the value of |u'v’| does
not equal zero, the velocity gradient is practically equal to zero in the
region close to the outer edge of the boundary layer. The second reason for
using the relaxation equation (4) is that the larger the scale of turbulent
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FIGURE 1 Turbulent shear stresses in the presence of free stream turbulence. Calculations:
l- vy =10, 2- v /vy = 5, 3- vg /vy, = 1. Experiments [3]: 4- v /vy = 1, 5- v /vy =
3.6, 6- v /vy, = 13.6.
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motion and the more homogeneous is the velocity field (du/dy — 0), the
more pronounced the memory effects are for the flow pattern [2]. Such a
situation takes place at the outer edge of the boundary layer when the level
of turbulence in the free stream is significant.

The main difficulty in using Eq. (4) is in defining the longitudinal L, and
transverse L, relaxation scales. Loytsyanskiy [4] proposed to interpret the
relaxation scales L, and L, as the Prandtl mixing lengths in longitudinal
and transverse directions respectively. In the present study another method
of defining the relaxation scales L, and L, is proposed.

2. ANALYSIS

The transport equation for the Reynolds shear stresses can be written as

(5]

w'v  ou'v (E2 ou'v
5 ay

v =
0x dy ay

u

) Co, ( uv' + CpE ) 6)
where
C,= 0.09; C, = 0.1; C¢, =2.8. (6a)

Usually, to define turbulent kinetic energy, E, and kinetic energy dissi-
pation rate, €, two more equations need to be solved together with Eq. (6).
However, if one takes into account an expression for eddy viscosity
vy = C,E’/ e and an estimation [u'v'|/E ~ 0.3 [6], that is valid for the
most part of the turbulent boundary layer, then the Eq. (6) becomes:

s vr o\ CoCo [
u'v vauv _ Si(_rauv>+ #u,v,(ﬂ 3_”) )
ax ay ay \C, ay 0.3

u
vy dy

Following Loytsyanskiy [4], assume that the turbulent relaxation time can
be expressed as Ay = C, E/ e. Then, multiplying Eq. 7 by A7 and rear-
ranging the expression for the turbulent relaxation time as
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one can get
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The longitudinal and transverse relaxation lengths can, then, be defined as

(4]

L,=Npu, L, = Ny (10
Thus, Eq. (9) becomes:
— — y N _
LMY o My —0.3cS—Ti(—’a” Y ) = GG, (v + ur ),
Y oox Y dy uy W \C, dy e dy

11)

Hence, to account for the relaxation effects in the longitudinal direction
as well as in the transverse direction, Eqs. (1)—(2) should be solved simul-
taneously with the modified transport equation for the Reynolds shear
stresses (Eq. 11). In order to do so, the distributions of the longitudinal L,
and transverse L, relaxation scales need to be known.

Another way to account for the relaxation effects in a turbulent bound-
ary layer is to solve the system (1)-(2) using Egs. (4) and (5) as the
closure model. The relaxation scales functions in the turbulent boundary
layer can be defined by integrating Eqs. (1)—-(2) together with Eq. (7) and
then substituting the results into Egs. (8) and (10). The latter approach is
employed in the present study.

Calculations have been carried out with the usual values for constants
(6a) in Eq. (7), except for constant C, which has been changed to C;, =
0.1Re%, where n = 0.16 and n = 0.2 for zero and nonzero free stream
turbulence, respectively. Such a choice is made in order to provide better
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agreement between the calculation results and the experimental data. The
functions for turbulent viscosity v, are defined according to the recom-
mendations given by Dyban and Fridman [1] (Fig. 2).

3. NUMERICAL PROCEDURE

The numerical solutions have been carried out by finite difference method
with variables x and In(1 + y/a,x). The Crank-Nicolson implicit scheme
[7] has been employed for finite-difference approximation of the corre-
sponding differential equations. This scheme is considered unconditionally
stable and has second-order accuracy O(Ax)? + O(Ay)z. The solution of
the discretization equations is obtained by iterations using TriDiagonal-
Matrix Algorithm [7]. Iterations were repeated until the magnitude of er-
rors for lu'v'l/u? approached =1% from its maximum value, which corre-
sponds to the absolute value of approximately *=0.1 cm?/s?.
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FIGURE 2 Effective coefficient of turbulent viscosity in the turbulent boundary layer with
nonzero stream turbulence. Calculations: 1- vy/vy, = 1, 2- vp/vy = 5, 3- vifvy = 10.
Experiment: 4- v, /vy, = 1, 5- vy /vy = 3, 6- vg /vy = 8
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4. RESULTS AND DISCUSSION

The calculation results of the characteristics of turbulent boundary layer
with zero and nonzero free stream turbulence are described below.

Figure 3 presents the relaxation scales in longitudinal L, and transverse
L, directions for a flat-plate turbulent boundary layer with zero and non-
zero free stream turbulence. The L, and L, functions are consistent with
the notion [2] that the relaxation effects are pronounced in the outer part of
the turbulent boundary layer and decreased with the decreasing distance
from the wall. The obtained relaxation scales are employed to simulate the
relaxation effects in the turbulent boundary layer with nonzero free stream
turbulence.

In order to test the described method, the calculations of turbulent
boundary layer with zero free stream turbulence have been performed and
a comparison of the results with well known experimental data [8] has
been carried out (Fig 4). The friction coefficient in the turbulent boundary
layer with nonzero free stream turbulence (Fig. 4, broken line) has also
been calculated. These results show an increase in friction coefficient un-
der the influence of the free stream turbulence. This is in agreement with
our previous results approximated by the expression [9]

L, by m

0.12

0.08 A

0.04 -

y/é

FIGURE 3 The relaxation scales in a flat-plate turbulent boundary layer with nonzero (1)
and zero (2) free stream turbulence.
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FIGURE 4 The comparison of the calculation results of characteristics of the flat plate
turbulent boundary layer with experimental data. Experiment: 1,2- Tu.. = 0. Calculations: 3-

Tu,. = 0, 4- Tu,. > 0.
vy \05
¢ = [1 +0.045 (——) } Cho (12)

v T,

where

¢; = 0.027[1 + 0.051g(Re** — 3.3) + 0.1(Re** — 3.3)*JRe* 2%

and vz /vy is a parameter that reflects the level of turbulence in a free
stream. When, for example, 1)T8/vT0 = 4, Re** = 2500 and Re, = 1.4 X
10, the increase in the friction coefficient is about 11% while the formula
(12) gives the quantity about 10%.

Fig. 5 represents velocity profiles in the range of the Reynolds number
Re** = 2000—4000. A commonly employed expression that describes a
velocity profile in a turbulent boundary layer is

u" =25Iny+ + 5.1 + 2.5Tw(y/),

where the profile parameter II grows with the increase in the Reynolds
number and becomes II ~ 0.5 in the fully developed turbulent boundary
layer. The calculated velocity profiles (Fig. 5) are in agreement with avail-
able experimental data in the near wall region. They also demonstrate that
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FIGURE 5 The velocity profiles in turbulent boundary layer with zero (3, 4) and nonzero
(5) free stream turbulence. 1- u* = y*, 2- u* = 2.5In y* + 5.1.

the profile parameter Il in the wake region increases from value II =
0.325 at Re** = 2400 (profile 3) to IT = 0.54 at Re** = 4000 (profile 4)
in the fully developed turbulent boundary layer. These results are in agree-
ment with experimental data [3] as well. Under the influence of free
stream turbulence, the velocity profile changes in such a way that profile
parameter II decreases and in some cases becomes negative. As one can
see, this is the case presented in Fig. 5 (profile 5): the profile parameter is
negative II = —0.2 while the level of free stream turbulence is nonzero
(vrfvr, = 4).

Distributions of shear stresses for turbulent boundary layer with zero
and nonzero free stream turbulence are presented in Fig. 1. The results of
calculations correspond to the notion that values of shear stresses at the
outer edge of the turbulent boundary layer with nonzero free stream tur-
bulence differed from zero. Thus, when the parameter vr/vy = 5, the
value of lu'v'lVu? at the outer edge of the boundary layer (y = d) ap-
proaches quantity ~0.3. The thickness of the so-called “superlayer” (the
layer above the boundary layer where the gradient 8|u’v’|/dy asymptoti-
cally approaches zero [3]) is 1.88 in this particular case. With the decrease
of the parameter vr/vz, which corresponds to the decrease of the free
stream turbulence, the values of lu'v'l/u? and the “superlayer’s” thickness
decrease as well. So, the thickness of the boundary layer where gradient of
the mean velocity du/dy approaches zero does not equal the thickness of
the layer where the gradient of the shear stresses o|u’v’|/dy approaches
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zero in the boundary layer with nonzero free stream turbulence. The
higher the level of the free stream turbulence the larger the difference
between these two.

5. CONCLUSION

The proposed method allows the modeling of the relaxation effects in a
turbulent boundary layer. The calculation of relaxation scales makes it
possible to use the relaxation turbulence model [1] instead of the usually
employed Boussinesq hypothesis for the prediction of the velocity and
temperature profiles for turbulent boundary layers with nonzero free
stream turbulence. The calculation results for heat transfer and friction
coefficients, for velocity and temperature profiles, for Reynolds stresses
and turbulent heat fluxes could be used for predicting the heat transfer
rates in the highly turbulent flow such as flow that associated with ele-
ments of turbomachinery.

NOMENCLATURE

o = klpc,-thermal diffusivity

s = skin friction coefficient

Cp = fluid specific heat

E = W? + v'2 + w22, k = 2 * E turbulent kinetic energy

L,, L, = relaxation scales in longitudinal and transverse directions

L., L, = thermal relaxation scales in longitudinal and transverse direc-
tions

q = heat flux

Re** = Reynolds number based on momentum thickness

Ry = v./v turbulent Reynolds number

Re;* = Reynolds number based on enthalpy thickness

Re, = Reynolds number based on plate location

T = mean temperature

T = temperature fluctuation

Tu = ratio of rms velocity fluctuation to mean value

ut = wu/u.—mean velocity scaled on inner variables

U = friction velocity
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U = mean convective velocity

u, v = longitudinal and transverse components of mean velocity

u', v/ = longitudinal and transverse components of turbulent velocity
X,y = Cartesian coordinates

y* = yu./v—dimensionless distance from the wall

) = momentum boundary layer thickness

€ = kinetic energy dissipation rate

v = viscosity

p = fluid density

T = shear stresses

g = wake function for velocity profile

Subscripts

ef, T, = effective, turbulent, wall, outer edge of the boundary layer,
wd thermal boundary layer, zero free stream turbulence and free
0, 0, > stream.
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