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The main purpose of this paper is to incorporate a refined hysteresis model, viz. a vector
Preisach model, in 2D magnetic field computations. To this end the governing Maxwell
equations are rewritten in a suitable way, which allows to take into account the proper
magnetic material parameters and, moreover, to pass to a variational formulation. The varia-
tional problem is solved numerically by a FE approximation, using a quadratic mesh, fol-
lowed by the time discretisation based upon a modified Cranck Nicholson algorithm. The
latter includes a suitable iteration procedure to deal with the nonlinear hysteresis behaviour.
Finally, the effectiveness of the presented mathematical tool has been confirmed by several
numerical experiments.
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1 INTRODUCTION

In this paper we present the inclusion of the vector Preisach model, as
described in [5], in the magnetic field calculations in a 2D-domain D. This
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domain D represents one tooth region of the stator of an asynchronous
machine, as shown in Fig. 1.

In the conventional magnetic field analysis which is applied to rotating
machines, the magnetic properties have been modeled by using a single
valued material characteristic. Such kind of numerical modeling can not
describe the material behaviour sufficiently accurate.

In [7] and [8] the magnetic behaviour of the material has been described
in terms of the unidirectional macroscopic fields, using a scalar Preisach
model to take into account the hysteresis phenomena.
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FIGURE 1 Model of one tooth region
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In a 2D domain, a vector hysteresis model is needed due to the local
rotating magnetic flux excitations. These rotating flux excitations in elec-
trical machines result from the complexity of the magnetic circuit and of
the magnetic motoric force distributions.

An outline of the paper is now in order. In the next section we state the
physical problem and its mathematical model. To be able to take properly
into account the material characteristics in the vector Preisach model, the
Maxwell equations must be rewritten in a nonstandard way. The varia-
tional formulation of the resulting boundary value problem for the scalar
magnetic potential ¢(x, y, ) is derived in Section 3. This forms the basis
for the fully discrete finite element—finite difference approximation
method outlined in considerable detail in Section 4. Finally, we present in
Section 5 a few numerical results for the local field patterns, which allow,
for the magnetic analysis of rotating electrical machines, a comparison
between the presented model and the more common models based on a
single valued material characteristic. The discrepancies found in the local
field patterns will have to be investigated further as with respect to their
influence on the numerical results for the iron losses in electrical ma-
chines, which is a topic of ongoing research.

2 PHYSICAL PROBLEM AND MATHEMATICAL MODEL

2.1 Governing Equations in One Tooth Region D

The magnetic behaviour of the material can be described in terms of the
macroscopic fields, taking into account the hysteresis phenomena.

We consider a single tooth region, see Fig. 1, where the electrical con-
ductivity o is assumed to be zero. The corresponding Maxwell equations
for the magnetic field # = H,I, + H,1, and the magnetic induction B =

B.1,.+ B,1,, in the 2D domain D are, see e.g [4],

rotH = 0 (1)

divB = 0 2)
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where the relation between H and B is defined by the material character-
istics obtained by the vector Preisach hysteresis model, described below.
The boundary 9D is divided into six parts dD,, dD,, ..., 0Dy, see again Fig.
1. Enforcing a total flux ¢,(¢) through the parts 0D, s = 1, 2, 3, we arrive
at the boundary conditions (BCs)

o= [ Brudli>05=123, 3)

Hin=00ndD,t>0,s=1,2,3, “)

where 7 is the unit outward normal vector to the boundary part dD,. At the
other hand a zero flux leakage through dD,, dDs and 0Dg results in the
complementary BCs:

B-n=00ndD,t>0,s=4,5,6. (5)

The demagnetized state of the material at # = 0 is expressed by the initial
condition (IC)

H(x,y,1=0)=0,VY(x,y) € D. (6)

2.2 Hysteresis Models

For an outline of the numerical model presented in this paper, we first
briefly recall some basic principles of the vector Preisach model, as related
to the more common scalar Preisach model. We may refer e.g. to [5],[6]
and [9] respectively for the details.

2.2.1 Scalar Preisach Model

The BH-relation can be described by a scalar Preisach model if H and B
are unidirectional.

In the Preisach model the material is assumed to consist of small di-
poles, each being characterized by a rectangular hysteresis loop as shown
in Fig. 2. The magnetisation of the dipole M, takes the value —/ or +1,
depending on the component H(f) of the magnetic field and its history,
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FIGURE 2 (M, H)-characteristic of a Preisach dipole

denoted by H,,(f). The characteristic parameters o and {3 are distributed
statistically according to a Preisach function P (c, 8), which takes on a
nonzero value in the triangle {(a, B)| — H,, <o« <H,, —H, < B =< a},
see [9]. This distribution function P (o, B) is a material parameter, which
can be identified directly using a well defined measurement technique, see
e.g. [8] and [3]. The BH-relation (with B = B1) is given by

BH Hy) = [ do [* dBma.B.oP@B) ()

Here m (o, B, ) takes the time dependent value of the magnetisation M,
for the dipole with parameters o and (3. Consequently the induction B
depends upon H(t) and H,,(7).

2.2.2 Vector Preisach model

In the 2D domain D, the magnetic field H may rotate in the (x, y)-plane.
Therefore we must pass to a vector hysteresis model.

In the vector Preisach model, as described in [5] and [6], the vector H is
projected on an axis d, which encloses an angle 8 with the fixed x-axis,
—m/2 < 6 < m/2,seeFig. 3. The corresponding value H,(=H cos0 +
H,sin®) is taken to be the input of a scalar Preisach model on the axis d.
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FIGURE 3 Vector Preisach model

The BH-relation is now given by, see [5],

——— 1 - (A «
B(H, Hyyo) =~ f ", Tudo 1) " do ) | dB (0, o B, OP(6, o, B)
2 ®)

Notice that m,(0, «, B, ) is obtained from the component H, (0, t), simi-
larly as in the scalar Preisach model. Consequently B depends on H(z) and
1_1p(,5,(t). The dependency of P, on 6 reflects the anisotropy of the material.

3 TRANSFORMATION OF THE PROBLEM AND VARIATIONAL
FORMULATION

First, we rewrite the Maxwell equations (1)—(2) in a suitable form. From
(1) a scalar potential ¢(x, y, f) may be introduced such that H = —grade
(of course, ¢ can only be determined apart from a constant, the choice of
which will be specified below). Rewriting, in a classical way, the Maxwell
equations in terms of this scalar potential doesn’t allow to take into ac-
count in a proper way the material characteristics in the vector Preisach
model. To overcome this difficulty, notice that the differential permeabili-
ties p,, = dB,/0H,, w,,= 0B,/0H,, u,, = dB,/0H, and p,, = 0B,/0H, are
uniquely defined by the vector Preisach model. Hence a suitable reformu-
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lation of the problem should incorporate the material characteristics by

means of these permeabilities. Therefore, we pass to the auxiliarly un-
99

ot

Indeed, considering the time derivative of (2), we get

known u, defined as u(x, y, t) =

0B, ou ou
—_ = - + —, 9
o Heox Mgy ©)
0B, du du
y
- == g, 1
and consequently
9 ( ou au) 3( ou au)
=+ 2+ Hy 2 E =0 11
o e T Mo oyl T o\ gr TGy 0 (11)
The boundary conditions (3)-(4)-(5) lead to
dd(1) dB -
T—ISDSE'ndl,[>O,S— 1,2,3 (12)
¢=C()ondD,t>0,s=1,2,3 (13)
and
%‘ﬁ=00n6Ds,t>0,s=4,5,6. (14)

Here, to remove the degree of freedom involved in the scalar potential ¢,
we choose

¢ =0onaD;, t>0. (15)
We must add the IC resulting from (6) and (15), viz.

¢e=0,V(x,y) €D, t=0. (16)
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Source conditions.
Two types of source conditions occur.

(a) With d-type excitation, the total flux ¢(¢) through oD, s = 1,2, 3 is
enforced (of course with E§=1 &y(r) = 0,¢ > 0). Then, the uniform but
time depending value of the scalar potential ¢ on dD,, denoted by
Cy(t), s = 1 or 2, is not given a priori, but must be determined as part
of the problem.

(b) With so called ¢-excitation the uniform value @(f) = C(t), t > 0, at
dD,, s = 1 and 2, is enforced, (recall (15)). From the boundary value
problem (11), (13)—(14), (16), we may obtain the magnetic induction
B. Then the total flux b0, s = 1, 2 or 3, follows from (12) and (16).

To derive a suitable variational form of this problem, we introduce the
function space

V={v € WyD); Vl;p,_is a constant depending on's, s = 1, 2, 3}
a7

Here W)(D) is the usual first order Sobolov space on D and the condition
“v| ap, 1s constant” must be understood in the sense of traces, as defined
e.g. in [1]. Then multiplying both sides of (11) with a test function v(x, y)
€ V, integrating over D, applying Green’s theorem and invoking the
boundary condition (12), the problem (11)—(16) is found to be (formally)
equivalent with the following variational problem:

9¢

at’

obeying ¢ € V and a2 E L,(D) for every t > 0, such that

Find a function ¢(x, y, t) with u(x, y; t) =

au av ou, v dd(t)
f (””‘ax Mo oy o (””‘ Ty oy TP _21 dt V|0D(518)

foreveryveE€ V, 1 >0

and

¢ =0,fort=0. (19)
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Notice that by the requirement ¢ € V for every ¢t > 0, (13) is automati-
cally taken into account.

4 FINITE ELEMENT-FINITE DIFFERENCE APPROXIMATION
4.1 Space Discretisation by Finite Elements

For a usual triangulation 7, of the domain D, (h mesh parameter), shown
in Fig. 4, we consider a quadratic finite element mesh.

By Ni(x, y), = 1,..., J), we denote the standard cardinal basis func-
tions, associated to the nodes (xj, ), G = L., J being the total
number of nodes. Here, the nodes are numbered such that the first 7 of
them, / < J, belong to the domain D or to the boundaries dD,, dD5 and
dDg. On the boundaries 0D;, dD, and 0D; we have J;, J, and J; nodes
respectively, (J — I = J, + J, + J3). We then have, with C°(D) being the
space of continuous functions on D and with P,(T) being the space of
polynomials of degree = 2 on T, see e.g. [1],

X,={ve CO(B) My € Py)(T),VT € 7))} = span(Nj)f=1 (20)
and

Xp,={vEX,lv=00ndD,s=1,2,3} =span(1\/j);=, 21
Next we introduce

I+,

L|J1+1(x,)’) = 'IEIIVj(x’ }’), (22)
j=I1+
I+J,+J,
¢I+2(x, y) = 2 ]V} (X, )’)’ (23)
j=I+J,+1
J
lb[+3(x’ }’) = E IV} (x’ )’) (24)

J=IFT + I+
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FIGURE 4 Triangulation 7, for the domain D

Evidently, ¥, , ¥, and ;5 belong to the space X,. On a side { of the
triangle T € 7, for which { C aD,, we have (|, = 1, as clearly ¢I+s"§
is a quadratic function of one local variable showing the value 1 in the 3

nodes on {. Consequently:

Y, =1lonaD,s=1,2,3. (25)
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Moreover Ui, is readily understood to vanish throughout D apart from
the triangles T € 7, adjacent to 0D,. Writing, for convenience, s, = N, 1
= j = I, we finally define:

V, = span (L]Jj)f:f = X, D.span (lll,ﬂ)?:l (26)

This space V), is suitable for a conforming finite element approximation as
V, C V. Indeed, for v € V, one evidently has v € X, C Wy(D), while
moreover v is constant on 0D, 0D, and dD;, due to (25).

The finite element approximation ¢,(x, y; t) € V), of ¢(x, y; t) is defined
by a system similar to (18)-(19), now with V replaced by V,. Here, we
approximate the space dependency of y,;, by passing to fi;; = y,,, defined
by

Ha%, s 1, @p(x, 3 1), @ (x, y; 1)) =

O Y50 1, @u(x5 V5, 1), @, ¥, 1) (27)
xyETVTET, >0

where (x7, ¥7) is the center of gravity of 7. This allows us to take properly
into account the nonlinear and hysteresis effects, resulting in the compli-
cated form of the differential permeability p,,. Here, y,; now depends upon
the finite element approximation H,(x,y;f) = —gradg, and HP*™)
(x,y;0) = - gradqp},”"s’) of the magnetic field H(x, y; ) and its history
HP*(x, y; 1), respectively.

Explicitly, recalling (15) and decomposing ¢,, as

I+2

(Ph('x’ y’ t) = 2:1 (Pj(f)lbj(x, )’), t> 07 (28)
j=

we have ¢(1) = @,(x;, y;; 1), 1 = j = I, and moreover ¢, (1) = @,(x, y;
) ap, $ = 1, 2, due to the proper choice of the basis functions of V,, (26).

Notice that in the case of ¢-excitation (case (a) in Section 3), all coef-
ficient functions ¢,(#), 1 = j = I + 2, are unknown, while in the case of
@-excitation (case (b) in Section 3), the coefficient function ¢, ,(#) and
®;.o(?) are given.
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These unknown coefficient functions will be derived from a system of
first order ODEs, resulting from the finite element discretisation of (18).
More precisely, take as test functions in (18) either v = (), 1 =i =1+
2 (case (a)), or v = Y1), 1 =i = I, (case (b)).

Thus, we are led to the following system

M(t, C(r), CP*(z)) - % =F,t>0 (29)
along with the ICs, cf. (16),
c0)=0 (30)
and

My, eBt=0=+1:a+B<0

oy Bi=0=—1:q+p>0 "HVNED G

The second IC corresponds to the history of the material at t = O (i.e. the
demagnetized state of the material). Here, the matrices involved read as
follows.

case (a)

C and C®*" are the column matrices,

C) = [0, @x(0), -, @120 (32)
(o) = [@P(0), (1), ... o250
while M is the mass matrix given by
M(t, C(1), CPU 1)) = (M), =im=rs2s (33)
with

A d . oY, 0 . o0y, 0 . o0
Mlm=fD (qux all’l_‘!‘_m ‘l’z& s sy, s, s,

— — — — + u, ——| dxd
ax ox | Moax dy Fo dy ox Fo dy ey
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and finally the (/ + 2)x1-force matrix F, corresponding to the RHS of
(18), reads

dd dd
F(r) = 721 -[0,0, ...,0,1,0]" + th -[0,0,...,0,0,1]7  (35)

where we used (25) and the fact that {s;, ¥,,..., ¥, all vanish on D, and
aDz.

case (b)

C, C%" and M take a similar form as in case (a), of course with the
proper dimensions.

However the force matrix now has the form

F(t) = [Fy(®), Fy(0), ..., Fn)]" (36)

with

d d .
Ft) = =M, 4, e (1) = My p4y P P, 1=i=1I 37

4.2 Time Discretisation by Finite Differences

The IVP (29)-(31) is solved numerically by a suitable finite difference
approximation method. We may restrict ourselves to the case of
od-excitation, (case (a)), the case of ¢-excitation being completely analo-
gous. The analysis proceeds similarly as in [2].

Let Af be a time step and #, = k- At, (k = 0, 1, 2, ...), be the corre-
sponding equidistant time points. We define an approximation c® =
[0, @, ... 1" of C(t) = [01(8), @2t s Praa(t])s (k = 1, 2,
...), by the following recurrent algebraic system

W — Y Fy) + Flt) P =

M (k) ,
At 2

1,2,... (38)

starting from, see (30),
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c?=o. (39)

By means of C© we construct an approximation @\ **) of ¢,(x, y, 1),
(28), viz.

I+2
o (x,y) = )y @ U (x, y). (40)
E

As the matrix M® depends on the unknown C*, we set up an iterative
procedure to solve the nonlinear system (38) at every time point f,, the
number of iterations being denoted by n,. The approximation of C* at the
I-th iteration level is denoted by C¥*’. The corresponding approximation
of (40) is written as cp(hk)’(”(x, y). In the final iteration level we write

o) = cpﬁ,k)‘("k), which is then used as the input at the subsequent time point
le+1-

In the iterative procedure the matrix M, appearing in (38), is gener-
ated from the matrix M by a suitable averaging procedure over the interval
[f—1» 2], as described in detail in [2]

5 NUMERICAL RESULTS

The effectiveness of the variational approximation for the problem (11)-
(16) as outlined in the previous sections, has been confirmed by several
numerical experiments, both for the case of ¢-excitation and for the case
of ¢-excitation.

We considered a test problem with practical relevance, viz. the evalua-
tion of the local fieldpatterns in one tooth region of an asynchronuous
machine, shown in Fig. 1.

The numerical results obtained with the present model are compared
with these resulting from more common models based upon one single
valued material characteristic. More precisely, we will compare the nu-
merical results for the time variation of H and B in selected points of the
tooth region D. As both the scalar potential excitation and the flux excita-
tion are periodic in time, we may use a complex Fourier decomposition for
the local vector fields H(x, y; t) and B(x, y; 1), Viz.
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_ +x )
H(x,y; 1) = k_z Hk(x’ y) - e’(k‘”'+°"‘) (41)
— +3 ]
Blx.yi)= 3 Byfx.y)- &t (42)

Here, w is 2 times the basic frequency, o, [resp. 3,] and H, [resp. B,] are
the phase angle and the amplitude of the k-th harmonic of H [resp. B]. For
the magnetic material we used the Preisach function P, such that

f Z do f ‘; dBP (o, B) = 13.10%H, - Hyl+
0.56 (AH,) — flH,))(A—H,) — A—H,))
—Hm = Hl = HZ = Hm (43)
with
flx) = arctan(x/200) (44)

We present numerical results for the 2 types of excitation mentioned
above.

casel: ¢-excitation
We enforce a simple time variation of the scalar potential at the bound-
ary parts 0D, and dD,, viz.

cPI+1(Z‘) = cpmaxcos(21'rft + 'YI) (45)

and

"PI+2(t) = _‘Pmaxcos(zﬂft + 'Y2) (46)

with ¢,,,,. = 120, f = 50Hz, y, = 25° and 1y, = 6°. For this excitation we
compute the field pattern in the domain D and we consider point 2 in Fig.
1. Fig. 5 reveals the difference between the B,B,-loci obtained with the
vector Preisach model and the one obtained with the more common single
valued material characteristic.
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FIGURE 5 B.B,-loci in point 2, case 1

case2: d-excitation
The enforced realistic fluxpatterns through 4D, and 4D, are

d)j(t) = aj‘lcos(Zﬂﬁ + yj’,) + aj’lscos(3011'ft + Yj,15)

+ a;7c05(34mft + ;7). = 1,2

47)

where the amplitudes and fase angles are given in Table I, and where f =
50Hz. We consider the 2 points indicated in Fig. 1, for which we expect a
different type of field pattern. The corresponding, B,H,-loop and B H,-
loops are shown in Fig. 6. Fig. 7 shows the scaled spectra of the ampli-
tudes for the vectors B and H for point 1, according to (41)-(42). Again the
values obtained with the vector Preisach model deviates from those ob-
tained with the single valued material characteristics (the more when the

TABLE I Amplitudes and angles of excitation in case 2

Amplitudes (T) Fases (degree)
1 15 17 1 15 17
b, 1.262 0.0178 0.0105 25. 109. —36.
b, 1.268 0.0067 0.005 5.9 —155. 217.
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FIGURE 6 B H,- and B,H -loops in point 1 and point 2, case 2

scaling factors are different, as indicated). Moreover, notice the symmetry
for each pair of positive and negative harmonics. This corresponds with
alternating field vectors, which is in agreement with a qualitative property
for points such as point / in D. This symmetry is lost in the case of point
2 in D, see Fig. 8, corresponding to rotational fields H and B in this point.
For the sake of completeness, in Fig. 9 and Fig. 10 we show the phase
angles o, and 3, for the same points / and 2. Again the difference between
the results obtained with the vector Preisach model and those obtained
with the single valued material characteristic are non neglectible.

1.0 T F 1.0 1 . -] h
o single x hyst o single x hyst
0.8 _I_Bk E.IS 0.8 _I'_Il(_ i(
0.7 0.7 650 370
0.6 0.6 (
0.4
0.2

-30 -20 -10 0 10 20

FIGURE 7 Spectrum of the amplitude of B and H in point 1, case 2
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1.0 L] 1.0 [
o single x hyst o single x hyst
0.8 + By By 0.8 1 Hy H
0.84 0.84 540 371
0.6 'L 0.6 +
0.4 'L 0.4
02 + 0.2 -
-‘-".‘“ 0.0 A e A s B e

10 20 k 30 -3 20 -10 0 0 20 k %

FIGURE 8 Spectrum of the amplitude of B and H in point 2, case 2

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we outlined a suitable numerical method for the evaluation of
local field patterns in a 2D region, based upon a proper reformulation of
the governing Maxwell equations. This allowed us to incorporate a refined
hysteresis model, viz. a vector Preisach model, in the magnetic field com-
putations. We found differences for the local field patterns when evaluated
first with the vector Preisach model and next with the more common

Ok  osingle x hyst By  osingle x hyst
180 T 180 +
o]
90 N +
: Ii%lT ﬂT 0 EHT’ % 1 $E
T i
-90 ! -g0 L %
! b
-180 t + + 5 u -180 + + + i
-3 =20 -10 0 0 2 k % -30 -0 <10 0 100 2 k 30

FIGURE 9 Spectrum of the angle of B and H in point 1, case 2
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o single x hyst o singl
%0 - oy g y o0 Bk single x hyst
90 A k % + [}

it G3H A * T

0 0 %

ﬂ i ‘Tﬂi T
-90 -90 T+

p 1o
X

-180 - 04 + -180

-30

-20  -10 0 10 20 k 2 -3 20 -10 0 10 20 k3

FIGURE 10 Spectrum of the angle of B and H in point 2, case 2

single valued material characteristic. It’s a topic of further research to
investigate the possible influence of these discrepancies on the numerical

evalu

ation of the iron losses in rotating electrical machines.
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