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The structure of the quasi-isothermal deflagration is examined by means of an
asymptotic analysis of the physical-plane boundary-value problem, with Lewis—
Semenov number unity, in the limit of the activation-temperature ratio, 8= T,/T,
greater than order unity, for the generalized reaction-rate-model case of: (1) the heat-
addition—temperature ratio, a=(Ty,—Ty)/Ty, of order 8772, less than order unity
[where T,, Ty, and T, are the activation, adiabatic-flame (and/or burned-gas), and
unburned-gas temperatures, respectively]; and (2) the exponent, a, which characterizes
the pre-exponential thermal dependence of the reaction-rate term, unity. The exami-
nation indicates that, as in the order-unity heat-addition case, this deflagration has a
four-region structure: the upstream diffusion-convection and downstream diffusion-
reaction regions, and the far-upstream (or cold-boundary) and the far-downstream (or
hot-boundary) regions.
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1 STATEMENT OF THE PROBLEM

For the direct, first-order, one-step, irreversible, quasi-isothermal,
unimolecular chemical reaction R — P, the steady, one-dimensional,
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low-Mach-number, isobaric, laminar deflagration, for Lewis—Semenov
number unity, is modeled by the following (nondimensional) bound-
ary-value problem (cf. Bush and Krishnamurthy [1]) in the domain
(—o0o <€ < o0):

dr

%= (1.1a)
- AU-Drtep(-p -7/ +0k (L)
Te—0 asé— —oo, (1.22)
me—1 asé— oo (1.2b)

In the above: (1) £ is the (modified) spatial coordinate; (2) 7 is the
normalized temperature, and ¢ is the normalized stoichiometrically
adjusted mass-flux fraction of the product; (3) 8 is the activation-
temperature ratio, 7,/Ty, greater than order unity, and « is the heat-
addition—temperature ratio, (Tp,—7Ty)/Ty, here, of less than order
unity, where T,, Ty, and T, are the activation, adiabatic-flame (and/or
burned-gas), and unburned-gas temperatures, respectively; (4) a is the
exponent that characterizes the pre-exponential thermal dependence of
the reaction-rate term, of order unity; and (5) A is the normalized
Damkohler number, greater than order unity. It is worth noting that,
in the present study, unlike in the earlier analysis (see [1]) of strong
exothermic chemical reaction, the one-step reaction cannot be
construed as all of R being converted to P. Rather, as appropriate
in a cool flame, only a small fraction of the original fuel population is
converted to product. Indeed, another plausible physical context for
the present case arises for the deflagration of a very off-stoichiometric
mixture of reactants, say, near the fuel-lean limit, for which the
oxidant population is left essentially intact, the fuel is consumed
completely, and the temperature rises just a little.

The previous paper had considered the generalized (reaction-rate)
model boundary-value problem of (1.1) and (1.2), for §— oo, with
a~O0(1), and a=1, by means of an asymptotic analysis in physical
space. That analysis showed that a four-region structure consisting
of two far (upstream and downstream) regions, in addition to the
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two classical near (upstream and downstream) regions, must be
introduced for the deflagration in order to obtain uniformly valid
solutions from the cold boundary to the hot boundary. In the
present paper, by means of a parallel analysis, for §— oo, with
a~0(87 %) -0, and a=1, it is shown that, again, a four-region
structure must be introduced for this quasi-isothermal deflagration
in order to obtain uniformly valid solutions. Since, in general, 5 and
« are independent parameters, this paper presents a (mathematical)
distinguished-limit analysis for the understanding of this (physically
interesting) quasi-isothermal case. For consideration of the (comple-
mentary) problem, defined by (1.1) and (1.2), for 8 <O(1), a < O(1),
and a=1, say, see Zeldovich et al. [2].

For the previous case (see [1]) of 83— o0, with K=(14+a ')~
O(1), the eigenvalue has been determined to have the representation

e s nk-ge o )
=713 .

with (71— 1) =0.344. Now, for 8— oo, with a ~O(37 /%) -0, and, in
turn, with K ~ O(3"?) — oo, such that 8 = k23 — oo and K = kB'/? =
kZBI ? . o0, for k~0O(1), (1.3) takes the representation

A=1/2

Agﬁ{%—ﬁ (I—l)+---}—>oo. (1.4)

From (1.3) and (1.4), for 8 — oo, it is clear that it is possible to go
from a treatment with K~ O(1) to one with K~ O(8"?); also, from
(1.3) and (1.4), it is clear that it is not possible to go from one with
K~ 0O(1) to one with K~ O(f).

2 ASYMPTOTIC ANALYSIS

The model deflagration boundary-value problem under considera-

tion (i.e., B— oo,a~ O(8 ') — 0, and a=1) requires the analysis
of four principal regions: (1) a relatively thin downstream region,

near the hot boundary, where (1 —7)~ O(f 2); (2) a relatively
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thicker upstream region, near the cold boundary, where 7~ O(1);
(3) a far-upstream region (the thickness of which is comparable to
that of the upstream region), nearer to the cold boundary, where
T~ O(ﬂ ); and (4) a far-downstream region (the thickness of

which is comparable to those of thze upstream reglons), nearer to the hot
boundary, where (1 — 7) ~ O(ﬁ !/ exp(— -3 ))

2.1 The Downstream Region

The appropriate independent and dependent variables for the down-
stream region are:

{&h=5"¢ (2.1)
768 =1-5""[6@)+ 50O+ ], @2
&8 = B+ 5 "B+ ]. (2:20)
Throughout the flow field, the eigenvalue, A, has the representation

A(B) = [Ao+ﬂ A +] (2.3)

In terms of the downstream variables, (1.1) can be written as

== —(1-Ep),...; (2.4a)

=~ = A()G() exp(-ég), N (24b)

From (1.2b), the downstream boundary conditions for these equa-
tions are

Go—0,..., Eg—1,... as— oo (2.5a)
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In anticipation of the downstream-region/upstream-region matching,
the upstream boundary conditions for these equations are taken to be

Go— 0,..., Eg—0,... as{— —oo. (2.5b)

As an intermediate step, the leading-order boundary-value prob-
lem, from (2.4) and (2.5), may be written in phase-plane form, i.e.,

d(1 — Ey)
— = Ay _
dGy (1 - Ey)

GO exp(_GO) . (2 63)

(1—Ey)—0asGy—0, (1—Ey)—1asGy—oo. (2.6b)
The solution, EO(G'O), of (2.6) is
Eo=1—[1—(1+ Go)exp(—Go)] /%, @2.7)
for

Ag=1. (2.8)

D=

Once Ey(Gy) is known, ¢ = {(Go) is determined from

dé 1 : G di
—AC = %x: C: _/w 7NN (29)
dGy 1- Eo(G()) G, 1-— E()(t)

for ( -0 as Gy — G(;) =const. (to be determined). From (2.9), at
the “downstream edge” of this region,

fNﬁ[—logéo+logég—%éo+'--]—»oo asG0—>O:
~ ~b ~ ~
Go ~ Gy exp(=C/V2)(14--) =0 as{ — oo, (2.10a)

where

b o N V2] ..
GO = GO exp{ﬁ/o [ﬁm_T:I dt} (210b)
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At the “upstream edge” of this region,

{~ —(Go— Gy) +1(Go+2) exp(—=Go)(1+---) — —o0 as Gy — o0

Go~ (=) +Gg)(1+-+-) > 00 as{— —o0, (2.11a)
where
At A0 o0 1 .
070 Jee L1=Eo(d) (2.110)

With the downstream and upstream behaviors for Go({) determined,
the corresponding behaviors for Ey(¢) are found to be

Ey~1— (GA(I,’/\/E) exp(=(/V2)(1+--) =1 asl—o0; (2.12)

By ~ Jexp(=G) exp(=(=O)[(=6) + (G + (1 ++) =0 as & —oo.
(2.13)

Since, for this region, higher-order approximations are not pur-
sued in this paper, from (2.10) and (2.12), 7 and ¢, as ( — oo, are
given by

T=1- B-l/z [Gg exp(—C/V2)(1 + -- )] [1 +O<B_1/2)]; (2.14)

A—1/2

e=[1- (Gé’/ﬁ) exp(—C¢/V2)(1 +~-)] [1+0(8 )] (2.15)
When higher-order approximations for this region are pursued, it is
found that the solutions for the downstream region, considered, are
not uniformly valid as the hot boundary is approached (f — 00).
This (near) downstream region must be supplemented by a far-
downstream region. Details of this far-downstream region are
presented in Section 2.4.

From (2.11) and (2.13), with Gg =—1, 7 and ¢, as f—+ —00, are
given by

A1/2

r=1-57P0 D+ li+0(8T ) @)

e =he(-Oexp(~(-ONt+-N[1+0(8 )] @
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2.2 The Upstream Region

For the upstream region, the independent variable is £= &, with
—00<£<0, and the appropriate dependent variables are

r(&h) = [B@) +5"R@) +--), (2.18a)
(&0 = B [R@) + 5 ) + -]
xexp{~8" [Ha(@) + 8~ "I + -]},

with Hy(€) = (1 - Fo(£)), Hi(€) = —Fi(€) +%(1 ()
(2.18b)

The representation for the eigenvalue, A, is now
AB) = B[ L+--1). (2.19)
In terms of the upstream variables, (1.1) can be written as

Fy . dEy .
h_}:’ b_

—=Fy, —=F,...; 2.20a
aé¢ " e ! (2.20a)
cdfy 1 s 1o
Jo dé—i(l—Fo)Fo. Jo = 2(1 F),... (2.20b)

To leading orders of approximation, the boundary conditions are
taken to be

Fo—1,..., Jo—0,... asé—0_ (2.21a)
Fo—0,..., Jo—1i,... asé— —co. (2.21b)

Directly, it is found that the leading-order temperature-function
solutions are

Fo= Boexp(f), F =B exp(f),..., with By=1, B, =1,....
(2.22)
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Thus,
Fom 1= (=€) +4(=62 =+ | =1 asé—0_; (2.23a)

Fy ~exp(—(£)) » 0 as £ —» —oo. (2.23b)

From the solutions for the upstream region, 7 and ¢ can be
expressed as

= eXp(é)[l +57" o) (2.24)
= L1 exp(@] exp{ -8t o]}
X exp{—% [1 —exp(£)]*+ exp(é)} [1 + O(Bhl/z)] . (225)

These upstream solutions for 7 and e, (2.24) and (2.25), as -0,
match to the downstream solutions for 7 and ¢, (2.16) and (2.17), as
{— —o0.

Upstream_ (£ — —oo) for Fy=exp(f) — 0, B — oo, such that

B Fy = 87 exp(é) = fy ~ O(1), (2.24) and (2.25) yield

= 87", [1+ﬁ +o(57)]; (2.26)
€= exp ( )% ( k2) exp(fp) [1 + 0(3_1/2)]. (2.27)

Note that B_ — 0 (algebraically), and that ﬁ exp(—ﬁ 1/2) -0
(exponentially), as 3 — co. Further, with Fy = exp(f), it follows that

o= 8" exp(é) = exp(€,) exp(€) = exp(, + &) with &, =1Llog .
(2.28)

Thus, BFy =f, ~0(1) for (&, +€&) =7~ 0(1), ie., fy=exp(d) ~
O(1). In turn, (2.26) and (2.27) can be written as

T=B—1/2exp(ﬁ) [1 +B_1/2+0(ﬁ_1)]; (2.29)

€= ,@1/2 exp (_BI/Z) %exp (— %15) exp{exp(/)} [1 + 0(3—1/2)] ‘
(2.30)
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From (2.29), it is seen that the temperature function, 7, of O(ﬁml/z),
goes to zero (exponentially), as required from (1.2a), as the cold
upstream boundary is approached (i.e., 77 — —o0). All-lgwever,df%)m
(2.30), it is seen that the mass-flux function, €, of O(8 " exp(—8 ")),
goes to a finite value as the upstream boundary is approached — in
contradiction of (1.2a). In Section 2.3, a far-upstream region, nearer to
the upstream boundary, is introduced, the solutions of which resolve
the “cold-boundary difficulty” suggested by (2.30).

2.3 The Far-Upstream Region

For the far-upstream region, based on (2.26)—(2.30), it is taken that
the appropriate independent and dependent variables are

(& B) = €,(B) + € with §,(B) = Llog 3; (2.31)
(&) =B [@o(@) + 6 i)+, (2.32a)

A1/2) [\i’o(ﬁ) n ,3_1/2‘i’1(f7) +- ] (2.32b)

. A1/2
e(&p)=p eXp(—ﬂ
The eigenvalue is still given by

AB) = B3+ (2.33)

In terms of the far-upstream variables, (1.1) can be written as

s ab
ddy _ o dd) _

0By, L=y, 2.34
an 05 a7 D,...; (2.34a)

dd, 1 1\ - .

-0 ___ —— e 2.

& 2 exp( k2) D¢ exp(Dy), (2.34Db)

The upstream boundary conditions for (2.34) are

N N

&y —0,..., % —0,... ash— —oo. (2.35)

In this region, the temperature-function solutions are

by = /foexp(ﬁ), &, = A4, exp(7), ..., with dg=1, A;=1,....
(2.36)
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Here, it is noted that, upstream, ®,(#) = exp(#) — 0 as f — —oo, and
that, downstream, ®(7}) = exp(7}) — oo as 7 — oco. Consideration of
(2.34a) and (2.34b) produces the following phase-plane problem:

d‘i/() 1 1 A

—=0__ - ; 2.

a5, 2 exp( k2> exp(Po); (2.37a)
Uy —0 asdy— 0. (2.37b)

The solution of (2.37) is determined to be

by = % exp (— %) [exp(®o) — 1], (2.38a)

or, since &) = exp(7),
R 1 1 .
Yo = 3 exp(———kz) [exp{exp()} — 1]. (2.38b)

The solution of (2.38b) for Wy(7), is one for which Wo(A) — 0 as
f) — —oo and for which ¥y(7) — oo as 7 — oo.
Hence, for this far-upstream region, 7 and ¢ can be expressed as

~1/2

=04 ""exp(f) [1 +57 4 O(ﬁ—l)]; (2.39)

= BI/Z exp<_31/2> % exp(-— %) [eXp{exp(ﬁ)} _ 1] [1 + O(B_]/z)] '
(2.40)

The function 7 of (2.39) is that of (2.29), and, as such, satisfies its
upstream boundary condition (7} — —oo). The function ¢ of (2.40) now
satisfies its upstream boundary condition (4 — —oo0) — and the cold-
boundary difficulty is resolved. Further, these far-upstream solutions
for 7 and ¢, (2.39) and (2.40), as ) — oo, are seen to match to the
upstream ones, (2.24) and (2.25), as é — —00.
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2.4 The Far-Downstream Region

When higher-order approximations for the downstream region (of
Section 2.1) are pursued, it is determined that, for this regxon the
solutions for Tzand ¢ are not uniformly valid as { — oo and B — oo,
such that 8~ ¢ = £ is of order unity. This nonuniformity indicates
that, for the boundary-value problem under consideration, the down-
stream region should be supplemented by a far-downstream region.

Based on (2.14) and (2.15), as well as the above, the appropriate
independent and dependent variables for this far-downstream region
are

MNep) =" =¢ (2.41)

r(&B) 21— exp(=4""3VE) [iw(N) + B (N + -],
(2.42a)

a(ﬁ;ﬁ)%l—exp(-—ﬁmj\/ﬁﬂ o(A) + 4~ 125 (5\)+--~]. (2.42b)

Further, the eigenvalue is
N R ~—1/2
AB) = A[4-87" -1+ ] (2.43)

This eigenvalue representation is the one derived in (1.4).
In terms of the far-downstream variables, (1.1) can be written as

1 . R 1 . R diig A)

—ig—vy ) =0, — i =V | =——10],.--; 2.44a
(Fgao-i) =0. (F5m—9) = (52 -0 (2.442)
(La —ﬁ)—O (La —ﬁ)~\/_((1—1) -iv_q) (2.44b)
/2 o — Vo W 1=V TR .
The zeroth-order equations of (2.44a) and (2.44b) both yield

A

b0 = % i (2.45)
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In turn, the first-order equations of (2.44a) and (2.44b), in combina-
tion with (2.45), yield

dig 1 .

=3 [1 +V2(I - 1)]u0 =0. (2.46)
Thus, from (2.45) and (2.46), the zeroth-order far-upstream-region
solutions are determined to be

iy = V2 = GEexp{4 [l + V2(I - 1)] A}, (2.47)
in order that the solutions for 7 and ¢ for this region, as A—0,
match to those, (2.14) and (2.15), for the (near-) downstream region,

as ( — oo.
Hence, for this far-downstream region, 7 and ¢ can be expressed as

T=1— ﬁ_l/zéé’ exp{—ﬁl/z—j‘ [1 —p72 (L—i- = 1))]}[1 + 0(3_1/2)];

V2 V2
(2.48)
- _%exp{-ﬁvzé[l_B—w(%ru_1>)]}[1+o(a—w)].
(2.49)

The functions 7 and e, of (2.48) and (2.49), respectively, satisfy
(1.2b), in that they both go to unity (exponentially) as the hot
boundary is approached (i.e., A — 00).

3 RESULTS AND DISCUSSION

The foregoing asymptotic analysis for the generalized reaction-rate
model boundary-value problem for the quasi-isothermal deflagration
has revealed that a four-region flame structure is required in order
to obtain uniformly valid solutions from the cold boundary to the
hot boundary, as it is for the order-unity heat-addition deflagration.
The details of this structure are shown in Fig. 1. The (near-) down-
stream and (near-) upstream regions, of Sections 2.1 and 2.2,
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FIGURE 1 Schematic diagram of the four-region structure of deflagration.

respectively, must be complemented by the far-upstream and far-
downstream regions, of Sections 2.3 and 2.4, respectively.
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