Mathematical Problems in Engineering © 1998 OPA (Overseas Publishers Association)

Volume 3, pp. 387-411 Amsterdam B.V. Published under license
Reprints available directly from the publisher under the Gordon and Breach Science
Photocopying permitted by license only Publishers imprint.

Printed in India.

Optimal Boundary Control of
Distributed Systems Involving
Dynamic Boundary Conditions

S. KERBAL? and N.U. AHMED °*

a Department of Mathematics and Statistics, ? Department of Mathematics
and Department of Electrical and Computer Engineering, University of Ottawa,
161 Louis Pasteur St., P.O. Box 450, Stn. A, Ottawa, Ontario KIN 6N5, Canada

(Received 29 April 1997)

In this paper we consider Lagrange type control problem for systems involving
dynamic boundary conditions that is, with boundary operators containing time
derivatives. Assuming the existence of optimal controls, B-evolutions theory is used to
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1 MOTIVATION

Many physical systems, with dynamic boundary conditions, have
applications in multi-phase problems in physics and engineering
[3,4,9,11]. These include heat transfer and Navier—Stokes equations.

For motivation let us consider a heat transfer problem arising in
nuclear reactor. Let  be a bounded open subset of R*> modeling the
interior of an annular tube of finite length with smooth boundary
which consists of two parts: T';, the inner boundary, and T',, the
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outer boundary. The coolant (e.g. heavy water) in the annular region
Q receives heat energy from the heat produced by nuclear reaction
inside the fuel rods surrounded by the boundary layer I';. The
corresponding control system model can be described as follows:

((0/00)T(1,€) =div(k()VT)+v-VT, €€, t>0,
T(t, €)|I‘2 =h(t,§), €Ty, t>0,

(6/00)(T(1,9)lr,)
= AFI T(t9 6) - ﬂDV(T(t’ g)ll‘l) + g(g’ T(t’ g)ll"l’ u(t’ é))’ > 0’
7(0,§) = To(§), €€,

T(0,8)lp, = T1(§), §€Th.

(1.1)

The quantity T denotes the space—time temperature distribution in
the interior of the domain, k: Q — R™, represents the thermal
conductivity which satisfies

0 onTy,
k(&) = {K on (,
B8 onl}.

The constant, 3(>0) represents the thermal conductivity of the
material that constitutes the boundary layer I';. The quantity
v=¥1(t,€) € R denotes the transport velocity of the fluid in Q and
u=u(t,€) (the control) temperature of the outer surface I'; of the
fuel rod (due to nuclear reaction). The Laplace—Beltrami operator
Ar, represents the rate at which thermal energy is transferred within
I'y and D, denotes the outward normal derivative. The function g
represents a convective heat transfer and is given by g=
a(T; — Tly,), where the parameter « is the heat transfer coefficient
due to convection and T, denotes the surface temperature of the fuel
rod which is the control u.
For this example the integrand may be taken as

KT, u(t)) = /Q IT(6.6) — TO(,6)| dé + /F u(t,€)* de



OPTIMAL BOUNDARY CONTROL 389

and the cost functional to be minimized subject to the system (1.1) is
given by

J(u) = /1 I(T(¢),u(t)) dz.

That is, we like to keep the temperature distribution at some pre-
assigned value 79,
The necessary conditions of optimality for the above example will
be presented in Section 5 once the general theory has been developed.
The abstract mathematical model for the example (1.1) can be
written in two Banach spaces as follows:

p (d/dt)Bx(t) = A()x(t) + f(Bx(1),u(r)), tel
) { oty - 20

where 4 and B are linear unbounded operators between two Banach
spaces, f is a map with values in a Banach space and u is a suitable
function representing the control actions taking values in another
Banach space.

In addition to covering all classical boundary and distributed
control problems, the system (P,) includes a new set of such
problems in which the boundary conditions are determined also by
an evolution equation (see example above).

The control problems of systems governed by B-evolutions has not
been studied before. Control theory for classical cases (X=Y, B=1
identity operator) and their abstract versions have been studied
extensively in the literature (see Fattorini [5], Li and Yong [6], Lions
[7], Ahmed and Teo [10] and many others, and the references therein).

In [6], the author gives necessary conditions of optimality for a
semilinear control problem in terms of a semigroup of operators
which in general is not available and hence cannot be used to
construct an algorithm for computing optimal controls.

In this paper we consider a class of semilinear problems governed
by B-evolutions as described above by the system (P;). We derive
necessary conditions of optimality in terms of the available data,
that is in terms of the given operators 4 and B and the cost
integrand /.
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2 BASIC RESULTS FOR B-EVOLUTION

For any pair of Banach spaces X,Y, respectively with norms,
-1l I~ llys £(X, Y) and Ly(X, Y) will denote the class of bounded
and unbounded linear operators from X to Y respectively. Let
I=[0,T], T<oo, and for 1< p<oo, LP(I, X), endowed with its
usual p-norm, |- ||, denote the class of all pth power Lebesgue—
Bochner integrable functions on 7 with values in X.

As the theory of B-evolutions has been developed only during the
past few years, we shall list, for the sake of completeness, the basic
definitions and properties of B-evolutions, as introduced in [2,9].

Let B be a linear operator with domain D(B)C X and range
R(B)CY.

DEefFINITION 2.1 A family {S(¢): >0} of bounded linear operators
defined on Y is called a B-evolution if

S(t)(Y) c D(B), forallt>0
and
S(t+s) = S(s)BS(¢), for all s,z > 0.

From the definition, it follows that the family {E(?): ¢t > 0} of linear
operators in Y, defined by

E(t) = BS(t), forallz>0,
satisfies the semigroup property
E(t+s) = E(s)E(t), foralls,t>0.

E(?) is called the associed semigroup. The B-evolution S(¢) is called
strongly continuous if E() is a semigroup of class C.

DEFINITION 2.2 A strongly continuous, uniformly bounded B-
evolution is said to be of type L if

Pa)y & [ exp(-2)s(0)y dr e D(B)
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for all y€ Y and a complex number )\, with Re A >0, and
BPgp(N\)y =/ exp(—Af)BS(t)y dt.
0

DEFINITION 2.3 A B-evolution S(7) of type L is called holomorphic
if the associed semigroup E(f) is holomorphic.

DEFINITION 2.4 The infinitesimal generator 4 of B-evolution S(¢) is
defined by

D(A) = {x € D(B): Ax = lim h='(BS(h) — B)x exist}.

It is clear from the last definition that D(A4) C D(B).

Remark 2.1 The infinitesimal generator 4 of B-evolution is not
necessarily closed or densely defined.

Some useful results due to Sauer [9] are given by the following
lemmas:

LEMMA 2.1([9], Theorem 2.1, p. 289) Let S(t) be a strongly
continuous B-evolution. Then

(a) for xe€ D(A), S(t)Bx € D(A), and
AS(t)Bx = BS(t)Ax = (d/d#)BS(t)Bx, for t > 0;
(b) if Ay is the infinitesimal generator of E(f) then x € D(A) if and
only if Bx € D(Ay) and for such x
Ax = AyBx;

(c) B(D(A)) is dense in Y,
(d) for y €Y, the mapping t — S(t)y is right continuous.

LEMMA 2.2 ([9], Theorem 2.3, p. 290) Let S(¢), t >0, be a strongly
continuous uniformly bounded B-evolution. Then

(a) foreachye Y,t— S(t)y, t >0, is strongly continuous with values in X;

(b) there exists an operator C € L(Y, X ) such that Cy = lim,_,o+ S(¢)y
for each y € Y; and S(t)y = CE(f)y, t > 0;

(c) C restricted to the range of B is the right inverse of B.
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LEmMMA 2.3 ([9], Theorem 5.1, p. 296) The pair (Ao, By), where Ay
and By are suitable restrictions of A and B respectively, is the
generating pair of a B-evolution S(t), t >0, of type L if and only if:

(a) By has a bounded inverse on its range R(By) C Y,

(b) AoB;! generates a uniformly bounded Cy-semigroup E(t), for
t>0,inY;

(c) the bounded linear operator C which is the strong limit of
C,=(Bo—(1/n)Ao)~" is invertible on U, o E(t)(Y )+ R(Bo).

In case E(f), t >0, is holomorphic semigroup in Y or By is close-
able the last condition is superfluous. In this case the pair (4o, Bo)
coincides with the pair (4, B).

The following assumptions will be used:

Assumptions (I) The domain D(A(¢)) = D(A) is independent of ¢.

(IT) There exists a number € >0 such that for all A in ©={\ e C:
A#£0, —(e+7/2) <argA<e+m/2} the resolvents (AB— A(7))”' and
B(\B— A(1))~! are strongly continuous in ¢, with respect to the norm
topologies of £(Y,X) and L(Y) respectively. The continuity in ¢ is
uniform in A on every compact subset of ©.

(IIT) There exist positive constants M and N such that for A€ ©
and t€[0, T]

IOAB = A0)) Nl gy, x) < M/,
IBOB = 4()) " ll vy < N/IAL

(IV) B s injective and has a bounded inverse on its range R(B).
(V) There exists a constant N > 0 such that

||(A(T)B_1)_l||c(y) <N, €0, T]

(VI) There exists a constant K>0 such that, for ¢,5,7€[0,T],
O<a<l,

I(A4(t) = A@) AT (T)llgery < Kt =51

A characterization of a generating pair of operators is given by
the foliowing lemma.
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LEMMA 2.4([2]) Under the assumptions (I)—(VI) the pair (A(-), B)
generates a holomorphic B-evolution V of type L with values {V(t,s),
t>s > 0} € L(Y, X) satisfying the following properties:

(P1) V(t,s) is continuous on 0<s<t<T in the strong operator
topology of L(Y, X).

(P2) E(t,s)= BV(t,s) is uniformly bounded in L(Y), i.e. there exists a
constant Cy> 0 such that

I1BV(t,5)llyy < Cr, for0<s<t<T.

(P3) BV(t,s) is continuously differentiable in the strong topology of
L(Y)on[0,T) and

(0/0t)BV(t,s) = A()V(2,s),
(0/0s)BV(t,s) = —BV(t,s)A(s)B~".
(P4) BV satisfy the following evolution property:

BV(t,s)BV(s,7) = BV(t,T), for0<71<s<T,
BV(t,t) =L

3 PREPARATORY RESULTS

For the development of necessary conditions of optimality, we need
some preliminary results.

Here we consider the case of holomorphic B-evolution of type L.
In this case the operators 4 and B are not necessarily closed but the
pair (A(f), B) from D(A)ND(B)C X to Y x Y is closed. It follows
from Lemma 2.1, that the Cauchy problem

{ (d/d0)Bx = A(1)x,

s — lim,_.0+ (Bx) = Zy

has a unique solution given by

x(t) = V(t,0)z9, t>0. (3.1
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As a consequence of Lemma 2.1, it follows that A()B~' with
domain B(D(A4)) C Y is the infinitesimal generator of the transition
operator E(t,s)=BV(t,s), t>s > 0. In this case the system (Py) can
be written as

{z’:A(t)B‘Iz +f(z,u), (32)

z(0) = zp

and call x(¢) = Cz(¢), t > 0, as the generalized solution of the system
(Py) where z is the mild solution of Eq. (3.2) and Ce€ L(Y, X) is the
operator given by Lemma 2.2.

Thus in the case of holomorphic B-evolution the problem (Py) is
related to the classical problem (3.2). In the homogeneous case (i.e.
f=0) the solution of the problem (P) is given by x(z)=B'z(t)
since z(f)=E(1,0)z0€ R(B) and C|grp=B"". In the nonhomo-
geneous case, z(f) may not be in the range of the operator B and
hence the definition of generalized solution x(f) = Cz(#) makes sense.

For simplicity of notation we have written s — lim,_ ¢+(Bx) =
Bx(1)],—o = 2(0).

In order to study the control problem given by the system (3.2)
we introduce the class of admissible controls as follows:

Admissible controls Let A be a closed, bounded and convex subset
of U. For admissible controls, we choose the set

Uag = {u: strongly measurable and u(¢) € A, a.e.}.

Occasionally, we use the notation x(x) to denote the solution, of the
system (Py) corresponding to u € Usq.

In the following lemma we present an a priori bound and existence
result.

LEMMA 3.1 Suppose the following assumptions hold.

(bl) The pair (A(t),B) is the generating pair of a holomorphic
B-evolution V of type L.

(b2) f:Yx U—Y is a map such that f is locally Lipshitz in Y i.e. for
each 0<r<oo, and zyg€ Y, there exists a positive constant
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K. = K,(z¢) such that
Izt u) = f(z2,u)lly < Killz1 — 22|y

Sfor all zy,z, € B,(z0) ={z € Y: ||z(t) — 20|y < r} and uc A and
satisfies the growth condition

1/ wlly < K(1+ |zl ),

for some K>0,z€ Y, ucA. Then

(i) there exist finite positive numbers M such that:

sup{|lx(u)(®)lx, t € I, u € Uaa} < M;

(i) for each zo€Y, the problem (Ps) has a unique generalized
solution x € C(I, X) and this is given by x=Cz where z is the
solution of the integral equation

z(t) = E(¢,0)z0 + /Ot E(t,5)f(z(s),u(s))ds, tel (3.3)

Proof By virtue of Lemma 2.4, A(f)B™" is the infinitesimal gen-
erator of uniformly bounded holomorphic evolution operator E(z,s)
in Y, 0<s<t<T. Using the “variation of constants” formula we
obtain the following integral equation:

2(1) = E(t,0)z0 + /0 B s)fe(s)uls)ds, tel  (3.4)

Since the controls are contained in a bounded set and f satisfies the
growth condition (assumption (b2)), using Gronwall’s inequality and
the integral equation above one can easily verify that there exists an
M >0 such that

sup{ll2(0)lly. 1 € I} < M, (3.5)

where M = M(||zo||y, T) is a positive constant dependent on the
parameters shown. Thus the map u+—z from U,q to L Y) is
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bounded. Since C is bounded, there exists a constant M > 0 such
that

sup{||x(1)lly, t € I} < M. (3.6)

That is, the map ur— x from U,q to L°(I;X) is bounded. This
justifies the conclusion (i).

To prove (ii), let ze C(I,Y) satisfying z(0)=z, and for some
0 <r<oo z(t) € B,(zo) for all t € I. Define the operator Q by

(Q2)(r) = E(1,0)z9 + /OIE(t, $)f(z(s),u(s))ds, fortel  (3.7)

Using the strong continuity of E(z,5) on A={0<s<:<T} in L(Y),
the assumption (b2), the estimate (P2) of Lemma 2.4 and the above
integral equation, one can show that (Qz)(¢) € B,(zy). Further,
t— (Qz)(¢) is continuous Y-valued function on I. Define

= {z € C([0,0], Y): z(0) =zp and sup ||z(¢) — zo|ly < r}.

tef0,0]
The set ¥,, furnished with the natural metric topology

plz,z2) = sup |z1(t) = (0)lly, 21,22 € Sy
tef0,0]
is a complete metric space and Q maps X, to %,.

Under the property (P2) and assumption (b2), one can show that
Q is a contraction in ¥, and hence from the Banach fixed point
theorem it follows that Q has a unique fixed point z € &,. Since
Ce L(Y,X), it follows that the Cauchy problem (P,) has unique
generalized solution x= Cz(¢t) € C(I; X). This completes the proof of
the lemma.

Remark 3.1 By virtue of the a priori bound, all solutions {x(u)} of
the system (P) lie in a closed ball By (X) = {¢ € X: ||¢|| < M}.

For the necessary conditions of optimality we shall introduce the
following assumptions:

(A1) assumptions of Lemma 3.1 hold,
(A2) f:Yx U— Y is Frechet differentiable with respect to z€ Y and
uec U with respective Frechet derivatives f1:Y x U— L(Y),
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f:YxU—L(U,Y) being continuous and bounded on
bounded subsets of Y x U.

Let z° and z(«°) be the solution of the system (3.2) corresponding
to control «° and u° respectively and x°= Cz® and x(u°) = Cz(u) be
the generalized solution of (Ps) corresponding to control «® and u°
respectively. Then if u°=u’+ e(u—u®) — u°, the solution x(u°)— x°
in C(I; X) and z(u*) — z° in C(L;Y).

First define

1
Fi(s) = /0 Fi(Z°(s) + 0(z(u) (s) — 2°(s)), u%(s)) df, s€T,

and

1
Fi(s) = /0 £(2°(s), u® + 0(uc(s) — u(s))) db, sel

Clearly under the assumption (A2) and the a priori bound (see
Remark 3.1), there exists a constant C > 0 such that

sup{IlF ()l ey IF5 ()l s vy t € I} < C

Further, as e — 0, the operators F{(¢) and F5(f) converge to F)(f)
and FJ(t) = f>(2°(¢), u®) in the uniform operator topology for almost
all rel. Thus ¢— F{(t) and t— F;(¢) are uniformly measurable
operator valued functions taking values from L(Y) and L(U;Y)
respectively.

Let Y* denote the dual of the Banach space Y and Y, the space
Y* endowed with the w* topclogy and C(I;Y,) the topological
space of w*-continuous Y*-valued functions defined on the interval
I=[0,T]. Let (,-)y. y denote the duality pairing between Y™ and Y.
Let A" denote the adjoint of the operator A. For the study of
control problem we shall need the following Cauchy problem called
the adjoint equation:

{ (d/dn)gp(0) + (A(OB~" + FY)"4(r) = —g(1), ae, (3.8)

Y(T)=0€ Y.
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LEMMA 3.2 Let ge LI, Y*) and F{({) the operator as defined
above. Then the adjoint problem (3.8) has a unique mild solution
P € C(I, Y}), which satisfies Eq. (3.8) also in the weak sense.

Proof Let E*(t,s), 0<s<t< oo, denote the adjoint of the operator
E(t,s) and write (3.8) as a Volterra integral equation

T T
Y(t) = /t E*(6,1)g(6) d§ + [ E*(0,0)(F))*(0)y(0)ds.  (3.9)

Define the operator Q by

B T T
(G (1) = / E'(6.0¢(0)d0+ [ E*(0.0(FY) (0)w(6) 89

t

= h(2) + ha(2). (3.10)

We show that O has a fixed point in L*°(I; Y*) and any such
solution is actually w*-continuous. First we show that Q maps
LI Y*) to LI Y™).

Since the operator E(t,6), 0<0<t<T, is bounded and
geL\(LY") it is easy to verify that h;eL®(I;Y*). Since the
evolution operator E(6,t) and the operator F{’(t), 0<t<0LT, are
bounded and uniformly measurable, their adjoints are also bounded
and measurable. Hence the integral in (3.9) is well defined in the
Bochner sense and moreover for ¢ € L™(I; Y*), hy € L>(I; Y*). Hence
0 maps L>(I; Y*) into itself.

Since the operators E*(0,7) and (F)"(f) are bounded on
0<¢<0<T, there exists a constant K > 0 so that

T
[@0n=0uo,. <& [“16s v @l a0 a0

for all 1,1, € L(I; Y*) and ¢ € I. Substituting (3.11) into itself, at
the nth iteration, we obtain

T
@ - 0ren ], < Rryymt [ 1o = wa) @)y 0.
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Taking the supremum norm in the last inequality we obtain

d(Q" 1, 0"r) < cnd(31, %),

where

d(y1,y2) = esssup{||y1(¢) = »2(O)|ly- t € I}

and
o, = (KT)"T/n!.

Then one can choose a positive integer ny such that o,,< 1. Hence,
for n>ng, O™ is a contraction on L°°(f; Y*). It follows from Banach
fixed point theorem that 0", and hence Q, has a unique fixed point
in L(I;Y™) and therefore Eq. (3.9) has a unique mild solution
YeL®( Y).

We show that ¢ € C(I;Y}) and that it is also a weak solution.
Taking n € Y, it follows from (3.9) that

T
W)y y = / (5(0), E(6. 1))y y- 46

T
+ [ (). FOB. )y 99
t
= I](l) + Iz(l). (312)
Since t+— E(0,t) is strongly continuous in L£(Y) on [0,0] and
ge L), Y™), it follows that z— I(f) is continuous on I. Further,
since E(f,t) is strongly continuous in L(Y), for e L™ Y"),

t+— I(?) is also continuous on I. Thus ¢ — ¢ € C(I; Y}}). Replacing n
by z for z € B(D(A)), it follows from (3.12) that

T
(W) 2)yey = / (2(6), E(6,1)2) y.  d6

T
+ / ((ELY (6)(6). E(0. 12}y y db.



400 S. KERBAL AND N.U. AHMED

Using the differentiation property (P3) (see Section 3) it is not
difficult to verify that

L0, 2y + WO F02) -y
b [ B @0 ©00) + 5 0.080), 482, 0
= —(g(1),2)y+ v
Thus, for all z€ B(D(A)),
S 0,2y + 0, F02) gy + (900, ADB 2y
= (&), &)1 x (.13)

for almost all t€1. Clearly by (3.9) (T)=0. Thus, 3 as defined
above, solves the problem (3.8) also in the weak sense.

4 NECESSARY CONDITIONS OF OPTIMALITY

In this section we present our main results on the necessary
conditions of optimality for the following Lagrange problem:

(P) find u® € U,q such that J(zo,uo) < J(z,u), for all u € Uy

where J(z,u) = [;1(Cz,u)dt.

Here z denotes the solution of the system (3.2) corresponding to
the control u € U,q.

In what follows we shall assume that the optimal control problem
(P) has a solution, that is there exists an admissible state—control
pair (z° «°) such that

J(z°%u®) < J(z,u), for all u € Uy. (4.1

We consider two cases: the cases where the cost integrand [ is
Frechet differentiable and merely continuous in the control variable.
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Case A: [ Frechet Differentiabie in Control Variable

THEOREM 4.1 Let (2°,u°) e C(I,Y) x LI, U) be any state—control
pair associated to system (3.2) and suppose the following conditions hold:

dl) I:IxYxXx U— R such that l(w,{) is continuously Frechet
differentiable in w and ( with Frechet derivatives denoted by I,
and 1, respectively. Further C*l? € L\(I, Y*) and 13 e L\(I, U*)
along the pair (2°, u°).

(d2) f satisfies assumptions (b2) of Lemma 3.1 and (A2).

Then, in order that (z°,u°) be the optimal pair, it is necessary that
there exists 1 € C(I; Y*) so that the triple (°,u°,v) satisfies the
following equations and inequalities:

(1) (d/d)2°=A()B7'2° +1(2° u%), 2° = z(0).

(2) (d/d0)yp(e) + (A(O)B™) "y + (Fi(1))"sp = —C*I(2), %(T) = 0.

B) [+ Fy, (u— uo))U*,U dt >0, for all u € Upyq, where 12(f) =
Li(2°(2), C2(2),4°(¢)), for i=1,2.

Proof Let (z°,u°) be the optimal pair for the problem (3.2). By
convexity of Uyg, for u€Ung, u=u’+ e(u—u’) €Uyg, for 0<e<1.
According to Lemma 3.1, the state Eq. (3.2) has a unique mild
solution z° corresponding to the control #° and by definition of
optimality (4.1) we have

/I(Czé(t),uf(t))dt— / 1(C2°(0),u®(2))dt > 0. (4.2)
I I
Define y*=(z — z°)/e. Note that y* satisfies the integral equation

() = /otE(t, S)Fy(s)yS(s)ds + /OtE(t, $)F5(s)(u(s) — u°(s)) ds. (4.3)

By virtue of assumption (A2) and once more applying dominated
convergence theorem one can justify taking e to zero in the above
equation to obtain

y(t) = /OIE(t,s)F{)(s)y(s) ds + /OtE(t, s)F—?(s)(u(s) —u%(s))ds. (4.4)
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Since a linear Volterra integral equation has a unique solution (see
Theorem 2.4.3 of [10]) y is a mild solution of equation
(d/d0)y(r) = (AB~" + F{)(t)y + Fy (1) (u(t) = u°(1)),
(4.5)
(»)(0) =0.
Note that y is the Gateaux differential of z in the direction u — u°.
By use of the hypothesis (d1), and some elementary computations,
one obtains from (4.2) the following inequality:

/I<c*11°,z> v ydt + /I(lg, u—u)y. ydr >0. (4.6)

By virtue of (d1), C*l{’ € Li(I,Y*), and hence, by Lemma 3.2, the
adjoint equation

{ (d/dOy(t) + (A(@)B~) ¢ + (F)* ()¢ = ~C*1Y, @7

W(T) =0

has a unique weak solution ¢ € C(I, Y}}).

Since the solution y(f) need not belong to B(D(A)), following the
same technique as in [13], we use the Yosida approximation of the
identity, J,(t)=nR(n, A(t)B~") where R(\, A(1)B™') is the resolvant
of the operator AB™! corresponding to Aep(AB~"). It is well
known (see [1]) that J,(¢f) — J (identity operator in Y') as n— oo in
the strong operator topology of £(Y) uniformly with respect to t€ 1
and for any z€ Y, J,z€ D(AB")= B(D(A)) for ne p(AB™").

Now we regularize Eq. (4.5) as follows:

{ (d/d0)(yn) = A()B  yy + Ju()F () yn + Ju()FS(6) (u — u?),
yn(0) =0.
(4.8)

Equation (4.8) has a unique strong solution y, with y,(t) € B(D(A))
for almost all 7€ 7 provided ne p(4B"). Since a strong solution is
obviously a mild solution, the y, satisfies the following integral
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equation:

yu(t) = /OIE(I, s)J,,FP(s)yn(s) ds

+ /t E(t,5)J,F3(s) (u(s) — u°(s)) ds. (4.9)
0

Using Gronwall inequality it is easy to verify that y, — y in the usual
topology of C(1, Y). Hence it follows from Eq. (4.7) that

/ (C*I, z)yu ydt
I

= lim [ (C*I),za)y. ydt

n— 00 1

= jim [ (=GO - (@B + (D))

n—oo Jr Y'Y

lim <z/;,—(%(zn)-AB“z,,——(J,,F?)z,,—F?zn+J,,F?z,,> dt
I

n— 0o Y* Y

= lim [ (4, JuFy (u— ") = Fzy + JuF zy) y. ydt
1

n— 00

Il

/1 (W, Fy(u—u))y. ydt. (4.10)

Here we have used the strong convergence of J, to J and uniform
convergence of z, to z and the following estimate:

0 0
J,,FlZn—FIZ,,

Yy = IuF Yz - Z)”Y

+

Jn(F9z) - F?z“ ot ”Flo(z —zy) ,

Combining (4.6) and (4.10), we have

/((Fg)*¢+ B,u—uy. ,dt > 0. (4.11)
I

This proves inequality (3) and completes the proof of Theorem 4.1.
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Case B: / Merely Continuous in Control Variable

In the above result we assumed that / is Frechet differentiable in the
control variable. In case /(x, u) is merely continuous in » and Frechet
differentiable in x=Cz and AC U is a closed bounded convex set,
we can prove Pontryagin type necessary conditions of optimality
using well known Ekland’s variational principle. Define

M = {u:I—- U, strongly measurable: u(f) € A, a.e.}

with the topology induced by the metric
p(u,v) = Mt € Lu(r) # v(1)},

where A denotes the Lebesgue measure. Since A is a closed subset of
a Banach space, the set M, with the metric p as defined above, is a
complete metric space.

We need the continuous dependence of solutions on control.

LEMMA 4.1 Suppose the assumptions (Al) and (A2) hold and
U.q= M. Then for the semilinear system (3.2) the mapping

u— z(u)

is continuous from M to C (I,Y) in the respective metric topologies
and further there exists a constant 3 such that

llz(u) =zl e, vy < Bp(u, v)
for all u,v € M.

Proof Let z(u) and z(v) denote the solutions corresponding to u
and v respectively. Let o= {t € I u(/)#v(¢)}. We have

z(t,u) — z(t,v) = /OIE(f,S)[f(Z(S,u),u(S)) —f(z(s,v),v(s))] ds
t 1
- / E(t,5) / Fi(2(5,v) + 025, u) — 2(s,v)), u(s)) dO
0 0
x (z(t,u) — z(¢,v))ds

+ / t E(1,5)[ f (2(s,v), u(s)) = £ (2(s, v),¥(s))] ds.
0
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It follows from our assumptions that there exist constants a, b such
that

lz(¢,u) — z(2,v)||y < a/o llz(s,u) — z(s, v)|| y ds + bp(u, v).

Thus the assertion follows from Gronwall inequality.

THEOREM 4.2 Suppose the assumptions of the Lemma 4.1 hold and
Sfurther u— I(Cz,u) is merely continuous and z— I(Cz,u) is continu-
ously Frechet differentiable with Frechet derivative denoted by ;.
Further C*l,€ L'\(I, Y*). Then the optimality conditions )-3) of
Theorem 4.1 hold and (3) is replaced by (3)':

(3):  AC2(0), (1)) + ((), (1), (1)) y- y
< HC2(0),v) + (1), (0, )) o y

for all ve A.

Proof Since «° is optimal, again by the inequality (4.1), we have
/ (Cz(t,u),u)dt — / 1(Cz%u%dt >0, VYueM.
1 I

For any measurable set o € and v € A, define

(0 {uo(t), tel\o,

v(t), teo.

Let z7 be the solution of the system (3.2) corresponding to u°. Then

/l(Cz",u")dt—/l(Czo,uo)dt
1 I

=/1(Cz", V) dt—/ I(C2%u®)de+ [ [I(C2%,u®) — 1(C2°, %)) dt > 0.
o o I\o

(4.12)
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By virtue of Frechet differentiability of /, we have
/1\ [[(Cz%,u®) — I(C2°,u®)] dt
_ /1 \ (C*H(C2%u0), 27 = 2% . ydt +o(A(0))
= /1 (C*h(Cz%u%),27 — 2%y, ydt +0(A(0)),  (4.13)

where o(-) stands for small order of approximation.
Hence expression (4.12) reduces to

/ 1(Cz%u® dr < / (Cz%,v) + /(C*ll(Czo,uo),z" - ZO)Y*, rdt
o o 1
+ o(A(0)). (4.14)

Using the adjoint Eq. (2) of Theorem 4.1 and following similar
arguments as in that theorem, one can verify that

/I(C*ll(Czo,uO),z" =20y ydt
— [ sCun) =1E) = B0 = )y v
= [ 1) = 1)y e+ 0(N)
= [ Ayt = [ 1)y i+ 0(NG))

Thus the expression (4.14) reduces to

/l(Czo,uO)dH-/(1!),f(z°,u°))y*’ydt

< / I(Cz°,v)dt + / (W, f(z%V)y. ydi+0(X(0)).  (4.15)

Let ¢ be any Lebesgue density point of #° and ¢ any measurable set
containing ¢ shrinking to the one point set {¢} as A(c) — 0. Dividing
(4.15) by X(o) and letting it converge to zero, we obtain the
inequality (3)’. This completes the proof.
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5 AN EXAMPLE

In this section, we work out in detail an example (heat transfer) of
boundary control problem illustrating the applicability of our
results.

Example 1 (Heat transfer) In this example we consider the heat
transfer problem as stated in the Motivation section. In order to
formulate and treat problem (1.1) as two-space evolution equation,
we introduce the following notations: H™(2) denotes the standard
Sobolev space and y;¢=¢|r; (i=1,2) denotes the trace operator.
Let L, M denote the formal differential operators

L = div(kVe) +v- V¢,
M¢ = Ar,¢ — BDy¢.

We take X=L*Q) and Y= L*Q) x L*(I";), with the norm topology
on Y given by

1/2

2 2

lly = (9 M + % 5wy) fory={'0% e ¥
The operators 4 and B are defined as follows:

D(A) = {¢ € H*(Q): Lp € L*(Q), M¢ € L*(T') and 126 = h},
A¢ ={Lp,M¢}, ¢ € D(A)

and

D(B) = {¢ € H*(Q): ;6 = h},
Bp=(4,m9), € D(B).

The range of the operator B is given by
R(B) = {(¥1,42) € Yimap) = 9o, ae.}.

Defining x(f)=T(t,-), the control wueL*(I;LXTY), f(y,u(t)=
{0, a(u — y*»)} and zo={T,, T;}, the heat transfer Eq. (1.1) can be
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written as an abstract B-evolution in two Banach spaces {X, Y} as
follows:

(d/de)(Bx)(2) = A(e) x(2) +/ (Bx(2), u(1)),

Bx|,=0 = 2.

@) {

The integrand [(v,w) = [ lv(€)|Pde + I, lw(n)|’dn maps L) x
L*(')) to R, for ve LX), w e LX) and the cost functional is given by

() = /1 1x(0), u(2)) dt.

Following standard procedure as in [9] one can verify that the
operators A and B satisfy the following properties:

(1) R(B), range of B, is dense in Y,
(i) 4 is closed,
(iii) B is injective and has a bounded inverse on R(B)C Y.
Thus AB™':D(AB~)=B(D(4))=R(B)C Y~ Y is a closed densely
defined linear operator.

Following similar procedure as in [9] one can show that for each
Y€ R(B)

IAB~A)B 'Ylly > A= w)llly, for xe R A>0,
B = A)B~9lly > N1y, for Ae C.
The quantity w(>0) is dependent on the L™ bound of v and the
material constant K and in fact is given by w = (||v||;~/K). From

the above estimates it follows that there exists a constant M > 1 and
0 < 6 < (m/2) such that for X in the sectoriel domain

Tos={rAe€ C,Rer>w, — (1/2+6) < arg < (n/2+6)},
the operator (A\B—A)B~! has a bounded inverse satisfying
|BOAB — 4)7)|(Y) < M/(Re A — w), Re A > w.
Hence 4B ' generates a holomorphic semigroup (see [8,12], Theorem

3.2.7, p. 82]). Thus by Lemma 2.4, the pair (4, B) is the generating
pair of a holomorphic B-evolution of type L.
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For the set of controls we define
A={weU=L*T1): w= T, and 0 < w(é) < 4}

and for admissible controls take Unqg = {w € L®°(L, U): w(t) € A, a.e.}.

Clearly A is a closed bounded convex subset of U. We note that 1
as defined above is locally Lipschitz, satisfies the growth conditions
and maps Yx U to Y. One can also verify that the integrand /
satisfies the hypothesis of Theorem 4.1. Thus all the assumptions of
the main theorem are satisfied, and hence the necessary conditions
of optimality holds.

6 COMPUTATIONAL ALGORITHM

Based on the necessary conditions of optimality given in Theorem 4.1
(Case A), we can compute the optimal solution of our original
problem:

(Q) Find u° € Uyq such that J(x° u®)<J(x,u) for all u€ Uaq,
subject to the following system:

(d/dt)Bx(t) = A(t)x(t) + f(Bx(t),u(t)), tel,
") { (3 <

where J(x,u) = [ I(x,u)dr.

Here x=Cz denotes the generalized solution of the system (P)
and z the solution of the system (3.2) corresponding to the control
U € Uyg.

The computation of the optimal solution of the problem (Q) can
be done by constructing an algorithm for computing the optimal
solution of the problem (P) (see Section 4). For this purpose, we
require the duality maps.

The map v: U*— U denotes the duality map, that is, for £ € U*

vi() = {n€ U: (&) g vy = €5 = Inllg}-

For Frechet differentiable /, we can define D,J(-) = I + F{1. The
inequality (3) of Theorem 4.1 is then equivalent to the following
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inequality:
(DyJyu—u’) = /I(lg + Fpu—uy. ,di >0
for all u € Uag.
Now the algorithm may be stated as follows:

ALGORITHM

Step 1. Suppose that the nth stage, the control is given by u” € U.

Step 2. Use u” to determine {z”,+"} where z” is the solution of
Eq. (3.2) corresponding to u” and %" is the solution of the
adjoint Eq. (2) of Theorem 4.1.

Step 3. Compute D, J(u").

Step 4. Define

utl=u" —cit, €>0,

choosing ¢ sufficiently small so that

J™ 2" = J(w", z") — (D, JJ(u", z"), ") 4 0(€)
= JW",z") — €| D JW", 2" || v + O(€) < J(u",2").

Step 5. Solve the state equation corresponding to u” and compute
Jw"+! 2"+ 1) using the following expression:

J(un+l’zn+l) — / l(CZ”+l(t),un+l(t)) dz.

If [J@" ', 2" Y - Ju", z")| < & for some preassigned small
positive number 6, stop, otherwise go back to Step 2 with
new control u"*+!.

7 CONCLUSIONS

The obtained results represent an important preliminary step for
boundary control of distributed systems involving dynamic bound-
ary conditions. In this work B-evolution concept was used where an
important special case of holomorphic B-evolutions has been con-
sidered allowing the pair of operators {4, B} to be closed.
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Assuming the operator B to have an inverse on its range we
converted the original problem to a classical one involving the
spatial operator AB~! which is not closed, since the operators 4 and
B are not necessarily closed.

With the help of the closed pair of operators, necessary conditions
for optimality have been derived for semilinear problems. Also an
algorithm for computing optimal controls has been presented.

We note also that control problem for systems involving dynamic
boundary has not yet been studied by means of B-evolutions theory
or by classical theory. Our results cover a general class of boundary
control problems. In fact if the operator B is the identity the
problem is reduced to a standard class of control problems involving
non-dynamic boundary conditions.
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