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By unifying the method of variation of parameters and Lyapunov’s second method, we
develop a fruitful technique which we call variational Lyapunov method. We then
consider the stability theory in this new framework showing the advantage of this
unification.
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1. INTRODUCTION

The method of variation of parameters has been a well known and useful
tool in the investigation of the properties of solutions of differential
equations [1,3,4]. Since one can employ this method to nonlinear diff-
erential equations whose unperturbed parts are linear or smooth non-
linear, the method of variation of parameters has gained importance.
It is also very well known that Lyapunov’s second method is an im-
portant and fruitful technique that has gained increasing significance
and has given a decisive impetus for modern development of stability
analysis of nonlinear dynamic systems. It is now well recognized that
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the concept of Lyapunov-like functions and the theory of differential
inequalities can be utilized to investigate qualitative properties of a
variety of dynamic systems [3,4,6,11,12].

Since the method of variation of parameters and the comparison
method via Lyapunov-like functions are both extremely useful and
effective techniques in the investigation of nonlinear problems, it is
natural to combine these two approaches in order to utilize the
benefits of the two important methods. Such a unification has recently
been achieved and awaits further development [2,4,6,8—10].

In this paper, we shall exploit the ideas introduced in [2] to refine the
unification from a different perspective and develop systematically the
variational Lyapunov method. Even the method of variation of param-
eters is looked from a more general point of view so that known results
become special cases. Moreover, the variational comparison result is
considered via vector Lyapunov-like functions in a more general set up
than the corresponding result considered in [2,4].

Since Lyapunov stability does not rule out the possibility of asymp-
totic stability, nor asymptotic stability guarantees any information
about the rate of decay of solutions; the concept of strict stability was
introduced in [3] which offers an interesting refinement of Lyapunov
stability notions. Such a concept becomes necessary to prove stability
results parallel to Lyapunov’s original theorems in the present frame-
work of variational Lyapunov method. However, we need to modify
suitably the existing concepts of strict stability slightly in order to
prove stability criteria in terms of two different measures [5]. Finally,
we point out how the variational comparison result in terms of several
Lyapunov-like functions would be useful in large scale dynamic
systems to bring out the good properties of interconnections, if any.
The present approach, of course, improves the properties of unper-
turbed systems by utilizing the good character of perturbation
compared to the usual Lyapunov method.

2. NONLINEAR VARIATION OF PARAMETERS

Consider the two differential systems

y' =F(ty), y(t)=xo, (2.1)
x"'=f(t,x), x(ty) = xo, (2.2)
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where F, f€ C[R, x R", R"]. Let y(t, ty, xo) be the solution of (2.1) such
that 0y(t, to, X0)/0ty, OY(t, ty, X0)/Oxo exist and are continuous on
R, x R". Then setting

p(s) = y(t,8,x(s), fo<s<i,
where x(s) = x(s, to, Xo) is any solution of (2.2) for s > t,, we have
dy 9y
o) — 9 il
P6) = (15, 5(5) + 52 (1,5,5(6)) £ ()
= G(t,5,x(5)).

Integrating both sides from ¢, to ¢, we get

p(0) =) = [ 60,5506 s,

t
which implies
t
x(2) = y(¢) +/ G(t,s,x(s))ds, > 1. (2.3)

to

This is the nonlinear variation of parameters formula. If, on the other
hand, setting

p(S) = |y(ta s,x(s))|2
we arrive at
p,(S) = 2y(t’ Sy x(s))G(t,s,x(s)).

Consequently, proceeding as before, we get

RO =P + [ 200055065 6D a5 (24)

1o

This suggests that one can obtain in general by setting

p(s) = Vis, y(t,5, x(5))),
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where Ve C'[R, x R", R, ], to get
rav
V(t,x(1)) = Vito, y(0)) + | (5, 0(8,5,x(5))) ds, (2.5)
4]

where

(5,360 = (G 5300 56)

O (505,509 ) 60,5, 5(9).

The relation (2.5) can be considered as the generalized variation of
parameters formula which brings out the advantage of unifying the
methods of nonlinear variation of parameters and Lyapunov-like
functions.

If we assume that OF(z, y)/dy exists and is continuous on R, x R",
then we know [3] that dy(¢, to, x0)/0to and dy(¢, to, xo)/Oxo are solutions
of the variational system

Z' = Fy(t,y(t, t0,%0)) Z

satisfying the initial conditions

Oy(to, to, Xo) = —F(ty, xo), Q(to,to, xo) =1 (Identity matrix)
oty 0xo
and the identity
dy Ay
2Lt t — = 2.
ot (2, 2o, X0) + O (¢, 20, x0) F(t, x0) = 0, (2.6)

where y(¢, to, xo) is the solution of (2.1). See [3,4,6]. Hence, when
ft, x)=F(t,x)+ R(t, x), R(t, x) being treated as the perturbation, the
relations (2.3) and (2.6) yield

x(t) = y(t) + /tt G(t,s,x(s))ds

=y(t) + /t'—a(?xlo(z, s, x(8))R(s, x(s)) ds, (2.7)
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which is Alekseev’s nonlinear variation of parameters formula [3].
Using (2.7) to estimate |x(f)| leads to evaluating |9y(¢, s, x(5))/Oxo|
and | R(s, x(s))|, which destroys good behavior of R(z, x), if any. As a
result, one can at best only preserve the properties of the unperturbed
system (2.1). If, on the other hand, we utilize the relation (2.4), it is
easy to see that the expression (9y(t,s, x(s))/0xo)y(t, s, x(5))R(s, x(s))
need not be nonnegative and therefore the behavior of R plays an
important role in improving the properties of the unperturbed system.
Similarly, one can employ (2.5) noting that d¥V/ds need not be
nonnegative. In fact, if dV/ds < —aV, a > 0 for example, we can obtain

V{5, x(1)) < V(1. y(1)) exp(—elt — 1)), 1> o,

which exhibits the beneficial role of R(z, x).

3. VARIATIONAL COMPARISON RESULT

In general, we can employ a vector Lyapunov-like functions and prove
the following comparison result in terms of vector Lyapunov-like
functions. As usual, inequalities between vectors are componentwise.

THEOREM 3.1 Assume

(Ay) Ve C[Ryx R",RY] V(t,x) and |y(1,s, x)| are locally Lipschitzian
in x for each (t,s);
(Ag) for tg<s<t,

a1
D_V(t,s,x) = 11}{11(1){1f 7 V(s+h,y(t,s + h,x + hf(s, x)))
= Vs, y(t,5,x))]

< g(t,s, V(t,s,p(t,5,x))); (3.1)
(A) ge [R%r X Rﬂ‘r’, RN, g(t, s,u) is quasimonotone nondecreasing in u

for each (t,s) and r(t, s, ty, up) is the maximal solution of
du(s)

ds

= g(t,s,u(s)),u(ty) =up >0 (3.2)

existing for to<s<t<oo.
Then, V(to, y(t, ty, Xo)) = g implies
V(t, x(t, to, x0)) < ro(t, to, V(to, y(, t0, X0)))s (3.3)
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where ry(t, to, up) = (1, t, to, Uo), (1, to, Xo) is the solution of (2.1) and
x(t, to, X0) is any solution of (2.2).
Proof Set m(t,s)=V(s, y(t,s, x(s))). Using (A;), (A,), with standard
computation, we get the differential inequality

D_m(t,s) < g(t,s,m(t,s)) fort <s<t.
This yields by comparison theorem [3, Theorem 1.7.1],

m(t,s) < r(t,s, to, V(to, (1, 0, %0))), 1o <5<,

which implies the desired estimate (3.3) for s=+.

We shall refer to Theorem 3.1 as the variational comparison
theorem and many interesting remarks can be made as special cases
of this result.

Remarks (1) The estimate (3.3) emphasizes the interplay between
solutions of three differential systems (2.1), (2.2) and (3.2).

(2) If F(t,y)=0 so that y(t, ty, X¢) = xo, Theorem 3.1 reduces to the
comparison theorem in terms of vector Lyapunov functions [3,5]
which yields

V(t, x(2)) < r(t, to, V(to, x0)), t> to,

since

D_V(t,x) = li’xln %)gf% V(¢ + h,x + hf(t, x)) — V(t,x)]
< g(t, V(1. x))
and V(t(), X()) = Uyp.

The case N =1 corresponds to the well known comparison theorem
in terms of a single Lyapunov function [3—5] which is more often used.

COROLLARY 3.1 Under the assumptions of Theorem 3.1 with N=1,
g(t,s,u) =0 we have

V(t, x(1, t0,x0)) < V(to, y(t, t0,%0)), > to.
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COROLLARY 3.2 Assume (A;) by Theorem 3.1 and N = 1. Suppose that
D_V(t,s,x) < —c(h(s,¥(2,5,%))), to<s<t<oo,

where ce K={¢p€ C[R,,R ]:$(0)=0, &(s) increasing in s} and
heCR,. xR, R,].

Then, for t > to,

V(t’ x(t’ t(),Xo)) < V(t(),y(t9 tO,XO)) - /ttc(hl(say(t’s’ x(s)))) dS, (34)

where x(s) = x(s, to, Xo) is any solution of (2.2), s > to.

Proof Set

W (s, y(t,s,x(5))) = V(s, y(¢,5,x(s))) + /s c(hy(o,y(¢,0,x(0)))) do.

t

Then, it is easy to compute
D_w(t,s,x(s)) < D_V(¢,5,x(s)) + c(hi (s, ¥(2,5,x(s)))) <O.
By Corollary 3.1, we have
Wt x(1)) < Wlto,p(0)), 1> 1o

which implies, by definition of W,

V(, x(2)) < V(t0,(2)) — /tc(hl(s,y(f,s,x(s))))ds

to

for t > to, where x(2) = x(¢t, to, xo) and y(t) = y(t, to, Xo).

4. STABILITY IN TERMS OF TWO MEASURES

Let us begin by introducing the following classes of functions:

CK = {a € C[R%, R,]:a(t,u) € K for each t € R},

I'= {h (S C[R+ X Rn, R+]: (lnf;h(t, x) = 0},
X

Iy = {h € I': sup (¢, x) exists for x € R"}.

Ry
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In order to discuss stability results corresponding to Lyapunov’s
original theorems in the framework of variational Lyapunov method,
we need the notion of strict stability of the system (2.1). Such a notion
was introduced in [3] and was also called stability in tube-like domains.
For our present purpose, the strict stability definition given in
[3, p. 293] is very flexible and therefore, we shall given below a
refinement of that concept.

DEFINITION 4.1 The trivial solution of (2.1) is said to be:

(1) strictly stable if given ¢, >0 and fy€ R, there exists a §;=
51([0, 6) >0 such that |X0| <é; lmplles Iy(t, to, X())l <€ for t > o
and for every 8, <6, there exists an e; < 8, such that 8, < |xo|
implies €, < | y(¢, to, X0) |, t > to;

(2) strictly uniformly stable, if 6, 6, and €, are independent of ¢,

(3) strictly uniformly stable, if given 6§, >0, ¢, >0 and to € R, for ever
ay < ajy, there exists and e, <e¢; and T1,T, >0 (depending on ¢)
such that o, <|xo| <a; impliesl e < |y|p(t, to, Xo)| <e€1 for
o+ T1<it<thy+ T

(4) strictly uniformly attractive if T,,T, are independent of ¢, in (3).

We wish to consider the stability properties of the system (2.2) in
terms of two measures so that several concepts can be unified in one
result. We shall define the notion of such stability. Let Ay, k€T

DEFINITION 4.2 The system (2.2) is said to be (hg, h)-stable if given
e€>0 and fo € R, there exists a 6 = 6(ty, €) >0 such that Ay(ty, xp) <6
implies A(z, x(¢, ty, Xo)) <€, t > ty.

Based on this definition, other concepts can be formulated. See [5]
for other definitions and the discussion of generality of the concept of
two measures.

If we wish to prove the results of (hg, h)-stability for the system
(2.2), we require the concept of strict stability of the system (2.1).
However, the extension of the notion of strict stability given in
Definition 4.1 will be meaningless when two different measures are
used (see remarks following Theorem 4.2). We therefore define a
suitable concept which makes sense and reduces to Definition 4.1 when
ho(t, x) = h(t, x) = | x|.

DEeFINITION 4.3 Let hy,h €T’ and ﬁo(x) = SUpg+ ho(tp,x),ﬁl(x) =
supg, hi(t0,x). Then we say that the system (2.1) is (ho, h1)-strictly
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stable if given ¢; >0 and fo€ R ., there exists a.6; =6,(¢;) such that
l;o(xo) < é; implies /;O(y(t, to,x0)) < €1, t > to and for every 6, <6,
there exists an e <6, such that 6, <hi(ty,xo) implies e <
hi(2, y(2, to, X0)), t > to.

We note that when ho(x) = & (x) = |x|, Definition 4.1 coincides
with Definition 4.3.

We are now in a position to prove a result parallel to Lyapunov’s
first theorem.

THEOREM 4.1 Assume that

(C)) VeClR. xR, R, ], V(t,x)and |y(y,s, x)| are locally Lipschitzian
in x for each (t,s)

(Cp) D_V(t,s,x)<0 in S(h, p)={(t,x): h(t,x) < p} for some heT and
p>0;

(Cy) b(h(t,x)) < V(t,x) in S(h, p) and

V(t,x) < ay(t, hi (8, %)) + ao(t, ho(t, %)) in S(hy, p),

where be K and a,,ay € CK;

(C4) hy is finer than hy and h, that is, there exist functions ¢, € KC such
that  hi(t,x) < d(ho(t, x)) and  h(t, x) <P(hy(t,x)) whenever
ho(t, x) < po, for some po with ¢(po), Y(po) < p;

(Cs) the system (2.1) is (ho, hy),-stable.

Then the system (2.2) is (hy, h)-stable.

Proof Given 0<e<p, let py be such that ¢(pg), ¥(pg) < p. Choose
7> 0 such that (n depends on ¢y and ¢) for ¢ > ¢,

ao(to, ho(t0, ¥(2))) < b—(;) whenever hy(t, y(2)) <.

Then given 1> 0, by hypothesis (Cs), there exists a 6; = (2, €) such
that
/’lo(t(),y(t)) <n provided /’l()(l'(),X()) < 6.

Thus, for ¢ > t,,

ao(lo,ho(lo,y([))) < @ whenever ho([o,X()) < 6. (41)
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This is possible since ao€ CK. Similarly choose >0 such that
hi(to, (1)) < o implies a,(to, h1(to, (1)) < b(€)/2. Since hg is finer than

by, hy(t0, (1) < @(ho(t0, )(1))).  Let  6=min(6y, ¢(n), $(61),0) and
ho(to, x9) < 6. Then we get

a;(to, hi(t, ¥(2))) < @ whenever (29, xo) < 6. (4.2)

We claim that system (2.2) is (ko, h)-stable, that is,
h(t,x(t)) <€, t>1t whenever hy(t,xo) < 6. (4.3)
Note that, in view of (4.1), (4.2) and the choice of 6,

b(h(to, x(2))) < V(to, x0) < ai(to, 1 (to, X0)) + ao(t0, ho(to, Xo))
< ai(to, $(6)) + ao(to,6) < b(e)

implying A(2y, x(o)) < €. If the claim (4.3) is not true, then there exists a
solution x(#) = x(z, ty, Xo) of (2.2) and ¢; >ty such that
ho(to, x0) < 6. h(t1,x(t1)) =€ and h(t,x(¢)) <€, t€ [ty 1]
We can apply Corollary 3.1(Theorem 3.1 with N=1, g=0) to get
V(1 x(1)) < V(to, y(1)), 1€ [t0, 1],
where y(f) = y(t, ty, xo) is the solution of (2.1). At t=1,

b(e) < V(tl,x(tl)) < V(lo,y(ll,t(),Xo))
< ai(to, hi(to, y(t1, to, X0))) + ao(t0, ho (o, ¥(11, to, X0)))
< b(e)

in virtue of (C3), (4.1) and (4.2). This contradiction proves the claim
that the system (2.2) is (ko, h)-stable.

THEOREM 4.2 Assume that:

(1) the hypotheses (C,), (Cs) and (Cy4) of Theorem 4.1 hold,
(ii)) D_V(t,s,x) < —c(hi(s, y(t, s, x))) in S(h, p) and c € K,
(iii) the system (2.1) is (ho, hy)-strictly uniformly stable
(iv) h € C'[R. xR, R,] and dhy(t,x)/dt(=0h/Ot+ Oh/Ox(f)) is
bounded from above or below in S(h, p).
Then, the system (2.2) is (ho, h)-stable and (hy, hy)-attractive.
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Proof Let e=p and 6(p) = 6y. Thus, (i)—(iii) and Theorem 4.1 yields
that

h(t,x(t)) < p, t > ty, whenever hy(ty, xo) < &o.
If ho(to, xo) < b9, we claim that lim, _, ,o/;(2, x(¢)) = 0. If this claim is not
true, let liminf, _, . A;(¢, x(t)) A0 which implies that there exists >0
and T > t, such that
h(t,x()) >n fort>T.
Assumption (iii) implies that whenever
hi(s,x(s)) > n
we have

hi(s,y(t,5,x(5))) > €, t>s>T,

in view of Definition 4.3 with = §,. Using (C3) and Corollary 3.2 we
get

t

0 < V(t,x(t)) < V{10, (1)) — /to c(hi(s, y(1,5,x(s)))) ds
< ay(to, hi (10, ¥(2))) + ao(t0, ho(t0, ¥(1)))
~ [ el Gs.xtes x))) 8
< ai(to, #(80)) + ao(t0, 0) — c(e2)(t — T)

which leads to a contradiction for large ¢. Hence liminf,_, o A,
(1, x()) =0.
If lim sup, _, o, h1(¢, x(£)) #0, then there exists a sequence {t,}, ¢, — o0
and 7> 0 such that

hi(tn, X(tn)) 2 1.
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This implies that there exist nonoverlapping intervals [#, ] that can
be chosen such that either

hi (1, X(8,)) = /2, b (8, x(t,)) = n and hi(2, x(1)) € [n/2,n]

or
hi (2, x(1)) = m, k(2 x(1,)) = 1/2 and hi(t, (1)) € [n/2,n].

Thus follows from assumption (iii) and Definition 4.3 with n/2=46,
that there exists e, > 0 such that

h(s,y(t,5,x(s))) > €, t>s, s€t,, )], n=12,...

n>°n

By assumption (iv), we can assume without loss of generality that
K, (¢,x) = M, which yields

2= (e x00) ~ b0 x(6)) = [ " (1, x(0) di

< M(t) —t,).

n

By Corollary 3.2, we have the estimate (3.4) which gives

0 < V(1) < Vio3(0) =3 [ eln(s, 3065505 ds
1 7

< a (t(), (]5(60)) + a()(t(), (50) - c(ez)om,

where 0 =n/2M and ¢, —t, > 0. As m— oo, this leads to a contra-
diction. Hence lim sup, _, o, (¢, x(t)) = 0. The proof is complete.

Remarks (1) If hy=h in Theorem 4.2, we obtain (ho, h)-asymptotic
stability of (2.2). The same conclusion is valid when /4, is finer than 4.

(2) If hy=hy in Theorem 4.2, we get (ho, h)-stability and (hq, ho)-
attractivity for (2.2). One should note that in proving a converse
theorem in the framework of two measures, parallel to Massera’s
converse theorem for uniform asymptotic stability such that a (%, Ag)-
attractivity concept is required. See [7] for details.
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(3) If hy =hg and ag, a; € K we have
V(t,x(t)) < ai(ho) + ao(ho) = a(ho), a€ K
and consequently assumption (ii) reduces to
(ii*) D_V(t,5,x) < —y(V(s, y(t,5,%))),

where v=ca~' and € K. This gives the comparison equation

/!

u' = —(u)

the zero solution of which is uniformly asymptotically stable and
therefore the assumption (iii) and (iv) become redundant (we need only
(Cs) instead of (iii)). This fact can be observed in the proof of the
general comparison result with g(z, s, u).

(4) Finally, note that if hp=h; = | x|, assumption (iii) reduces to the
strict stability of the zero solution of (2.1), according to Definition 4.1.

THEOREM 4.3 Assume that

(1°) the hypotheses (C1), (C3) and (Cy) of Theorem (4.1) hold;
(2) D_V(t,,%) < g(t, 5, V(s, (1,5, x))) on S(h, p) where g € CIR}, R]
(3% the system (2.1) is (ho, ho)-stable.

Then the stability properties of the trivial solution of (3.2) imply the
corresponding (hy, h)-nonuniform stability properties of (2.2).

Note When we say that the trivial solution of (3.2) is stable, we mean
the following: given € >0 and ¢y € R, there exists a § = §(#, €) > 0 such
that

0 <uy <6 implies ug(t, to,up) <€, > 1o,

where u(t, to, ug) = u(t, t, to, up) and u(t, s, to, up) is any solution of (3.2).

Proof Suppose that the trivial solution of (3.2) is stable. Let 0 <e < p
and 7o € R be given. Then given b(e) > 0 there exists a §* > 0 such that

u(t,to,up) < b(e) t >ty whenever 0 < uy < 8"

Using this 6" in place of b(€) in the proof of Theorem 4.1, we can find a
§>0 as before (see proof of Theorem 4.1). Then we claim that
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h(t, x(1)) < e, t > ty whenever hy(ty, xo) < 6. Note that hy(ty, xo) < € since

b(h(to, x0)) < V(to,x0) < ar(to, h1(to, X0)) + ao(to, ho(to, Xo))
< ai(to, $(6)) + ao(t0,8) < 6* < b(e).

If our claim is not true, then there exists a solution x(¢) of (2.2) and
t1 > to such that

ho(to, x9) < 8, h(ti,x(t)) =€ and h(z,x(t)) <e, tE€ [ty 4]
By Theorem 3.1, we have
V{1, x(1)) < ro(t, o, V(to, (1)), 1 € [to, 11].
At t=1,, using the assumptions (1%), (2% and (3°) we get

b(e) = b(h(t1, x(11))) < V(t1,x(11))
< ro(t1, to, ar(to, h (20, (1)) + ao(to, ho (0, y(11))))-

But a;(%o, hi(to, y(11))) + ao(to, ho(to, ¥(11))) < 6 whenever ho(t, xo) < 6.
Consequently, we have

I‘()(t1, o, 5*) < b(e),

which is a contradiction. Hence the system (2.2) is (ho, &)-stable.

Next, suppose that the trivial solution of (3.2) is asymptotically
stable. This implies stability and attractivity. Taking e=p, we get
do(to) = 6(p, to). Also corresponding to b(p), we have 8;(t) = 6*(p, to).
Also corresponding to b(p), we have 6;(t) = 6*(p, to) and given € >0,
there exists a 7> 0 such that

0<u < 53(t0) implies ug(t, to, u()) < b(e), t>t+ T.
Moreover,
ho(to, x0) < 6y implies h(t, x(t))

from (ho, h)-stability of (2.2). Thus, taking & = min(&j, &), we assert
that h(t, x(2)) <€, t > to+ T whenever hy(tg, x9) < . If this is not true,
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then there would exist a solution x(#) of (2.2) and a divergent sequence
{t.}, tn, > to+ T, with the property

h(tn, x(t,)) > €.

Since we have in S(#, p)

V(ta x(t)) S rO(ta to, V(t()’y(t)))’ t Z to,
it follows that

b(e) < b(h(tn’x(tn))) < V(tmx(tn)) < rO(tn, to, V(thy(tn)))
< ro(tn, 1o, 85(t0)) < b(e), tha>to+ T,

which is a contradiction. Hence the system (2.2) is (hg, h)-attractive.
Thus we get (Ao, 1)-asymptotic stability of (2.2). The proof is complete.

We note that in view of the fact that ag, a; € CK, we can conclude
only nonuniform (ko, h)-stability properties of (2.2) even when we
assume uniform stability properties for (3.2) as well as (2.1). If
ay, a; € K, then we get uniform (A, h)-stability properties whenever we
assume the corresponding notions for (3.2) and (2.1).

Also, note that whenever D_V(t,s,x) is estimated in terms of a
comparison function g(z,s,v), we do not require strict stability
properties of (2.1) where as in the other case (Theorem 4.2) we do
need strict stability for (2.1).

5. STABILITY OF LARGE SCALE SYSTEMS

Recall that the general comparison result (Theorem 3.1) is in terms of
vector Lyapunov functions and in Section 4, we have employed only a
single Lyapunov function. One could have, of course, used the method
of vector Lyapunov functions, see [3,6], in proving the (k, #)-stability
results of Section 4. However, vector Lyapunov functions are more
useful and important when we consider large scale systems via the
method of aggregation and decomposition [11,12]. In the present
framework, one can get better results by applying Theorem 4.1 in the
following modified manner.
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Consider the N systems of differential equations
Vi=Fi(t,y:), yi(to) = Xois (5.1)

where i=1,2,...,N, each y; € R% and F; € C[R; x R",R"]. Let
Y1, to, Xo;) be the solution of (5.1) for each i, such that |y, 19, x0))|
is locally Lipschitzian in xy; for each z. Suppose that the system (2.2) is
of large scale and we decompose x = (X, Xn,, ..., Xny) With n;+
ny+ --- +ny=n. For V{t,x,), x; € R", we define

D_Vi(t,5, ) = lim (i)gf% (Vils + hyyi(tss + b xi + hfi(5, %))

— Vi(s, yi(t, 5, x))]
and find the estimate

D_Vi(t,s,xi) < gi(t,s, Vi(s, yi(t,5,x1)), Va(s, y2(t, 8, X2)), - . (52)
Vn(s, yn(t, s, xn)))- .
(Here each x;, i=1,2,...,N is an element R".)
We see that this fits into the mode of Theorem 3.1 to yield the
estimate (3.3) which is

V(t,x(1)) < ro(t, 20, V(to, ¥(2))), 1> to,

where the vector V= (V1,V>,..., V). As we stressed earlier, if the large
scale system (2.2) is decomposable into

xi = Fi(t,x;) + Ri(t, x1, X2, ..., xn), (5.3)

where R(t, X1, X2, .. ., Xy) are the interconnections and y; = F;(, y;) are
subsystems, we can extract good behavior of the interconnections R;
by employing our approach of variational Lyapunov method and
therefore need not depend on preserving the good properties of sub-
systems only. The subsystems are useful though, to construct suitable
Lyapunov functions even when they do not possess the stability
properties of the entire large scale system. This advantage needs to be
exploited in applications.

Finally, we wish to remark that it is not necessary for the
development of the variational Lyapunov method to find suitable
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known system (2.1) or (5.1). It would be sufficient to choose any
function y € C[R% R", R"] satisfying (i) |y(t,s,x)| is locally Lipschit-
zian in x for each (¢, s), (i) y(¢, ¢, x) = x and (iii) y(z, o, Xo) has required
stability properties.
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