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We consider a large family of finite memory causal time-invariant maps G from an input
set S to a set of R-valued functions, with the members of both sets of functions defined
on the nonnegative integers, and we give an upper bound on the error in approximating a
G using a two-stage structure consisting of a tapped delay line and a static polynomial
network N. This upper bound depends on the degree of the multivariable polynomial
that characterizes N. Also given is a lower bound on the worst-case error in approximat-
ing a G using polynomials of a fixed maximum degree. These upper and lower bounds
differ only by a multiplicative constant. We also give a corresponding result for the
approximation of not-necessarily-causal input—output maps with inputs and outputs
that may depend on more than one variable. This result is of interest, for example, in
connection with image processing.
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I. INTRODUCTION

Nonlinear systems often arise in engineering applications. As is well
known, the analysis of these systems can be complicated. For this
reason it is frequently desirable to have available simple approximate
models that can be used for synthesis, analysis, and identification. For
example, the design of an equalizer to reduce the effects of nonlinear
distortion in a communication channel possessing nonlinearities begins
with the problem of determining a suitable model for the equalizer
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whose parameters can then be determined either directly or adaptively.
Similarly, the problem of identifying a nonlinear system (typically the
objective is to obtain a model that can later be used for extrapolation or
control) can be solved satisfactorily only if the class of assumed models
is both analytically manageable and broad enough to provide a suf-
ficiently good approximation to the system to be identified. This is the
motivation for what follows.

Problems involving the approximation of nonlinear input—output
maps arise often in engineering and science, and there has been a large
amount of recent progress in this area. For results concerning the
approximation of static (i.e., memoryless) maps see, for example, [1-3].
In [4] a study was begun of the network (i.e., neural network)
approximation of dynamic maps. It was shown that large classes of
approximately-finite-memory maps can be uniformly approximated
arbitrarily well by the maps of certain nonlinear structures using, for
example, sigmoidal nonlinearities or radial basis functions or polyno-
mials. As an application [5], it was proved that discrete-time time-delay
neural networks of the type shown in Fig. 1 can be used to uniformly
approximate arbitrarily well the members of a large class of causal
nonlinear dynamic discrete-time input—output maps. (A similar result
in a different setting is given in [6].) In the figure, s is the system input, D
denotes the unit delay operator, and N stands for a static nonlinear
network that contains nonlinearities drawn from any of certain families
of nonlinearities. For example, it suffices that the nonlinearities be
polynomial nonlinearities. The proof in [5] is nonconstructive and gives

s D D D

——

FIGURE 1 Time-delay nonlinear network.
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no information concerning the needed complexity of the structure in
Fig. 1 so that a prescribed bound on the approximation error is achieved.
Here we give a result concerning the complexity problem for the case in
which N is a polynomial network. We explicitly consider only the
approximation of input—output maps that have finite memory. This is
a reasonable restriction because approximately-finite-memory maps
can be uniformly approximated arbitrarily well by finite memory maps
(see Section 2.1).

Our result is an application of the theory of polynomial approxima-
tion. A key proposition in this area is the well-known Weierstrass
approximation theorem which tells us that a continuous real-valued
function f defined on [— 1, 1] can be uniformly approximated arbi-
trarily well using polynomials. As the reader will recall, this means
that for any such f and any e¢>0 there is a real polynomial p for
which | f(x) — p(x)| < e whenever | x| < 1. The theorems of D. Jackson
(see, for instance [7]) extend Weierstrass’ theorem by giving informa-
tion on the quality of approximation that can be achieved with a
polynomial of a given degree. In particular, Jackson showed that given
any f as described above and any positive integer n, there is a
polynomial p of degree » or less such that

176 =] < As(}). € 11 )

Here A is a positive constant, and w is the modulus of continuity of f
defined by w(n) =sup|x_y| <,|f(x)—f(y)|. Since w(n)—0 as n—0,
(1) provides information concerning the n’s that suffice for a given e.

Jackson’s result has been extended to the case of functions f of an
arbitrary finite number of real variables (see, for example [7,8]). In
Section II we make use of the extension in [8] which also gives a lower
bound on the worst-case approximation of the members of a certain
family of continuous functions specified by a single dominating modulus
of continuity. (For a related study of approximation bounds for certain
functionals, see [9].)

In Section II we consider a large family G, of finite memory causal
time-invariant maps G from an input set S to a set of R-valued
functions, with the members of both sets of functions defined on the
nonnegative integers, and we give an upper bound on the error in
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approximating a G using a structure of the type shown in Fig. 1. This
upper bound depends on the degree of the multivariable polynomial
that characterizes N in Fig. 1. We also give a lower bound on the worst-
case error in approximating a G using polynomials of a fixed maximum
degree. These upper and lower bounds differ only by a multiplicative
constant. In Section III we give a corresponding result for the approx-
imation of not-necessarily-causal input—output maps with inputs and
outputs that may depend on more than one variable. This result is of
interest, for example, in connection with image processing.

Il. APPROXIMATION OF INPUT-OUTPUT MAPS

21. Preliminaries

Let d be a positive integer, and let C stand for [—1, 1]%. With Z, =:
{0,1,...} and R the set of real numbers, let S denote the metric space
of all maps s from Z, to C with the metric given by p(s,, sp)=
sup{||s4(k) — sp(k)||: k € £} in which || - || is the Euclidean norm on R?.
The set S is our set of inputs.

For each o and 3 in Z,, let maps Wj3,:S— S and T3:S— S be
defined by

Wras)l) = { s B 0 <k<P

0, otherwise
and

(Tas) (k) = {fj’k PN,

We say that a map M from S into the set of real-valued functions on
Z, is time-invariant if for each € Z, we have

0, k<p,
(MTpgs)(k) = {(MS)(k -8), k ; 8

for all s. M is causal if (Mu)(k) = (Mv)(k) whenever k€ Z, and u and v
satisfy u( j) = v(j) for j<k.
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By M has approximately-finite memory we mean that given e >0
there is an a € Z, such that

((Ms)(k) — (MWyas)(k)| <€, ke Z,,

for s € S. (There is a slight difference here relative to the definition of
approximately-finite memory in [4] where « is required to be positive.)
Let 7€ Z,. By M has finite memory of width T is meant that we have

(Ms)(k) = (MWy.rs)(k)

forallke Z, and all s€ S.

Throughout the paper, A denotes an R-valued map on [0, co) such
that X satisfies A(0) =0 as well as A() >0 for n>0 and is bounded,
nondecreasing, continuous, and subadditive. (\ is subadditive if
A1 +m2) < A1) + A(np) for my,m, > 0.) We use G, to denote the family
of all causal time-invariant maps G from S to the set of R-valued
functions defined on Z_ such that G has finite memory of width 7, the
functional G(-)(7): S — R is continuous, and w(n) defined by

w(n) = sup |G(sq)(T) — G(sp)(7)]
P(Sass6)<n

satisfies w(n) < A(n) for n > 0. (The conditions on G, are redundant: The
finite memory assumption implies causality, and also w(n) < \(n) for
7> 0 implies the continuity of G(-)(7).) For the important case in
which G(-)(7) is Lipschitz continuous with Lipschitz constant £ for all
G €G,, we have w(n) < A(n) for n>0 with A(n)=¢n for n < 2v/d and
(n) =2vdt for n > 2+/d.

For any positive integers 7 and k, let P¥ denote the family of maps P
from R¥ (viewed as row vectors) to R such that Px is a real polynomial
of degree at most n in x, ..., Xx.

Finally, let k, stand for d(7 + 1), and for each k€ Z, let L] denote
the map from S to [—1, 1] given by

Lis=[sitk—7),...,81(k),...,8a(k = 7),...,8a(k)]

with 5;(¢) =0 for ¢ <0 and each j. In particular, for the special case in
which d=1, we have simply

Lis=[stk—7),...,s(k)]
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(which corresponds to the vector of outputs, given in reverse order, of
the delay line with unit delays in Fig. 1).

2.2. Approximation Bounds
Our main result is the following.
THEOREM 1

(1) For each G € G,, and each positive integer n, there is a P € Pff
such that

3/2
(Go)0) - Plps)] < €A (*2-)

for all s and k. Here C is a positive constant that does not depend
on G, 1,dor n.

(ii) There is a positive constant c, independent of T, d and n, with the
following property: for any positive integer n there is a G € G, for
which

3/2
int |(G9)(r) = P(LE9) > eA (5 ) @

for all P € P¥.

The proof is given in the appendix.

2.3. Comments

Since P in Theorem 1 is a polynomial map, the approximants P(L[s) of
the theorem are discrete-time Volterra series.

The fact that the upper and lower bounds in Theorem 1 differ by only
a multiplicative constant shows that C in Theorem 1 cannot be replaced
with a function of n that approaches zero as n — oco. Similarly, ¢ in the
lower bound cannot be replaced with a function of » that is unbounded.
In this sense the upper and lower bounds cannot be improved.

Pk is a subspace of dimension Nkrdéf(”}:f*) of the space C(RF") of
continuous functions from R* (viewed as row vectors) to R. From the
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theory of n-widths introduced by Kolmogorov (see [8]) and the result in
[8] cited in the appendix in connection with (7), it follows that the lower
bound (2) holds also for P* replaced with any subspace of C(R¥) of
dimension N . Thus, in so far as the approximation of the entire set G,
is concerned, and aside from numerical constants in the upper and
lower bounds, the use of polynomials is as effective as the use of any
other subspace of C(R*) of the same dimension. (In other words,
the proposition noted in [8] concerning the effectiveness of polynomials
holds in our setting t0o.)

It may be possible to give useful estimates of the constants C and ¢ by
going through arguments in [8] and supplying omitted details. We have
not addressed that problem.

In Section I we (in effect) indicated that an approach to the
approximation of maps that have approximately-finite-memory, but
not finite memory, is to first obtain a suitably accurate finite-memory
approximation. This determines 7. There are important cases in which
7 can be determined analytically [10]. This is interesting because, for
these cases and together with the upper bound in Theorem 1, it leads to
a solution of the problem of specifying a bound on the needed order of
a Volterra-series approximant so that a prescribed quality of uniform
approximation is achieved.

In the following section we give a result corresponding to Theorem 1
for the approximation of not-necessarily-causal input—output maps
with inputs and outputs that may depend on more than one variable.
Asmentioned earlier, this result is of interest, for example, in connection
with image processing.

lil. APPROXIMATION OF MULTIDIMENSIONAL
INPUT-OUTPUT MAPS

3.1. Preliminaries

Let Z,,R, d,C,and || - || be as described in Section 2.1. Let Z denote the
set of all integers, and let m be a positive integer.

Let U denote the metric space of all maps u from Z” to C, with the
metric given by p(u,, up) = sup{||u.(y) — up(7)||: v € 2™}. Here the set U
is our set of inputs.
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For each f€ 2™ and each a€Z,, let maps Wg:U— U and
T?:U— U be defined by

o _ Ju(y), maxlyi—g] <o,
(Wsuw)(v) = { 0, otherwise

(where v; and 3; denote the ith components of v and 3, respectively) and

(TPu)(y) = uly - B)-

Let M denote a map from U to the set of R-valued functions defined
on Z™. We say that M is shift-invariant if for each 8€ Z™ we have
(MTPu)(y) = (Mu)(y — ) for all v and u.

We say that M is myopic if for each € > 0 there is an o € Z such that

|(Mu)(y) — (MWIu)(y)| <€, v€Z"

forue U. Let re Z,. By M has finite myopicity of width 2r we mean
that we have

(Mu)(y) = (MW u)(7)

forallye Z"and allu € U (if m=1 and such an M is causal in the usual
sense we say that it has finite memory of width r).

With A as described in Section 2.1, let K, denote the family of all
shift-invariant maps K from U to the set of R-valued functions defined
on Z™ such that K has finite myopicity of width 2r, the functional
K(-)(0): U— R is continuous, and w(n) now defined by

w(n) = sup |K(sa)(0) — K(s5)(0)|

p(5a,55) <1

satisfies w(n) < A(n) for n>0. (The conditions on K, are redundant in
that w(n) < A(n) for n > 0 implies the continuity of K{(-)(0).) Paralleling
the example in Section 2.1, for the important case in which K(-)(0) is
Lipschitz continuous with Lipschitz constant £ for all K € KC,, we have
w(n) < M) for n>0 with X(n) =4n for n < 2v/d and A(n) = 2v/d/{ for
n> 2v/4d.
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As in Section 2.1, for any positive integers # and k, let P denote the
family of maps P from R* (viewed as row vectors) to R such that Px is a
real polynomial of degree at most # in xy, ..., X.

Finally, let ¢i,...,{p,11y be an enumeration of the points of
{—r,...,r}", and here let k, stand for d(2r + 1), and here for each
let L! denote the map from U to [-1, l]k' given by

Liu=[ur(y+Ct)s- s ur (Y + Carpryr)s - - - ta(y + 1),
coos (Y + Carpryn)]-

In particular, for the important special case in which d=m=1 and
¢i=—(r+ 1)+ for each i, we have simply

Liu=[u(y—r),...,u(y+r)]

3.2. Approximation Bounds: Multidimensional Case
Our result is the following.
THEOREM 2

(i) For each K€ K,, and each positive integer n, there is a P € P*
such that

(Ku)() = P(L)] < CA ("r;/z)

for all u and ~. Here C is a positive constant that does not depend
on K, r,m, d or n.

(ii) There is a positive constant c, independent of r, d and n, with the
following property: for any positive integer n there is a K€ K, for
which

3/2
inf [(Ku) (0) ~ P(Lyu)| > eA ("; ) (3)

for all P € P*.
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The proof parallels the proof of Theorem 1, and is given in the
appendix. Of course comments similar to those in Section 2.3 are
pertinent in the setting of Theorem 2.
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APPENDIX

Proof of Theorem 1

Consider (i). Let n and G € G, be given. We are to show that there is a P
as described such that

3/2
(6Wirs)d) - i) <ex(“2-) @

for each s and k. We do this as follows.
Let Q denote the functional defined on [—1, l]k* by Qv=(Gs)(1)
where s is the element of S that satisfies L7s =v and s(k)=0 for
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k¢{0,...,7}. By the continuity of G(-)(r), Q is continuous with
respect to the Euclidean norm || - ||, in R*". And, with wg the modulus
of continuity of Q,

wo(n)= sup [Qva—Qw| < sup [(Gsa)(7) = (Gs)(7)| < A(n)

[va=vslle, <m P(SasSb) <1

for n>0.
By a version of Jackson’s theorem [8, Theorem 4] and the inequality
wo(n) < A(n), there is an element P of PJ such that

3/2

k
|Ov — Py| <CA< ) vel[-1,1%

=
n

where C is a constant that does not depend on G, 7, d or n. Thus,

3/2
(Gw)(r) - Pz <3 (%) 5

forall we S.

Now let s and k be given. Suppose first that k> 7. By the time-
invariance of G,

(GWirs)(k) = (Gw)(7)

with w(p)=s(6+k —7) for 3=0,1,..., 7, showing that

3/2
(@)l - PL|<or () ©)

For k<,
(GWirs)(k) — P(Lys) = (Gs)(k) — P(Lys) = (Gw)(1) — P(L7w)

where now w(f)=0 for f<(r—k) and w(B)=s(8+k— 1) for =
(r—k),...,r, showing that (6) holds even if k < 7. This proves part (i).

Now consider (ii). It follows directly from [8, Part (iii) of Theorem 1]
that there is a positive constant ¢ independent of 7, d and 7 such that

given n there exists a continuous real functional Q on [—1,1]* with
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modulus of continuity y satisfying u(n) < A(n) (> 0) for which

3/2

|Qv — Py| > cA(k; ), some v € [—1,1]% (7

for each P € P%. We assume without loss of generality that Q(0)=0.
Define the map G on S by

oM A% s, k>,
(Gs)(k) = { OANTrys, k<,

where A, is the map of Sinto [—1, l]kf given by A,y = LTu, and A% =g
with k>7 stands for the element of S defined by (A%~ 7s)(j)=
s{k—1)+jlforjeZ,.

This G has finite memory of width 7 and is causal because
ONA*" Wy s=0A A% s for t>7 and QAT oWis=
OA. T s where k <. To see that G is time-invariant, let 3 belong
to Z, and observe that (GTgs)(k+ 3)=(Gs)(k) for k€ Z, and that
(GTys)(k)=0 for k<. (Here we have used the condition that
Q(0)=0.) Using (Gs)(1) = QA,s as well as u(n) < A(n) (n>0) and the
continuity of Q, we see that G(-)(7) is continuous, and that

sup  |G(sa)(7) — G(s5)(7)| = u(n)
P(Sass5)<n
for n >0, showing that G € G,. And, using (7) as well as (Gs)(7) = QA s
and A,;s = LTs, we have

. ) K2
gm@m—HLMZM<n)

for all P € P*. This completes the proof.

Proof of Theorem 2

Consider (i) of Theorem 2. Let n and K € K, be given. We are to show
that there is a P as indicated such that

3/2
(Kw() — P)] < (%) ®)

n

for each u and . We do this as follows.
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Let Q denote the functional defined on [—1,1]% by Qv=(Ku)(0)
where u is the element of U that satisfies Lju = v and u(y)=0 for
y¢{—r,...,r}". By the continuity of K(-)(0), Q is continuous with
respect to the Euclidean norm || - |, in R¥. And, with w, the modulus
of continuity of Q,

wo(m)= sup [Qve—Qw|< sup [(Kua)(0)— (Kuy)(0)| < A(n)
[1va=vslli, <n pua,up)<n
for n>0.
By a version of Jackson’s theorem [8, Theorem 4] and the inequality
wo(n) < A(n) there is an element P of P) such that
3/2

|Qv — Py| < Cw(k:1 ), ye[-1,1%

where C is independent of K, r, m, d and n. Now let u and ~y be given,
and set v = L{T u. Since Qv = (KW {T"u)(0),

3/2
(KW T "u)(0) — P(LyT "u)| < Cw( n ) 9)

It is not difficult to check that the map M from U to the set of R-valued
functions defined on 2™ given by (Mw)(§) = (KW w)(€) is shift-
invariant. (By WgTﬂw =Tk Wie_pw and the shift-invariance of K
we have (KW{TPw)(€) = (KW_zw)(—p).) Thus, by (9) and
LyT™"u = L u we have (8). This proves (i).

Now consider (ii). It follows directly from [8, Part (iii) of Theorem 1]
that there is a positive constant ¢ independent of r, d and » such that
given n there exists a continuous real functional Q on [—1, l]k' with
modulus of continuity u satisfying u(n) < A(n) (n>0) for which

B2
|Qv — Py| > c)\(rT), some v € [—1, l]k’ (10)
for each P € Pk,
Define the map K on U by
(Ku)(7) = QA T,

where A, is the map of U into [—1,1]% given by Au = ou.
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This K has finite myopicity of width 2r because A, T "W u =
A, T 7u. To see that K is shift-invariant, let 8 belong to Z and observe
that (KTPu)(y)= QAT "TPu=QA, T~ Pu=(Ku)(y— ). Using
(Ku)(0) = QA,u as well as pu(n) < A(n) (n>0) and the continuity of Q,
we see that K(-)(0) is continuous, and that

sup  |K(ua)(0) — K(up)(0)| = (n)
puaup)<n

for n >0, showing that K€ K,. And, using (10) as well as (Ku)(0)=
OA,u and A,u = Lju, we have

3/2

inf [(Ku) (0) — P(Lju)| Zcx("; )

for all P € P%. This completes the proof of Theorem 2.



