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This paper deals with a numerical model for the kinetics of some diffusion-limited phase
transformations. For the growth and dissolution processes in 3D we consider a single spheri-
cal precipitate at a constant and uniform concentration, centered in a finite spherical cell of a
matrix, at the boundary of which there is no mass transfer, see also Asthana and Pabi [1] and
Caers [2].

The governing equations are the diffusion equation (2nd Fick’s law) for the concentration
of dissolved element in the matrix, with a known value at the precipitate-matrix interface, and
the flux balans (1st Fick’s law) at this interface. The numerical method, outlined for this free
boundary value problem (FBP), is based upon a fixed domain transformation and a suitably
adapted nonconforming finite element technique for the space discretization. The algorithm
can be implemented on a PC. By numerous experiments the method is shown to give accurate
numerical results.
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Classification Categories: 35K99, 76T05, 65N30

1 INTRODUCTION

Aaron et al. [3] dealed with a mathematical model for the diffusion-con-
trolled growth and dissolution of precipitates in an homogeneous matrix.
In that model, one single precipitate, taken to be spherical and at a con-
stant, uniform concentration cp, is placed in an infinite matrix. The prob-
lem consists of evaluating the time evolution of the precipitate-matrix
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interface, coupled to the one of the radial symmetric concentration of dis-
solved element in the matrix. Here, the concentration at the interface has a
fixed, known value ¢, characteristic for the temperature at which the
growth and dissolution process takes place. Moreover, initially the matrix
is uniformly at a concentration ¢, and ¢, is kept as the concentration of
dissolved element at any time ¢ > O at infinitely large distance of the pre-
cipitate, i.e. outside its influence. The expected concentration profiles are
sketched in Fig 1 below. Here, notice the different position of ¢; in the two
cases.

cp cp

cr M
(2) (b)
FIGURE 1 Concentration profiles: (a) precipitate growth, (b) precipitate dissolution

The governing equations are the diffusion equation for the dissolved ele-
ment in the matrix and the flux balans at the interface. For the case of pre-
cipitate growth the analytical solution of this free boundary problem (FBP)
has been constructed in [3].

Caers [2] refined this model in that the matrix is taken to be a finite
sphere, in the centre of which is placed the spherical precipitate, see also
[1]. The underlying assumption is that the matrix consists of identical
cubic cells, in the centre of which is placed one single particle. In this way
the overall process of growth and dissolution is reduced to the process in
one basic cell, however with the drawback that the radial symmetry of the
problem is lost. This drawback has been remedied by the introduction of
spherical cells with the same volume as the cubic ones, so that the ratio of
the mass in the precipitated phase and the mass in the dissolved phase
remains the same. In this structure there is no mass transfer between neigh-
bouring cells. The fact that the size of the precipitates is small compared to
the diffusion distances, supports the assumption of spherical symmetrical
concentration profiles around the particles.

For this FBP, stated in a precise form below (Section 2), no analytical
solution exists. We present a fairly general and effective numerical
method. We begin with a fixed domain transformation, resulting in a
highly nonlinear, nonlocal initial boundary value problem (IBVP) for a
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parabolic PDE, coupled with a 1st order ODE with respect to time
(Section 3). We then derive a variational formulation of this problem.
Next, we apply a nonconforming finite element approximation to the vari-
ational problem, using linear shape functions on a non uniform finite ele-
ment mesh (Section 4). The nodes are distributed more densily near the
end point of the space interval that corresponds to the moving matrix-pre-
cipitate interface. Moreover, near this end point the concentration profile is
approximated by a quadratic polynomial in order to properly take into
account the flux balance at the interface, cf. Liu et al. [4]. The semi-dis-
crete problem can be simplified considerably by using a standard numeri-
cal quadrature rule, which is exact for polynomials of 1st degree and
which, in particular, implies the lumping of the mass matrix. We are left
with a strongly nonlinear initial value problem (IVP) for a system of 1st
order ODEs with respect to time, the integration of which is done with a
step-controlled Runge Kutta code, available e.g. from Mathematica 2.2.

The reliability of the fully discrete method, which can be implemented
on a PC, has been confirmed in two manners (Section 5). First, during a
certain time interval [0, ¢,}, the length of which depends on a parameter of
the kinetics of the process, the results for the precipitate growth are in very
good agreement with those obtained in [3] for a large scale of kinetics
parameters, even when a coarse mesh or when numerical quadrature is
used. The results in [3], based upon analytical formulae, ought to be valid
in [0, t,], during which the influence of the finite boundary of the matrix
cell on the growth process is negligible. Secondly, still in the case of pre-
cipitate growth, for large values of time the numerical value of the precipi-
tate radius must tend to the value of the particle radius in the steady state
regime, being known exactly from a mass balance argument. A similar
property must hold in the case of precipitate dissolution up to a nonzero
limit particle radius. Also here we have obtained very good agreement
between the numerical results and the exact ones.

As a secondary test of the numerical method, we also considered the
case of precipitate dissolution with complete particle extinction. The cal-
culated value of the finite extinction time 7, is not affected by the use of
numerical quadrature for the construction of the finite element matrices.
Moreover, the calculated values of T, are in relative good agreement with
results in [3] and [1], obtained by stationary interface models for particular
sets of data.
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2 MATHEMATICAL MODEL

A spherical precipitate with unknown, time varying radius R(2) is centered in
a spherical cell with radius L of an homogeneous matrix, cf. Fig. 2. The pre-
cipitate is taken to be uniformly at a constant concentration c,, while the
concentration profile c(r, #), R(t) < r < L, of the dissolved element in the
matrix is at any time ¢ > 0 governed by Fick’s 2nd law, the concentration at
the matrix-precipitate interface r = R(?) having a known constant value cj.
The position of the interface is related to this concentration profile.

When during a time interval (7, ¢ + &f) the radius of the precipitate
changes from R(?) to R(t) + dR, the mass balance reads

d 4
4n-R*.D- < ot =2 -m-[(R+OR)* =R (cp — 1)
T lr=R(t) 3
Here D - Q—; gives the mass flux per unit time interval and per unit
r=R(t)

area from the matrix towards the surface of the precipitate (growth) or vice
versa (dissolution), D being the diffusion coefficient.

matrix
cell surface

-

~R(t) L

precipitate precipitate-matrix interface
FIGURE 2 A spherical precipitate in a spherical cell of a matrix

The resulting FBP for the couple [R, c] consists of
(a) the diffusion equation for the dissolved element in the matrix,
dc d%c 2 ac
— =D (—=+-—— =D-Ac), R(t)<r<L, t>0; 2.1
L op-(55+7-5) (DA, RO<r<L, 1)
(b) a general linear flux condition at the cell surface,

dc
ar

-D =b-(c—¢), r=L, t>0; (2.2)
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(c) two interface conditions,

c=c¢, r=R(),t>0, (2.3)
ac dR
5, = (p—a)—, r=R(0),t>0; (2.4)
(d) given initial data,
R(0) =Ro, ¢(r,0) =co(r), Ro<r<L. (2.5)

In the physical problem considered in Section 1 there is no mass transfer
at the cell surface, i.e. b = 0 in (2.2). We still retain (2.2) in its present form
for the sake of generality. Condition (2.4) is implied by the mass balance
mentioned above in the limit 6 — 0, 3R — 0. In the present FBP the data
D, c;, b and ¢ are given (positive) constants. However, the analysis below
equally applies to the case of time dependent data. Moreover (2.1) may
contain a reaction source term F(c).

In Aaron et al. [3] an analytical solution to the FBP (2.1)-(2.5) has been
derived for the case of precipitate growth, with Ry =0, cy(r) = ¢y (con-
stant) > ¢; and L =, (2.2) being replaced by the limit condition
c(+, t) = ¢y, for all ¢ > 0. For the corresponding case of precipitate disso-
lution (now ¢y, < ¢, cf. Fig. 1) no analytical solution exists. For the FBPs
with L = o one has to ressort to a numerical approximation method, even
for the case of precipitate growth, even when Ry =0, cy(r) = ¢jyand b= 0.

The first step towards a fully discrete method, outlined in this paper, is
the reduction of (2.1)-(2.5) to a fixed domain IBVP and the variational for-
mulation of this latter problem.

3 TRANSFORMATION TO A FIXED DOMAIN PROBLEM.
VARIATIONAL FORMULATION

To remove the term % : g—g in (2.1) we first pass to the new unknown U,

U(rt) =r-c(nt). (3.1)
Next, by introducing the new variables
L—
x= r u(x,t) =U(nt), (3.2)

L—R(t)’
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and by putting

z(t) =L —R(¢), (3.3)
the FBP (2.1)-(2.5) is transformed to a fixed domain IBVP for the couple
existing of u(x, t), 0 <x <1, >0 and z(¢), ¢t > 0. The problem consists of

(a) the nonlinear, nonlocal parabolic PDE

D x
U= Z 3§u+ (XZZ—(L—Z) . (axu(l,t)—i—Z-C]) coxu, 0<x<1,¢>0; (3.4)
(b) the nonlinear ODE
d 1
Z = (oxu(1,8) +z-cr), t>0; (3.5)

dt  a-(L—2)-z
(c) the two BCs

Zax +(L ]’f’z) u=b-g, x=0,t>0, (3.6)
=c-(L-2), x=1t>0; (3.7)
(d) the two ICs
u(x,0)=up(x) = (L- (1—x)+Ro-x)-co(L - (1—x)+Rp-x), 0<x <1, (3.8)
2(0) =L — Ro; (3.9)
where

The nonlocal character of (3.4) is reflected in the appearing partial
derivative d,u(1, ) of the unknown taken at x = 1; see also (3.5).
Moreover, by introducing the new unknown

w=u—c-(L-2z), 0<x<1,t>0, (3.10)
we are left with a similar IBVP for the couple existing of w(x, 1),0 <x < 1,
t> 0, and z(¢), ¢t > 0, now with an homogeneous Dirichlet BC at x = 1.

This last problem can be given a variational formulation. We introduce
the function spaces

V={veH(0,1)|v(1) =0}, W={veH?(0,1)|v(1)=0},
as the space of test and trial functions respectively. Here Hl(O, 1) and

HZ(O, 1) are the usual first and second order Sobolev spaces on the interval
10,11
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Dealing with the parabolic PDE for w(x, ¢) in the usual way, we arrive at
the following variational problem:
Find the couple of the smooth function z(t), t > 0, and the function w(.,t),
t> 0, withw € Wand dw € Ly(0, 1) for every t > 0, which obey the non-
linear integral identity
(3xw(1,8) +2z-¢cr)

a-(L—z)-22 x-oomv) + 2o (1,v)]

D
(3w,v) = ek (0w, 0xv) +

DG -2y won ter (G- ) L= +L- 20| H0),

for all v € V and for (almost) every t > 0, (3.11)
coupled with the analogue of (3.5), viz
z_ 1
dt o-(L-z2)-z
under the ICs
w(x,0) = up(x) — ¢y - (L—2(0)), 0<x<1, z(0)=L-—Ry, (3.13)

(axw(1,8)+2z-cr), t >0, (3.12)

where uy(x) is given by (3.8).

In (3.11), (.,.) stands for the inner product in L,(0, 1). Notice the appear-
ance of d,w(1, £) in the variational equation (3.11), both directly and
through the function z, see (3.12). Due to the continuous embedding of the
space H2(0, 1) in the space Cl([O, 1]) of smooth functions on the closed
interval [0, 1], ,w(1, £) is well defined.

The existence of a solution to this type of IBVP is discussed in Pani [5].
The second step towards a numerical method for the original FBP
(2.1)~(2.5) is the approximation of the couple [w(x, t), z(t)],0 <x < 1,¢> 0,
by a suitable finite element method with respect to x at any ¢ > 0.

4 NONCONFORMING FINITE ELEMENT APPROXIMATION

Let 0=x; <xy<..<xy<xy, =1 be a partition of the interval [0, 1],
where N € N is given. Denote h; = x;,1 —x;, 1 <i < N. We use a nonuni-

form partition of [0, 1] defined by
2 N-i+1
P — o — <i<N.
hi=§g1 —n 0 1SisN
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Thus the FE-mesh is gradually refined from the begin point x = 0 to the
end point x = 1, these points corresponding, respectively, to the cell-sur-
face r =L and to the precipitate-matrix interface r = R(z) in the original
FBP (2.1)-(2.5).

Introduce the standard finite dimensional subspaces of C°([0, 1])

X, ={v e C%(0,1))|vis a first order polynomial in ]x;,x;11[,1< i <N} (4.1)
and
n={veX,|v(l) =0}. (4.2)

Clearly, V;, CV, but V;, ¢ W. Thus, when besides V also W is approxi-
mated by the space V}, in (3.11), the corresponding FEM is nonconforming
in the terminology of e.g. Carey and Oden [6]. For the sake of computational
elegance, this choice of FEM is made below. However we improve the
approximation of the derivative d,w(1, ?), the appearance of which in (3.11)
required passing to a subspace W of H*(0,1) as the space of trial functions.

(The simplest choice of a conforming FEM requires cubic Hermite finite
elements to approximate w, see e.g. [6], which is computationally cumber-
some.)

Let (¢;);<i<y be the canonical basis of Vj, i.e. ¢; € X}, and @;(x)= 9
1<i<sN 1<jsN+1.

As an approximation of the couple [w, z], obeying (3.11)-(3.13), we
define the couple [wy, z;], with

Wh(x7t) = IEV:Ei(t)'CPi(x)a 0<x<1, t>0, (43)
1

=

ij>

by a system similar to (3.11)-(3.13). Here, in the analogue of (3.11) the test
function v is restricted to V,, of course. Moreover we don't

substitute d,w(1, ) by — %Q , which would be in agreement with (4.3),
N
but we put, cf. Fig. 3,

6xw(17t) ~ m(EN—l(t)aEN(t)) (44)

— hy _ M ’EN(t)
"~ hy-1-(hv-1+hy) hn-1-hy

The choice of a suitable approximation of d,w(1, f) is essential for the

-En-1(1)

accuracy of the algorithm, as this derivative arises from the flux balans

condition (2.4) in the original FBP and will lead to the velocity %!—f of the
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/ parabolic arc

€va 13 )
\

ZN+1=1

IN-1 N
FIGURE 3 Finite element approximation of d,w(1, ) by g0

precipitate-matrix interface, through (3.3) and (3.12). The expression (4.4)
results from the parabolic arc which is shown in Fig. 3 and which is taken

to approximate w(x,) near x = 1, cf. Liu et al. [4].

Denoting
C(t) = [E1(0),... . En(0)]F, >0,

the resulting IVP for C(2) and z,(2), ¢ > 0, reads:
Solve the system of N+1 nonlinear 1st order ODEs

ac _ D m(En—1,EN) +2n-
M- —=-2.0-C+ .[R-C+z,-¢c;-E
dt Z;Zl ) G.'(L—Zh)'Z% [ Zp-Cr ]
D 1 b 1 b b
+;; (Z—B)El-i-C[(Z“-B (L—‘Zh)-{'LBCp '€1,t>0, (45)
dzy _ m(En-1,8v) +zn-cr >0,
dt (x~(L—zh)-zh
under the ICs
(4.6)

C0)=M"1.P | 2,(0)=L—Ry.

Here, E, ey and P are (N x 1)-matrices, defined as follows

1
E = [EuEa BT, Ei= [ @iy, 1<i<W,
0

e = [1,0,... ,O]T,
]T

)

P = [p1,p2,.-.,PN

where
1
Di :/ [(L-(1=x)4+Ro-x)-co(L-(1—x)+ Ro-x)— cr - Ro]- @i(x)dx, 1 <i<N.
0
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Furthermore, the matrices M (mass matrix), Q (stiffness matrix), and R,
entering (4.5)-(4.6), are (N X N)-matrices, defined by

1
M = (M;j)1<i,j<N, Mij=/0 @;(x¥)@i(x)dx,

1 / /
0 = (Qij)1<i,j<n> Qij=/0 @; (%) @i (x)dx, (4.8)

1
R = (Rij)1<i.j<n, Rij=/0 ' () i (x) dx

We recall that M, Q and R are tri-diagonal matrices. They explicitly read,
in a shorthand notation, (with the nonzero elements on each row listed
from left to right),

1 [h, 1 h;

M=- Jhi hi
3 2 i—1+ ni, 2]15,9/

1 1 1 1 1
==+ , (—=0), 4.9
Q [ hi1"hioy  h hi] 1<i<N (ho ) (49)

, (xo=ho=0).

R= xi—l+hi—1,hi—1+hi’_xi+l+hi
2 3 2 2 3 1<i<N

In this notation it is tacitly understood that on the 1st and Nth row there
is only one nonzero off-diagonal element and that for i = 1 the meaning-
less terms are put equal to zero (as indicated). The column matrix E, (4.7),

is

hy hi+hy hi_1+h; hy_1+hy]T
E=|— 4.1
|:2a D) ) 3 2 ) 9 2 ] ( O)

Numerical Quadrature
Using the trapezium rule over each element,

[ re ) G acion e, (41D

for the numerical evaluation of the integrals which appear in (4.7)-(4.8),
the nonlinear IVP (4.5)-(4.6) can be simplified.
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_Denoting the matrices resulting from this numerical quadrature as M,
Q, ...,one has

M = diag (lﬂ hi+hy hi—1+ hi . 7hN—1+hN>’

R I T R s SO 3
0=0, E=E,
< Xi o X
R=- [51’0’—5 1<i<N’
P=[p1,p2,-..,pN]7, (4.12)
with
[7,-:hi_lTM-[(L-(l—xi)+R0~x,-)~co(L-(1—xi)+Ro-x,~)—c1~R0],

1<i<N, (hp=0).

Notice that the diagonal matrix M turns out to be the lumped matrix of
the original mass matrix M, as it should.

The IVP (4.5)-(4.6) or the related simplified IVP, which results from the
use of the numerical quadrature (4.11), can be solved numerically by well
established time discretization techniques. We have chosen a step-control-
led Runge Kutta scheme, available e.g. from Mathematica 2.2.

5 NUMERICAL RESULTS

5.1 Precipitate growth

For the case of precipitate growth we may compare the results obtained by the
numerical method described above with the exact solution which was derived
in Aaron et al. [3], for the special data L = o, Ry =0 and c( = 3y = constant.
In our model we take L =10, and we impose the homogeneous Neumann
BC, 0,c =0, at r = L, corresponding to the limit condition ¢(+%, #)= ¢y, con-
sidered in [3]. Moreover we choose Ry~10"410"> and 1072, the system
(4.5)-(4.6) being singular when R, = 0.

We should find that during a short time interval [0, ¢,], the length of
which depends on the kinetics parameter, used in [3], viz
M —CI
cp—cr’

k=2 (5.1)
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the numerical results are in good agreement with the exact ones from [3],
as for small values of ¢ the influence of the finite matrix boundary on the
precipitate growth is negligible.

At the other hand, for large values of time the radius R(?) of the precipi-
tate should tend to the value R, corresponding to the steady state regime
and being obtainable from a conservation of mass argument in the precipi-
tate and the matrix. This mass balance reads

L ey =R -cp+(L>—R3)-¢ (5.2)

as in the steady state regime the concentration of dissolved element in the
matrix is ¢ = ¢; throughout.

By numerous numerical experiments, summarized in the tables below,
we analyze the following 3 aspects

1. The dependence of the procentual errors

e = max RVO RO 100 5 _ oy [RVO —Rell) |

-100, (5.3) - (5.4
a,b] R.(t) [a,b] R.(t) (5:3)=(54)

on the number of the elements N. See Tables I and II. Cf. also Figures 4, 5
and 6.

Here R,(?) is the precipitate radius at time ¢ derived from the exact solu-
tion in [3], while Ry(#) and R p(2) are the approximate values of this radius
obtained by the method outlined in Section 4, without or with use of
numerical quadrature, respectively.

2. The influence of the choice of (a small value of) R, on the error €,
(5.3), for different values of N. See Table L.

3. The dependence of the error €, (5.3), and of the time ;_oo on the kinet-
ics parameter £, (5.1), for N = 10. See Table III. Here T»is the time
(estimated from below) such that

—RL—1}<10—4 for ¢>T. (5.5)

RN (t) © .

The time interval [a, b] in the definition (5.3)-(5.4) is chosen so that the
influence of the finite matrix cell radius on the approximate precipitate
radius Ry(?) is negligible.

In all experiments the data are: L = 10; D = 1 and, apart from Table III,
cr=Ley =2, cp=6.062, (k=0.3951).
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TABLE I Precipitate growth. The error €, (5.3), for different values of Ry and N.

RO\N 4 7 10 20
1072 6 3 1 0.4 0.4 0.35 0.4 0.4
1073 5 1 1 0.35 0.35 0.35 0.35 0.4
1074 20 1 1 0.35 0.4 0.4 0.3 0.4

In each 1st subcolumn € corresponds to the time interval [0.5, 5], in each
2nd subcolumn ¢ is related to the time interval [5, 20].

TABLE II Precipitate growth. The errors ¢, (5.3), and 5, (5.4), for different values of N,

when R = 1073
N 4 7 10 20
3 5 1 1 0.35 0.4 0.4 1 0.9
€ 14 15 12 1 12 0.9 0.4 0.4

In each 1st subcolumn ¢ and € correspond to the time interval [0.5,5], in
each 2nd subcolumn they are related to the time interval [5,20].

TABLE III Precipitate growth. Dependence of the error &, (5.3), and of the time T, , (5.5), on
the kinetics parameter k, (5.1), when N = 10 and Ry = 10~

k 6.173-107  3.086-10% 6.17-107 0.02469 0.06173
€ 3 0.8 0.5 0.3 0.3
Tw 3000 8000 1500 1000 800
(a,b) (0.5,40)
k 0.2716 0.3951 0.5802 1.5
€ 0.4 0.3 0.4 0.5
To 150 100 50 50

(ab) (05,25 (05,20) (0518  (05,5)

The error ¢ is evaluated over the respective time intervals indicated on

the bottom line.
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FIGURE 4 Precipitate growth. Ry, and R, versus time when N =7 and Ry = 1073
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FIGURE35 Precipitate growth. Ry and R, versus time in the interval [0, 0.2] when N = 7 and
Ry=10"

-0.02 \
\ A
~0.02 dotted line : &
full line ie
-0.03

FIGURE 6 Precipitate growth. Time evolution of the errors e = Ry — R, and e = ftN -R,
when N = 10 and Ry = 1073
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5.2 Precipitate dissolution

For precipitate dissolution there is no exact solution available to the FBP
(2.1)-(2.5) for a particular choice of the data, even not for the idealized
case that L = . However, when the precipitate gets not dissolved com-
pletely, the method outlined in Section 4 can still be tested by means of the
precipitate radius Ry(?) for large values of time. Indeed, this radius should
again tend to the value R, corresponding to the steady state regime and
being given by the mass balance argument (conservation of initial mass),
which now reads

Ra-cp+(L3—R(3))-CM :RSO-CP+(L3—-R30)'CI

The numerical experiments for Ry(2) at ¢ = 500, shown in Table 4, are in
agreement with this observation, see also Fig. 7. Both for Table IV and
Fig. 7, the data are: L = 10, Ry=5; ¢; = 1, ¢p; = 0.84, = 3 (k = -0.16);
D = 1. A similar precision has been obtained for a large scale of the kinetics
parameter k.

TABLE IV Precipitate dissolution up to steady state regime (R, = 3.80295). Value of
- R N(SOO)

for different values of N, without and with use of numerical quadrature
0

N 4 7 10 20

exact quadrature 0.00159 0.00030 0.00012 0.00012

numerical quadrature 0.00685 0.00214 0.00105 0.00027

4.8

4.4

4.2

t
4 50 100 150 200 250

3.8

FIGURE 7 Precipitate dissolution. Time evolution of the precipitate radius Ry up to steady
state regime. (R,= 3.80295)
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R
When, for a fixed value of the kinetics parameter , the ratio fo of the initial

radius of the particle and of the matrix cell radius L is taken to be sufficiently
small, the particle should be dissolved completely after a finite time 7. This

finite extinction time phenomenon has been confirmed properly by the numer-
ical experiments, such as those summarized in Fig. 8 and Table V below.
In Fig. 8 we compare the time evolution of the precipitate radius, calcu-

lated by the present method (again for N = 10), with the one shown in
Aaron et al. [3], for the indicated set of data (apart from the choice L = «
in that paper). The result from [3] is based on a stationary interface
approximation method. As in our numerical —I-? = 0.05, the influence of
the finite matrix cell boundary on the dissolution process is negligible.
Hence, a comparison of both extinction times is meaningful. From Fig. 8
their difference is seen to be about 8.5 %.

0.5

0.4

dotted line : [AAR]-curve

full line : Ry

2.2 0.4 9.6 .5

FIGURE 8 Precipitate dissolution up to complete extinction. Time evolution of the precipitate
radius R, . Comparison with [3]. Case: L = 10, Ry = 0.5; ¢; = 2, ¢y = 1, ¢, = 10 (k = -0.25);
D=1

Table V shows the expected dependence of the extinction time T, on the
kinetics parameter £, (5.1), (through the interface concentration c;). Notice
that the value of T, is nearly affected by the use of numerical quadrature.
Moreover, for a fixed ¢, T, is found to retain its value when L is further
increased, as it should, because the influence of the matrix cell boundary

R
on the dissolution process is negligible from a sufficiently small ratio _Lg
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on. Small variations in the value of T, (for a fixed c¢;) when successively

L =10, 30 and 50, can be expected a priori: as a fixed number of elements
in the mesh (N = 10) is retained , in particular the density of the grid points
near the point x = 1, that corresponds to the matrix-precipitate interface,
decreases for increasing L.

The calculations are done for a set of data corresponding to a set in

R
Asthana and Pabi [1], (although the ratio fois not mentioned in that

paper). The respective values of T, for ¢; = 0.06 deviate at most 5 % from
the value T, =6.404, obtained in [1] by means of Whelan’s stationary
interface model [7].

TABLE V Precipitate dissolution up to complete extinction.. Extinction time T, for different
values of ¢, calculated with N=10. Case: Ry=1; ¢y =0,¢, =1;D =1

¢ \L 10 30 50

0.06 6.741 6723 6.597 6.722 6.655 6.720
0.07 5.671 5.655 5.531 5.655 5.598 5.653
0.10 3772 3762 3.642 3.761 3.726 3.761
0.30 0.963 0.962 0.865 0.961 0.930 0.960

Each 1st subcolumn gives the value of T, obtained with exact quadra-
ture, each 2nd subcolumn gives the corresponding value obtained with
numerical quadrature.

Finally, the computed curve in Fig. 8 is convex-concave, reflecting the

. . . . dR .
expected time evolution of the interface velocity 7 o the case of com-
plete precipitate dissolution.

5.3 Discussion

The numerical results presented above support the reliability of the
approximation method described in Sections 3—4. The most striking points
are the following ones:

* Good numerical results are already obtained with a coarse finite ele-
ment mesh, viz N = 10 or even N =7, cf. Table I [even for N = 4 the
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numerical results are quite satisfactory for not too small values of time]
and cf. Table IV.

¢ The use of a simple numerical quadrature rule for the construction of
the finite element matrices, implying a considerable simplification of
the IVP (4.5)-(4.6), doesn't deteriate the numerical results, cf. Table II,
Table IV and Table V.

¢ The choices R = 102,107 and 10~ for the initial precipitate radius
in the case of precipitate growth don* influence much the numerical
results, [except for a coarse mesh when R = 10‘4], cf. Table I.

* The precision of the numerical results remains high for a large scale of
the kinetics parameter k, cf. Table III .

6 CONCLUDING REMARKS AND FUTURE DIRECTIONS

This paper dealt with a mathematical model of the diffusion-controlled
growth and dissolution of spherical precipitates in a spherical, homogene-
ous matrix. We presented a numerical approximation method for the
underlying FBP (2.1)-(2.5). That method basically rests upon (1) a fixed
domain transformation, (2) a nonconforming finite element method, more-
over with a nonuniform linear mesh and a suitable flux approximation
technique, applied to the resulting highly nonlinear and nonlocal parabolic
problem. Numerical experiments have confirmed the method to be effec-
tive and reliable. In fact, even a numerical quadrature FE-method on a
coarse mesh provides adequate results. As moreover the time discretiza-
tion of the resulting IVP for a system of strongly nonlinear 1st order ODEs
has been done with a well established, step-controlled Runge Kutta code,
the complete numerical scheme can be implemented on PC.

The work reported on in this paper can be extended in a few directions.
First, the numerical approximation method outlined above can be adapted
so as to cope with non constant data, in particular with a concentration
dependent diffusion coefficient. Secondly, in a physically more elaborated
model, the dissolution/growth process must not be assumed to take place
at a constant homogeneous temperature. In fact, that process is related to
the time variation of the temperature in the spherical cell (through the tem-
perature varying diffusion coefficient and interface concentration). Thus a
coupled parabolic problem for [R, c] and T (temperature field) can be stud-
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ied. Thirdly, the basic ideas (1)-(2) summarized above can also serve as
the starting point for the numerical analysis of some other types of diffu-
sion processes with moving boundaries, for instance arising from chemical
kinetics, see e.g. Chapter 6 in Froment and Bisschoff [8]. In particular, we
mention a transient 2-component diffusion problem in 1D, arising from the
kinetic modelling of the adsorption process of dilute SO, in aqueous
Na,SO3 solutes, see De Smul [9]. This problem is a topic of ongoing
research.
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