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A class of nonlinear systems with norm-bounded uncertainties and state-delay is considered.
Two criteria are developed for the robust stability analysis: one is delay-independent and the
other is delay-dependent. Methods for robust feedback synthesis are then examined. It is
established that linear memoryless controllers are capable of guaranteeing the delay-depend-
ent and delay-independent stabilizability of the closed-loop systems. All the results are
expressed in the form of linear matrix inequalities which can be solved by efficient and
numerically-stable routines. The developed theory is applied to the stability robustness prob-
lem of an industrial jacketed continuous stirred tank reactor.

1. INTRODUCTION

It has been increasingly apparent [4] that the presence of delayed informa-
tion in physical and engineering systems may have a destabilizing effect
and may lead to poor performance of control systems. Examples of sys-
tems with time delay include transport processes, population models,
remote control problems, urban traffic; to name a few. Stability problems
of time-delay systems have therefore been the subject of numerous studies
[5,6,8,10-13,15,16]. Almost all the available results are however restricted
to linear systems with norm bounded or matched parametric uncertainty.
The objective of this paper is to examine the problems of robust stability
and robust feedback synthesis for a class of nonlinear systems with
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norm-bounded uncertainties and state-delay. The approach adopted in this
work is based on the constructive use Lyapunov stability theory. Two crite-
ria are developed for the robust stability analysis: one is delay-independent
and the other is delay-dependent. Methods for robust feedback synthesis
are then considered It is established that linear memoryless controllers are
capable of guaranteeing both the delay-dependent at delay-independent
stabilizability of the closed-loop systems. All the results are expressed in
the form of linear matrix inequalities (LMI’s), which can be solved by effi-
cient and numerically-stable routines [1,3]. The developed theory is then
illustrated by a simulation of an industrial jacketed continuous stirred tank
reactor (JCSTR).

Notations. We use W', W1, A(W) to denote, respectively, the transpose of,
the inverse of, and the eigenvalues of any square matrix W. The vector norm is
taken to be Euclidian and the matrix norm is the corresponding induced one;
that is [[W]| = A2 (W'W), where Ayymy(W) stands for the operation of tak-
ing the maximum (minimum) eigenvalue of W. We use W > 0 (W < 0) to
denote a positive- (negative-) definite matrix W. Let C; denote the proper
left-half of the complex plane. Sometimes, the arguments of function will
be omitted in the analysis when no confusion can arise.

2. PROBLEM STATEMENT AND DEFINITIONS

Consider a class of nonlinear dynamical systems with state-delay of the
form

x(t) = [Ao+AA()]x(t) + [Bo+ AB(t)]u(t) (1a)
+[Do + AD(t)]x(t — T) + [Go + AG(t)]g[x(t)]

x(t) =¢(t) Vte[-t,0], 0<t<T <™ (1b)

where t € N is the time, x E R is the instantaneous state; u € R™ is the
control input; and T representing the delay of the system with the bound ©*
is known. The function g(.): R™ — R", is unknown-but-bounded. The
matrices Ay, € R™", B, € R™™, represent the nominal system without
delay and uncertainties where the pair (A,,B,) being controllable and
D, ER™", G, R" "¢, are constant matrices. The uncertainty within
the system are represented by the real-valued matrix functions AA(t),
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AB(t), AD(t), AG(t), which we consider to satisfy the following assump-
tions:

Al There exists real constant matrices M, N, L, Eg, T,, Eg, T of appropri-
ate dimensions such that V t € R
[AA(t) AB(9] = MF()[NL], F()F(t) <I
AG(t) = EgFy() Ty, Fy()Fy(t) <1, (2)
AD(t) = EqF4(t)Tq, Fy(t)Fa(t) <1
where the elements Fj(t), (Fy(1));; are Lebesgue measurable Vi, j and
Ft) € RP, MeR™e, NeRf™ LeRPm F(1)eR% P,
Fy(t) € R%*Pa T (1) € RPeX™, Ty(t) € RPe™.

A2. There exist a known scalar € > 0 and a matrix R; € R™" such that
eIl < eollRgx]|  Vx € R 3)
Distinct from (1) is the free system described by:
%(t) = [Ao + AA(1)]x() + [Do + AD(t)]x(t — T) + [Go + AG(V)]g[x(t)] (42)
x(t) =¢(t) Vte[-1,0, 0<t<T <@ (4b)

for which we invoke the following assumption:

A3. Suppose that M(A,) € C, and there exist matrices 0 < P, = P{ € R™"
and 0 < Q, = Q! € R™" such that

P0A0+A:)Po:_oo (5)

Models of dynamical systems of the type (1) can be found in several engi-
neering applications including river pollution control [7]; turbogenerator
control [14] and recycled continuous stirred-tank reactors . In section sec-
tion, a typical model of an industrial jacketed continuous stirred tank reac-
tor with a delayed recycle stream will be studied for purpose of simulation.

In the sequel, we adopt the following concepts of robust stability and
robust stabilization:

DEFINITION 1 The uncertain state-delay system (1) is said to be robustly
stable if the null solution x(t) = 0 of system (4) is uniformly asymptoti-
cally stable for all admissible realizations of the uncertainties AA(t),
AD(t), AG(t) satisfying (2) and (3).

DEFINITION 2 The uncertain state-delay system (1) is said to be robustly
stabilizable if there exists a memoryless feedback control u(t) = K [x(t)]
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such that the resulting closed-loop system is robusty stable in the sense of
Definition 1.
The objectives of this work are four-fold:

1. to develop delay-independent conditions for robust stability for the
uncertain free system (4),

2. to develop delay-dependent conditions for robust stability for the
uncertain free system (4),

3. to provide a feedback control synthesis that guarantee the robust stabi-
lization of the uncertain system (1) and

4. to cast the solutions in all cases in the form of linear matrix inequalities
that can be solved by efficient and numerically-stable routines.
For simplicity in exposition, let

‘é‘(t) = [AO + MF(‘)N] ’ ﬁ(t) = [Do +EdFd(t)Td] (6)
G(t) =[Go+ EgFg(t)Ty]

Before proceeding further, some basic results that will be used in the
sequel are provided.
LEMMA 1 Let Xy, Z,, 25 be real constant matrices of compatible dimen-

sions and H(t) be a real matrix function satisfying H'(t) H(t) < I. Then the
following inequalities hold:

1. H(N)Z + SLH(H)Z) < p725 2 4 p22530,p > 0 (7a)

2. Vp > Osuch that p?Zt3, < I, (7b)
(25 + ZH()Z)) (23 + Z1H()22) < p7 2213 + [T - p22p3h] 135

Proof See the appendix.

3. ROBUST STABILITY: DELAY-INDEPENDENT CASE

The objective here is to derive delay-independent conditions for robust
stability of system (4). For this purpose, define the matrix functions

J(P,6) =PA,+ALP+PeIMM'+ (e5 +e5 [ P+[e3RL Ry +£2N'N+£11] (8)

Qi(e) =1— e4BqEY, Qs(e) = &11—e3e, T4 Ty —e3D (I—e4BgE}) 1D, )
Qy(e) =I— e6BoEL, Q4(e) =I—ese;  TiTy—esGh(I—e6E.EL) "G,
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where 0 <P =Ple R¥0 €g»--» € are positive scalars and ¢ € R =
[80,..., 86].

THEOREM 1 Suppose that A1, A2 hold. Then system (4) is robustly sta-
ble if any of the following equivalent conditions holds:

a. There exist matrix 0 < P = P' € R™" and ¢ > 0, satisfying the inequali-
ties:

J(P,e) <0 (10a)
Qi1(e) >0, () >0, Qs3(e) >0, Qu(e)>0 (10b)

b. There exist matrix 0 < Z = Z' € R™" and ¢ > 0, solving the following
LMI:

ZAL+AZA+ (5 +es)I . Z=t M

..... e e s <o (11a)
Mt 0 —eol
A= diagle; 'Le; 'Leg?T], ='=[IN'Ry]. (11b)

Proof

a. Define the quadratic Lyapunov function candidate V(.): R x R, —
R, as

V(x,t)  =x(t)Px(t) + &1 [ x'(9)x(9)dD
+ o efRex] [Rgx]d0 — [ g'[x(9)]g[x(9)]d0

where €1 > 0 is a design parameter and observe that V(x, t) = 0 in view of

(12)

(3). The derivative of the Lyapunov function (12) evaluated on the solu-
tions of system (4) using (5) is given by

L(x,t) = x"(t)Px(t) + x'(t)Px(t) + e1x"(t)x(t)
+ sg[Rgxlt[Rgx] - gt[x(t)Jg[x(t)] —ex'(t—1)x(t—7)
= x'(t)PA(t)x(t) + x'(t) A'(t)Px(t)
+x‘(t)P]5A(t)x(t—17) +x‘(t—:c)l§t(t)Px(t) (13)
+[x(O1G(OPx(D) + X (OPG(De[x(0)
+e1x! (1) x(t) —e1x'(t — T)x(t — ) +€5x (Y RGRgx(t) — g'[x(1)]g[x(t)]

Through repeated application of Lemma 1 subject to Al and A2 to the dif-
ferent terms in (13), and grouping similar quantities, we find for some
€(---» € > 0 that
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L(x,t) <x'(t) {PAo+ ALP + [e5R, Ry + eaN'N + £41]
+ Ple; 'MM! + (g5 + 65 HIIP} x(t)
—g'[x(1)] (I - eseg ' T4 Tg — esGh (I — e6EgEL) ~1Go) glx(1)]
x'(t— 1) (11— e3g; ' T4Tq — e3DL (I — e4B4EL) 1D, ) x(t — 1)

(14)

when conditions (10b) are satisfied for some (g,...,€¢) > 0, then inequality
(14) via (10a) reduces to

L(x,t) < x'()I(P, €)x(t) (15)

where € = [gg,..., €¢]- Since I(P, €) in monotonic nondecreasing function
with respect to €, then by A3 the result (10a) follows immediately.

b. By defining by Z = P!, we obtain the equivalent conditions
AoZA+ZAY+ (g5 " +£5 )+ Z[efR,Rg +£N'N+£11]Z+[e5 'MM'] < 0 (16)

along with (9) and (10b). Then simple rearrangement of inequality (16)
yields form (11) and the proof is completed.

COROLLARY 1 In the case of linear uncerain delay systems (G, =0,
AG(t) = 0), the conditions of delay-independent robust stability reduce for
£ > 0to Q4(g) > 0, 23(¢) > 0 and:

ZAL+AcZ+ (g5 +e5']) . Z[I,NY] M
I e'l 0 <0 (17)
& 0 ] o
Mt 0 —821

COROLLARY 2 In the absence of uncertainties (AA(t) =0, AD(t) =0,
AG(t) = 0), the stability robustness of the nonlinear delay systems corre-
sponds to the solvability of

ZAL+AZ+ (51 +es T . Z[I,R!]
1], [0 <0 (18)
Ry ' 0 el

fore > 0, and (g41—e3DLDy) > 0, (I—e5GLG,) > 0.
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COROLLARY 3 By dropping out all the uncertainties and state-delay, it is
easy to deduce that inequality (11) becomes

ZAL+AZ+e5'T . 7R}
.................... C e | <0 (19)

for g9,&5 > 0 and (1—esG.G,) > 0.

COROLLARY 4 On considering the case of linear systems without uncer-
tainties and without state-delay, it turns out that inequality (11) converges
to condition (5) with Z = Po‘l, which corresponds to the standard Lyapu-
nov stability requirement.

REMARK 1 The results of Theorem 1 and corollaries 1-4 provide tracta-
ble tools for control design of several engineering systems in which the
dynamic relations exhibit time-delay with norm-bounded uncertainties and
cone-bounded nonlinearities. It should be emphasized that the class of sys-
tems (1) encompasses almost all previous uncertain systems considered so
far in the literature. Admittedly, the developed conditions of Theorem 1
are only sufficient since we are dealing with nonlinear dynamical systems.
However in the special cases described in corollaries 1-4 and by reversing
the order of proof of Theorem 1, it can be shown, following the results of
[17], that conditions (17), (18) or (19) are both necessary and sufficient.
The basic difference lies in the uncertainty structure.

4. ROBUST STABILITY: DELAY-DEPENDENT CASE

The problem of interest is to determine the upper bound t* for the
time-delay T such that system (4) is robustly stable V t € [0, t*]. Let x(t),
t = 0 be the solution of system (4). Since

x(t—1) = x(t) — /Ox(t—i-ﬁ)dﬂ: x(t) — E(x,t) (20a)
where

E(xt) =[O IAt+Ix(t+9)] +D(t+9)x(t—t+9)]dd

_ (0
+f_6T G(t+ 9 glx(t+9)]dO (20b)
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then an equivalent form of the free system (4) would be

x(0=[A(H) + D(O]x(t) - DOE(, 0 + G()glx(1)] o)
x(9)=¢(9), VO € [-21,0]

Define the matrix function
X (P,0,7) = P(Ao + Do) + (Ao + Do)'P + P[04MM' + 05E4E}|P

+[edo3 'RLRg + 0 'N'IN + 05 ' T4 Ty
+707'P[Do (I — 06E4YEq) 1D}, + o5 'TT4]P
+03P[Go (I — 07ELE,) "'GY, + 07 ' T, TLP (22)
+101(1 + 05 1) (1 + 0,) [AL (I - 0sNNY) 1A, + o5 'M'M]
+te§or1 (1405 1) (14 05 )RY[GH(1— 00T, TH) "1 G,
+05 "ELEg]R + 101 (1 4 02)[Dh (1 — 610Tg T) ~'D, + 07 E4Eq]

where 0<P=P'€R™" o, ., oy are positive scalars and
(I-o4ELE,) >0, (I-0,E{E,) >0, (I-ogNNY) >0,
(I-0yT,Tt) >0, (I-019TyT}) > 0, with o € R = [0y, ..., oy9]-
Instead of A3, we invoke the following assumption

A4. Suppose that M(A,+D,)EC,”~ and there exist matrices
0<P, =P, €R™and 0<Q, = QL € R™" such that

P, (Ao+Do) + (Ao +Do)'Py = —Q4 (23)

REMARK 2 Observe that A4 is equivalent to the asymptotic stability of
the dynamical system (1) without uncertainties and time-delay and is
indeed necessary for the uniform asymptotic stability of system (1) in the
presence of uncertaintity matrices AA(t), AD(t), AG(t) satisfying the mis-
matched conditions (2) and (3).

THEOREM 2 Suppose that A1, A2 and A4 hold. Then given a scalar t*,
system (21) is robustly stable for any constant time-delay t € [0, T*] pro-
vided that one of the two equivalent conditions is met:
a. There exist matrix 0 < P = P' € R™" and o > 0 satisfying the inequali-
ties:
R(P,0,7") <0 (24)

(I- 06E:1Ed) >0, (I- 0'7Ethg) >0, (I- ogNN') > 0
(I- GngTtg) >0, (I- OIOTdTIj) >0

b. There exist matrix 0 < Z = Z' € R"*" and e€ R = [ey,..., £11] > O,
1 = 1/t* solving the following LM

(25)
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Z(Ao+Do)' + (Ao +Do)Z+QIQ' . 73 7' W

37 S G 0 | <0 (26a)
ez 0 -m® O
wt 0 0 -nr
where
Q= [MTqy T G, J = diag[ei], eI, ege; ', eg(I— e7ExE,) '] (26b)
W = [Eq Do), £' = [N' T4 Ry}, I = diag[e1], €21, €, *es]] (26¢)
© = [A, M' D;, E; R,G;, By, T = diag[eel, (I - e6TyTa)] (264)

@ = diag[(e3] — e4NNY), e41, (e101 — esTyTY), s, (e31— £9TgTL,), el]  (26¢)

Proof
a. Introduce the Lyapunov function candidate V4(.): R* X R, — N, as
Va(x,t) =
x{(OPx() + [, (01(1+ 05 ) (1405 [l [ G(a)glx(@)]12dar) dd

+J2 (011405 ) (14 00) [y 5 [|A(0)x(01)|2der
+01(1+02) [L 5 1D(a+1)x(0r)||der) 4O

(27)

where 0,07,0,, are weighting factors to be selected. The Lyapunov deriv-
ative L4(.) evaluated along the solutions of system (21) using (20) is given
by

La(xt) = x(O{PA®) + D]+ [A) + DOIP}x(D) - 2x (OPD(VE(x, 1)
+2x(PG(Vgl(x, )]
— (01(1+ 03 1)(1+ 00) [ JIA(t+ @)x(t+ @) Pd
+o1(1+0) f2, ||]5(t+a)x(t—t+a)||2da)
= (014 031+ 05") [ 16(t+ a)glx(t+ )] Pda)

+101(1+ 03 1) (1+0p ) |G(1)elx (O]
+ [v01 (140, 1) (1+00) [A®)x(0)I* +7o1 (1 + 02) [D(t +0)x(1)] 7]

(28)

Recalling Lemma 1 and (20), it follows that
2x'()PD()E(x,t) <oy ' [x' (N PD()D' (1) Px (1) [+ o1t [E' (x,0E(x,1)] (292)

2x' ()PG(Dg[(x,0] < o3[x (VPG G (Px(D)] + 05 'g'[(x,0)]el(x,1)] (29b)
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By the algebraic inequality ||p + qf|* = (1 + v™1) ||p|>+ (1 + v) ]lg]|% v > 0 it
follows that

E'(x,DE(x,t) < (140, )(1+00)||f_1 (t+m)x(t+u)doc||2
+(1+021>(1+0 M 2. Gt + a)glx(t + o)]dar|? (30)
+(1+ o)l [2,D(t+ o)x(t — T+ o) da|?

Using the Schwartz inquality in (30), it reduces to

E(x,DE(xt)  <T(1+05")(1+0p) f_rllA(t+a)x(t+al|2da
+1(14+0; )(1+001)f G(t+ a)g[x(t + o)]|>da (31)
+1(1+02) f_1||D(t+a)x(t—'c+a)||2da

By substituting (3), (29) and (31) into (28), we get

La(x, 9 < x'(t) (P[A(t) + D()] + [A(t) + D(1) ]P) x(t) (32)
+xt(t) (v 'PD() D! (t)P) x(t) + x(t) (03PG(t)G‘(t) ) x(t)
+03 'g{x(0)]g[x ()] g[x(t)] (wor(1+0; )(1+05 )G () G(1) glx(1)]
+x'(t)xo1(1405 )(1+00)At() (t+7o1(1+02) D' t+9)D(t+1)x(t)

Algebraic manipulation of (32) using Lemma 1 subject to A1, A2 yields:

m@0<xtHPAWH%Hw&ﬁD@W++HmMMH«m%EP
+[edo5 'RLRy + 07 'N'IN + 05 ' T4 Ty
+10] 1P[D0(I O6EYEq) 1D} + op 'TT4]P
+03P[Go(1— 07E‘ LBg)"'GL + 07 ' T, TLP (33)
+701(1+ 05 1) (14 00)[AL (I — 0sNNY) 1A, + 05 'M'M]
+redor(1+0; ") (1405 HRY[G, (T— 09Tth )~'Go + 05 'ELEg]R,
+7061(1 + 02)[D (I — 019 T4T,) 1D, + 07y EdEd]} x(t)

for any scalars 0,,..., 01g > 0 along with conditions (25). In view of (22),
inequality (33) can be expressed

Ly(x,t) < x'(t) X(P,0,7)x(t) (34)
Since (P, o, T) is monotonic nondecreasing with respect to T, the rersult

follows immediately.

b. By making the following changes of variables

P=0]'P,e1=0104, 52:0105783:(1““051)_1(1"‘00)—1,36:0'6,87:07
84208(1+0£])_1(1+00) 185—010(1+02) 88—010'3,810—(1—1-0'2) 1
g9 =¢e2og(1+05 ") 1 (1+oy) ™! e =e2(1+ 0, )~ (1+0,")"! (35)
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it is easy to see that conditions (24) and (25) are met if and only if

I- £7Ethg >0, el-eNN'>0, I-— 86E3Ed >0 (36a)
el — 85TdT:1 >0, enl- 89Tthg >0 (36b)

1">(A0 + Do) + (Ao + Do)'P + P(ey MM + e,B4E} )P
+e; NN+ & 'TyTg + v P(e5 ' Ta Ty + Do[l - e6Et LEq)'D!)P
+edeg 'RURg+e8P(e7 ' Ty ThA Go[I-e7ELEg] ' GL)P
+t*(ey IM‘M—I-A‘ Elesl— s4NN‘] 1A,)
+TR (eglE‘Eg—I-G [8111—39TgT‘] 1Go)Rg
+t* (e5 'EYEq + D} [e10l — eSTdTg] D) <0 (37)
By lettingm =1/1t*,and Z = P~ we obtain the following equivalent con-
ditions:

(Ao + Do)t + (Ao + Do) Z + QIQ + Z3'T 127
n~120'®¢"10Z + n~lwr-1yt <0

where Q O, ¥, T, I1, J, ® and X are given by (26b) through (26€). Since
inequalities (36) and (37) are equivalent to (26), the proof is completed.

(38)

REMARK 3 Theorem 2 establishes a systematic method for
delay-dependent robust control synthesis base on LMI formalism, which
should prove very useful in engineering applications. By similarity to
recent existing results [12,13,16], the condition (26) is only sufficient.
However, it is considered to yield less conservative results than those cor-
responding to the case of delay-independent of Theorem 1 since it incor-
porates the size of the delay into effect .

REMARK 4 The problem of determining the largest upper bound

oft* =t which ensures the robust stability of system (4) for any

delay T € [0, T ] amounts to the solution of the generalized eigenvalue

problem in Z, € = (gq,...,€1¢9) and n* = 1/t*
Minimize n* (39)

subjecttoZ >0,e>0,n" >0

and using (26). The minimum value will be n =T,

COROLLARYS In the case of linear uncerain delay systems
(G, =0, AG(t) = 0), the conditions of delay-dependent robust stability
reduce to:
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Z(Ao+ Do) + (Ao +Do)Z+Q,JQ, . 73t Ze, W

37 i 0 0 |<0(40)
0,7 . 0 -Nnd, 0
gt . 0 0 -nr

where & = (g1,....,€19) > 0, Qg = [M, Ty, J, = diag[e I, £,1], ©, = [AL, M,
D!, EY ], and @, = diag[(e3] — £,NNY), g4I, (g0l — esTq T} ), &5]].

COROLLARY 6 In the absence of uncertainties (AA(t) =0, AD(t) =0,
AG(t) = 0), the stability robustness of the nonlinear delay systems corre-
sponds to the solvability of

[Z(Ao+D0)' +(Ao+Do)Z+Go(e5 ')G, . ZR.,  Z[AL D! G}] D, ]
RgZ —8101 0 0
Ao <0
D, |Z 0 -n®, 0
Go

L D;, -0 0 —nlf (41)

COROLLARY 7 By dropping out all the uncertainties and state-delay, it is
easy to deduce that inequality (11) becomes

Z(Ao+Do)' + (Ao +Do)Z+Go(e5 ' )G, . ZRY,  Z[A! G}

RgZ . —¢gqol 0 <0
A,

REMARK 5 Once again, the developed conditions of Theorem 2 are only
sufficient since we are dealing with nonlinear dynamical systems. However
in the special cases described in corollaries 5-7 and by reversing the order
of proof of Theorem 2, it can be shown, following the results of [17], that
conditions (40), (41) or (42) are both necessary and sufficient. The basic dif-
ference lies in the uncertainty structure where Zhou et al. [17] have consid-
ered real time-varying parameter uncertainties on compact intervals and we
employ a structure with real-valued mismatched matrix functions.
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5. ROBUST FEEDBACK STABILIZATION

Now, the problem is to determine the upper bound<t. for the
time-delay T such that the nonlinear system (1) is robustly stabilizable by a
linear memoryless feedback control u(t) =K x(t) V T € [0, t.]. For this
purpose, the closed-loop system has the form

X(t) = [(Ao+BoK) + (AA(t) + AB()K) ]x(t)

+[Do + AD()]x(t — T) + [Go + AG(t)]g[x(1)] (432)

x(t) = do(t) VtE[-T,0], 0<T<TE < ® (43b)
for which we invoke the following assumption:
Ad4. The pair (A, + D,, B,) is stabilizable
REMARK 6 In line of A3, we note that A4 is equivalent to the stabiliza-
bility of system (1) without time-delay and uncertainty and it is therefore

necessary for the existence of a stabilizing linear state feedback controller
for system (1).

Before proceeding further, we introduce
A(t) = [(Ao + BoK) + MF(t)(N + LK)] (44)

and in line of section 4, two cases will be considered

5.1 Delay-Independent Case

Using (2), (6) and (44), we rewrite the closed-loop system (44) as:
x(t) = A(t)x(t) + D(t)x(t — ) + G(t)g[x(t)] (45)

THEOREM 3 Suppose that A1-A4 hold. Given a scalar T, > 0, then system
(1) is robustly stablizable by the linear memoryless controller u(t) = 5!
B,' Z7! x(t) for any constant time-delay T € [0, 7] if condition (10b) is
met and there exist € > 0 such that ;(g) > 0, Q,(g) > 0, Q3(€) > 0, 4(¢) >
0 and a matrix 0 < Z = Z' € R™" solving the LMI

ZAS+AZA+ (5 +es) . ZZ' H

<0 (46a)
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where

A = diag[e] ', &5'1, €5 °T], = = [I, N, RY],
-2 (46b)

H=[M, Bo], A=[eal, (1—¢; )]

Proof By similarity to Theorem 1, we use V(x, t) of (12). By evaluating

its derivative L(x, t) along the solutions of system (45) followed by expan-

sion of some terms using (2), (6), (7) and (44), we obtain

L(x,t) = x'(t) (P(Ao + BoK) + (Ao + BoK)'P) x(t)
+x'(t) [e5 'PMM'P + €2(N + LK) (N + LK)'] x(t)
+x'()PD(O)x(t—7) + x'(t— ) D () Px(1)
+g [x ]G (t)Px(t) +x'() PG(t)g[x(1)]
+€1x t)x(t) — e1x*(t—1)x(t — 1)
+egx! (RGRx(t) — '[x(1)]e[x(1)]

Applying the feedback gain K = —e;1 B! P and by standard grouping of
terms, we get

L(x,t)< x'(t) {PA; + AP + [eFR,Rg + eaN'N + &11]
+P[521MM'+(8—1+3511+BO(I—82—1 2BLIP} x(t (48)
—g'[x(t)] (T—ese5 ' T, Tg—SsG (I—SﬁEgE‘) 'G,) g[ 0]
—xi(t—1) (811—8384 T4 T4 — e3D! (I — e4E4EY) 7' Do) x(t — 1)

P AN

/'\A

When conditions (10b) are satisfied and by letting Z = P!, then inequality
(48) reduces to
L(x,t) <x'(t){ZA!+ A0Z+ Z[efRLRg + e2N'N + £11]Z (49)
+ (e "MM' + (g5 + €5 1)I+B0(I —&51)2Bl]} x(t)

Now, it is easy to infer that the robust stability requirement corresponds to
(46) as desired.

5.2 Delay-Dependent Case

Let x(t), t = 0 be the solution of system (46) . In terms of
0
x(t—t) =x(t)— [ x(t+9)d9=x(t) —T(x,t) (50a)
—T
where

T(x,t) _f_t[ (t+Nx(t+9)] + [D(t +9)x(t — T+ 9)]dd

+ [0 G(t+ 9)g[x(t + 9)]dO (50b)
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the closed-loop system (45) can be cast into the form

x(t) = [A(t) + D(®)]x(t) - DOE() + G(t)glx(1)]
x(9) = 0o(8) VO € [~21,0]

THEOREM 4  Suppose that A1-A4 hold. Given a scalar t,, > 0, system (46)
is robustly stablllzable for any constant time-delay T € [0, T.] by the con-
troller u(t) = Y Z! x(t) 1f there exist a matrix Y € ™", ¢ = (gq,...,.£11) >
0 and a matrix 0 < Z = Z' € R™" solving the LMI

(51)

Z(Ao+Do)'+ (Ao +Do)Z ¢ t yt ¢ — |
oo By v - 7R @N4YL) 76l W EZY)
2.7 —I1 0 0 0 0 <0
(NZ+LY) 0 —el 0 0 0
0.z .0 0 —m® 0 0
gt .0 0 0 -—mI 0
2(Z,Y) 0o o0 0 0 —merl®?

whereZ{ = [T§, R} ], II. = diag[el, €40l], © = [D§, T§, G, T ], O'=
(ZN' + Y'LY, E(Z, Y) = [(ZN' + Y'LY), (ZA} + Y'B)], A = diag[e4],
(e31 — e4MMY], 1 = 1/7,, and @c = diag[(I(1 — e3) — esT4T},), &sl, (el —
e9gEg E} ), €9I] with the remaining terms as in (26).
Proof Followmg Theorem 2, we use V4(x, t) of (27) whose derivative
Ly(x, t) is given by (28) but will A(t) and (x, t) replacing A(t) and &(x, t),
respectively. Proceeding in line with (29) through (32), we get
La(x,0< x'(t) (PIA(t) + D(O)]+[A(1) + D()]'P) x(1)
+X {(t) (voy 'PD(t )D‘(t)P) x(t) +x'(t) (o3PG() G (P) x(t
o " x(1))glx()] +x'(t) (rol<1+o;>Gt<t)G< )) g)
+x (t) (vo1(1+ 03 HA (H)A(t)+ 101 (1+ 02) D (t+T)D(t + 1)) x(1)

By repeated applications of Lemma 1 to (53) and using (2), (3) and (44)
we obtain
Lq(x,t,) < x'(t) {P(Ao + Do + BoK + (Ao + Do + BoK)'P
+ P[04MMt + OsE4EY]P + [e305 'R} Rg + T4 Ty)
+0o, (N+LK) (N+LK)+rc01(l+0 Nog ! (N+LK) (N+LK)]
+7.07 'P[Do(I - 06T4Tyq) "' DY + o ‘EdE Lip
+ 03P[Go (1 — 07T‘ LTy)"'G! + 07 'ELEL]P
+t.0o1(l+0; )[(AO + BoK)'(I— GgMMt) 1(Ao + BoK)]
+7.01(1+ 0, 1)[Gt — 09EgEL) ' Go + %! 5 'TLT,)
+7.01(1+02)[D (I - GloEdE )-1Do + Olo It Td]}

(53)

(54)
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Using (35) and defining Z = P , Y=K P , then inequality (54) can be
rewritten as

Z(Ao+Do) '+ (Ag+Do) Z+QIQ 4B, Y+ Y'B! + O (e ') O+ ZEL IS 5. Z
AN 1ZOLO 10 Z + W1 4 1E(Z, Y)ATIEYZ,Y) <0 (55)

It is readily evident that (55) is equivalent to (52) as desired.

REMARK 7 It can be immediately seen that the largest upper bound

of t. = 1T, which ensures the robust stabilizability of system (1) can be

determined from the solution of the following generalized eigenvalue

problem in Y, W & = (g1,...,£11) and M = 1/,
Minimize

subjecttoY >0, W, e>0,m.>0 (56)

and using (52). The bound T =1/ Ne, where 1. is the solution of (56).

COROLLARY 8 Consider the nonlinear system (1) without uncertainties
and suppose that A4 holds. Given scalar t°, system (4) is robustly stabi-
lizable for any constant time-delay T € [0, t°] if there exist matrices
0<Z=27'€R™, Y €R™" and scalars B, > 0, y,> 0, 0 < u, < 1 solving
the LMI

[Z(Ao+Do)+(Ao+Do)Z

t t t t t
GG By - PRy ZIDLGY] D, ZAL+Y'B!
RyZ —(yol) 0 0 o |<0
Do (1-po)I 0
z 0 —n° 0 0
[Go] “{ 0 (uol)
t o
DY 0 el 0 sy
AoZ+B,Y 0 0 0 —n(uol) ]

where n° = 1/t°. Th e stabilizing control is given by u(t) = YZ'x(t).

REMARK 8 The developed conditions of Theorems 3 , 4 are only suffi-
cient since we are dealing with nonlinear dynamical systems. However in
the special case of corollary 9 with R, = 0 and by reversing the order of
proof of Theorem 4, it can be shown, following the results of [17], that
condition (57) is both necessary and sufficient.

REMARK 9 It is important to note that alll the LMI’s developed in this
paper can be effectively solved using the software LMI LAB [3] or LAAS
routines [9].
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6. EXAMPLE

As an application of the developed theory and associated computational
procedure, we consider an industrial jacketed continuous stirred tank reac-
tor (JCSTR) of 5000 gallons volume with a delayed recycle stream and in
which the reaction is a unimolecular and irreversible (exothermic). The
reactor accepts a feed of reactant which contains a substance A in intital
concentration Cp,,. The feed enters at a rate of F gallons per hour and at a
temperature T,. Perfect mixing is assumed and heat losses are neglected.
The tank is cooled by a flow of water around the jacket of the tank and the
water flow in the jacket Fy, is controled by actuating a valve . Suppose that
fresh feed of pure (C,) is to be mixed with a recycled stream of unreacted
(C,) with recycle flow rate (1-c) where 0 < ¢ < 1 is the coefficient of recir-
culation. The amount of delay in the recycle stream is d. The change in the
concentration arises from three terms: the amount of A that is added with
feed under recycling, the amount of A that leaves with the product flow,
and the amount of A that is used up in the reaction. The change in the tem-
perature of the fluid arises from four terms: a term for the heat that enters
with the feed flow under recycling, a term for the heat that leaves with the
product flow. term for the heat created by the reaction and a term for the
heat that is transferred to the cooling jacket. There are three term associ-
ated with the changes of the temperature of the fluid in the jacket: one term
representing the heat entering the jacket with the cooling fluid flow, one
term representing the heat leaving the jacket with the outflow of cooling
liquid, and one term representing the heat transferred from the fluid: the
reaction tank to the fluid in the jacket. Under the conditions of constant
holdup, constant densities and perfect mixing, the energy and material bal-
ances can be expressed mathematically as:

Ca(t)= (F/V)[cCao — cCa(t) + (1 — c)Ca(t — d)] — kyCae~*/T

= fc(CAaT)

T(t) = (F/V)[cTo—cT(t) + (1 — ¢)T(t— d)] — kiksCae /T

. _k4[T(t) _TJ(t)]: f1(Ca, T, Ty)

Ts(t) = (Fs/Vy)[Tyo — To(t)] = ks[T(t) — Ty (1)]

=fi(T,Ty) (58)

To cast this dynamic model into the form (1), we apply the following procedure:

1. Insert correct values for the constants

2. Choose proper initial values of the dynamic variables (Caq, To, Tyo, Fo)-
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3. Expand the right-hand side of the dynamical equations using a sec-
ond-order approximation of the form:

afc (CAa T)

ofc(Ca,T)
3C —_—
aCa At

fo(Ca, T)mfe(Ca, T)+ ot T
As

8T (59)
CarT

asz(CA7T)

02f, (CA I)
5C2+ —
BC% T A

2
sCaomy el D) fe(Ca, T)
et 9CA0T

8T?
Ca T

CaT

S ofr(Cy, T, T
fT(CA,T,TJ)% fT(CA,T,TJ) + —T(-aach)-
aft(CA,T, TJ) 6T+ 6t"l"(c"‘A;i“: TJ)
T leaid My ey
9*fr(Ca, T, Ty) 5C2 + ofr(Ca, T, Ty)
— 7 e m—
I lewt T
3*tp(Ca, T, Ty) 0*tr(Ca, T, Ty) SCAST
?T%_ _ CA,T,TJ aCAaT _ _CAvT,TJ
@(CAsT:TJ) SCAST + asz(CA7T’TJ)
IV ETONI P T JTyaT

0Ca
Ca Ty
Ty

dT? (60)
Ca,T,Ty

8T+

OT;0T
CA 7T’TJ

6fJ(T,TJ) 6T + 3fJ(T,TJ)
JoT 1y aT

62fJ(T,TJ) 5T2+ asz(T,TJ)
CICEEIS aTyoT

£5(T, Ty)= £3(T, Ty) +

oT;
5 _T7TJ
o“fy(T, T
syor+ 0T
T,TJ J

(61)

8T?
T»TJ

where (C,T j, T) represents the equilibrium state of the reactor.
4. Simplify the left-hand sides of the nonlinear differential equations (58) by
Ca ~ Ca+8Cs = 8Ca, TR T+8T = 8T, Ty ~ Ty +8T; = 8Ty
Since C =0, T =0, T, =0
5. Compute the equilibuirm state (Cp, Ty, T), the incremental changes
(0C,, OT, 8T)) and their derivatives are set to zero to insure that the

reactor system do not change at the operating point.
Using typical data values with standard units

K2 = 15098, k1 = 7.08 x 1010, k3 = 800, k4 = 2.4, F/V =0.83,
ks = 16.5, F;/Vy =13, Ca9 = 0.5, Tp = Tyo = 70,

the operating point is computed to be (Cp = 0.245, T = 601°, T; = 93.30°,
F, = 1240).
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The state variables are taken as the values of the concentration of sub-
stance A in the tank (C,), the temperature in the tank (T) and the tempera-
ture in the cooling jacket (T}) and the control variable is the volumetric
flow rate of water in the jacket (Fy), that is,

x1 = 0Cjp, x3 = 8T, x3 = 8Ty, u = dF;

In view of the above calculations and definitions, model (1) is obtained
with the following matrices

—-1.7 —0.0088 0 0
Ag=| 696 —-10358 24 |, Bo=| o0 |,

0 16.5 —-29.5 —0.16

—0.75 0 0 015 0 0

Do = 0 —0.39 0 , Go = 0 01 O
0 0 —0.04 0 0 0.05

The uncertainties within the JCSTR system arise from changes in model
parameters and effect of recycling and are represented by

~05 0 ‘
02 0 -02], _[01] ,_[0.5sin3t 0
M—[OOI _0623}’1\1‘[0 0.5 0.1]’1“[0.2}’1:‘[ 0 0.80033t]

—0.06
Eg=| 022 |,Fy=04sin5t, T,=[ 0.12 0.03 —0.2 ]
0.02

—0.14

Eq= { 0.08 |, F4=0.5cos6t, Tg=[ —0.03 —0.5 0.04]
—-0.6

Evaluation of (3) in the light of (59) to (61) shows that a good estimate of

€9, Rg would be g = 0.3 and R, = diag[0.6 0.4 0.2]

With focus on the issue of stability and using the soft ware LMI LAB for

Theorem 2, it has been foun that the JCSTR model (58) is robustly stable

for any constant delay d < 0.4537.

Next by considereing the feedback control synthesis, application of Theo-

rem 4 with the aid of the LMI LAB shows that the JCSTR system is

robustly stabilizable for any constant delay d < 0.3745. Moreove the corre-

sponding stabilizing control is given by

8Fy(t) = —12.8098 Ca +1.2388 T+ 1.7338 Ty



184 MAGDI S. MAHMOUD

which provides the expected extra amount of water flow into the jacket in
response to changes in the concentration of substance A in the tank (Cp),
the temperature in the tank (T) and the temperature in the cooling jacket
(Ty). We note that if the cooling water flows slowly the system heats up.
On the other hand if the cooling water flows too quickly, the reaction
slows down and poor product yield results.

CONCLUSIONS

Using a linear matrix inequality formulation, this paper has established
new results and provided insigh into the problems of robust stability analy-
sis and robust feedback synthesis for a class of nonlinear system with
norm-bounded and state-delay. Both the cases of delay-dependent and
delay-independent have been considered. It has been further established
that linear memoryless controllers are capable of guaranteeing tl
closed-loop system stabilizability. Simulation on a linearized model of an
industrial jacketed continuous stirred tank reactor with a delayed recycle
stream has illustrated the potential of our methodology.

APPENDIX (Proof of Lemma 1)

1. Consider the matrix function

P21 — pH()22]'[p ") — pH()Z] 2 0 (A1)
On expanding (Al), we get p 22,3} — SLH{(H)Z! — D HOI, +
p2Zy HY(t)H(t)3, = 0, and by rearranging the terms using H'(t) H(t) < I,
the desired form (7a) results.
2. Again, instead of (Al), consider the matrix function

2(t) = [p7 21— 35] 725,38 — [p 21 — 3] V2H (1)) (A2)

Expanding S'(t)3(t) = 0 using the fact that p?Z{ (1)Iy(t) < I implies
P° 3224 (1) <I we get
3L HU()Z + 2 H(4) 8, + S H(H) S ZHHY (1)
< B - S35 E + p 2R H(DH (1)
(Z3+ ZH(1)Z) (2 + TLH (D) — 2334
< LS - 5B ISR 4+ p P H(DH (Y)Y
(23 + 2 H(1)Z2) (25 + ZHHY(H)SY)
< SI+Ep - 5387 4+ p 2 H(HHY ()X

(A3)
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Since [1-p2Z4 3,17 = [T+ p?S4 [1-p?S )1 3] and HYt) H() < I
implies H(t)H'(t) < I, then (7 ?? follows directly by transposing (A3).
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