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This paper deals with the robustness of the class of uncertain linear systems with
Markovian jumping parameters (ULSMJP). The uncertainty is taken to be time-varying
norm bounded. Under the assumptions of the boundedness of the uncertainties and the
complete access to the system’s state and its modes, a sufficient condition for stochastic
stabilizability of this class of systems is established. An example is provided to
demonstrate the usefulness of the proposed theoretical results.
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1 INTRODUCTION

This paper deals with the class of systems with Markovian jumping
parameters. In the last two decades this class of systems has been
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extensively studied. Theoretical and practical achievements have been
reported in the literature. Without any intention of being exhaustive
here, we mention [2—4,7-11,15-18,24,26—29]. Other references dealing
with this class of systems can be found in the quoted references.

Most of the quoted references, except [5,6,12], have considered
certain systems with Markovian jumping parameters. Nowadays, it is
well known that these nominal systems may not describe the real
systems appropriately and the uncertainties have to be considered if at
least the robustness stability is required. The readers are referred to [14]
for the different possibilities to model uncertainties.

In [5,6], the uncertain linear and nonlinear piecewise deterministic
systems have been investigated. Under some matching conditions,
with a state feedback control law, sufficient conditions, which guarantee
the stochastic stabilizability robustness of this class of systems have
been established. In the work of De souza and Fragoso [12], the
disturbance rejection problem has been studied for finite and infinite
horizons.

For the deterministic class of linear systems, different approaches to
design robust linear controllers have been reported in the literature.
Most of these approaches are based on the Lyapunov equation or
Riccati equation (see [20,21]). These approaches which are proposed
for the design of robust controller for the deterministic class of systems,
however, cannot be applied to the class of systems under consideration
in this paper. The goal of this paper is to study the stabilizability
robustness of the class of uncertain linear systems with Markovian
jumping parameters. A feedback control which will assure a good
tracking of a given reference and attenuate the effect of the time-
varying norm bounded uncertainties is designed. Mainly, we establish a
sufficient condition which guarantees the stochastic stability robustness
of the class of systems with Markovian jumping parameters under
norm bounded uncertainties and we will give an iterative algorithm to
determine the parameters of the proposed controller. The paper is
organized as follows: in Section 2, we give a brief description of the
class of linear systems with Markovian jumping parameters (LSMIJP)
and recall the definition of the stochastic stabilizability of this class of
systems. In Section 3, we establish the sufficient condition for the
robust stabilizability of the linear systems with Markovian jumping
parameters under some time-varying norm bounded uncertainties.
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Section 4 presents a numerical example and the paper is concluded in
Section 5 with some final comments.

2 PROBLEM STATEMENT

Before presenting the class of linear systems with Markovian jumping
parameters let us consider some examples of this class of systems.
Consider an industrial application where we control a dc servomotor
driving a given mechanism. The objective is to assure the control of
the mechanism’s position (linear or angular). Let us assume that the
sense of rotation of the actuator is random, which corresponds to a
random position of the mechanism, and it is described by a stochastic
continuous Markov process with discrete finite state space (two states).
Consider also that the complete system (dc servomotor and the
mechanism) has two different models, one for each sense of rotation.
Let us also assume that in each sense of rotation the system can be
described by a linear model with some bounded uncertainties. The
problem now is how we can control the system to assure the required
performances and eventually assure the robustness of the stability of
the closed-loop.

As a second example, let us consider a dynamical system subject to
random failures and repairs, so that at each moment it can be in one of
the following states: good functioning, intermediate functioning, bad
Sfunctioning and failure for many reasons. The failure mode is not
interesting to us since the system cannot be operated. For the other
modes, the performances of the system will be different in each mode
and the ones obtained in the good functioning mode are certainly better
than the ones of the intermediate mode etc. The mode of the system will
evolve in a random way between these states. The question which arises
is what we can do to assure that the performances of the system will
remain the same or at least how we can assure the robustness of the
stability of the closed-loop.

These examples fit in the formalism of the class of systems with
Markovian jumping parameters which represents a rich class of
systems. Other examples of this class of systems can be found in
different areas such as manufacturing systems, economics, etc.; see, for
example [25].
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21 Linear Systems with Markovian Jumping Parameters

To describe the class of linear systems with Markovian jumping
parameters, let us fix a complete probability space (2, F, P). This class
of systems owns a hybrid state vector. The first component vector is
continuous, the second one is discrete and is always referred to as the
mode. Let x(7) € R™ be the continuous component state vector at
time ¢, u(f) € R™ be the control vector at time ¢, y(f) € R” be the system’s
controlled output, and {r(¢), 1 €[0, T']} be the homogeneous Markov
process with right continuous trajectories and taking values on the finite
set B=1{0,1,..., N}. We assume also that P,:= (P!, P2, ..., PV), with
Pl:=Prob(x(t) =i); i=1,2,..., N satisfies the forward Kolmogorov
equation, i.e.

dPt

— = AP <t<T, 1
dt ls O_I_ 9 ()
Py =P, (2)

where P is the initial vector probability of the process {r(¢),t€[0, T']}
and A:=[g;] is the stationary transition rate matrix of the process
{r(1),t€[0, T1} with ¢;>0, and g;;=—>";_1, j2; g; (see [13]).

The class of linear systems with Markovian jumping parameters is
described by the following dynamics:

X(1) = A(r(2))x(z) + B(r())u(), x(0) = xo, (3)
with controlled output

y(2) = C(r(1)x(2) + D(x(2))u(2), 4)

where for each r(¢) =i, A(i), B(i), C(i) and D(i) are constant matrices
with appropriate dimensions.

For the stability of this class of systems, there exist many definitions
in the literature (see [15,25] and references therein). In the rest of this
paper, we will use the following one.

Let x(7, Xo, i) represent the corresponding solution of system (3) at
time ¢ when the control u(-) =0 is used and the initial conditions are
respectively x¢ and 7.
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DEeFINITION 2.1 [17] For system (3)—(4), the equilibrium point 0 is
stochastically stable, if for every initial state (xo, ro) the following holds:

E{ /0 ” l1x(, o, x0)||*d2 |x0,r0} < 0. (5)

Let x(¢, Xo, i, u) represent the corresponding solution of system (3) at
time ¢ when the control u(-) is used and the initial conditions are respec-
tively xo and i.

DEFINITION 2.2 System (3)—(4) is said to be stochastically stabilizable
if, for all finite xo € R™ and i € B, there exists a state feedback control,
u(-), such that

T
},lm EII() {/ X’(ta Xo, i, u)x(ta Xo, is u) dt l X0, r(O) = l'()} S XZ)PXO’
—00 0
(6)
where P is a symmetric positive-definite matrix.

Remark 2.1 Notice that the upper bound in this definition depends
on the initial conditions of the system.

The following theorem was established by Ji and Chizeck [17]. It
states the necessary and sufficient conditions for stochastic stabili-
zability of this class of systems. For the proof, the reader is referred to
this reference.

THEOREM 2.1 [17] The system above is stochastically stabilizable if
and only if there exists a control law u(t) = —K(r(¢))x(¢) such that, for
any given positive-definite and symmetric matrix Q(i), the unique set of
solutions, P(i), of the N coupled equations

[A() — BOKQ)]'P() +P()AG) — BOKD] + Y ;P()

JjeB

= -Q(i), VieB, (7)

are positive-definite symmetric.

Proof See [17].
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In the standard formulation of the control problem, we often use a
nominal model of the system for the design procedure. But in real life,
the matrices A(7), B(i), C(i) and D(i) for each r(¢) = i with value in BB are
not precisely known for many reasons, well known by the control
community, and we always retrieve a discrepancy between the used
nominal model and the real process. These uncertainties, which can be
divided into two categories, i.e., matched and mismatched uncertain-
ties, can make the feedback controller inefficient and in worst case, the
real system can become unstable. In order to avoid these problems,
when designing the controller, we need to take into account the system’s
uncertainties. From the practical point of view, the purpose of each
used controller consists in assuring the asymptotic tracking and the
disturbance rejection. In the next section, we will propose a control law
which guarantees simultaneously the asymptotic tracking and the
disturbance rejection for the class of systems under study.

Remark 2.2 [17] The autonomous linear system with Markovian
jumping parameters is said to be stable if and only if for any given
positive-definite and symmetric matrix Q(i) the unique set of solu-
tions, P(7), of the N coupled equations:

A'()P(i) + P()AG) + D qiP(j) = -Q(i), VieB (8)
JjeB

are positive-definite and symmetric.

Remark 2.3 If for some mode i (for any i€ B) the jump rate g;; is 0,
the system will remain at this mode for ever. The mode is called
absorbing mode and the robustness condition is similar to the one used
in the deterministic case.

In this paper, the adopted Euclidean norm of vector x, denoted by
x|l is [Ix[| = (32 + x3 + - - - + x2)/? where x;, for i=1,...,n, denotes
the ith element of the vector x. The induced Euclidean norm of matrix
[M]| is given by |[M|| = [Amax(M M)]"/?, where M’ denotes the trans-
pose of matrix M and Ani,(M) and A,.x(M) denote respectively the
minimum eigenvalue and the maximum eigenvalue of matrix (M).

In the remainder of this paper, we assume that the system has the
same dimension at each mode, and that the mode r(f) and the
continuous state x(7) are available for controller at each time ¢.
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2.2 Tracking Control Law

In this subsection, we describe the control law which will be used in the
rest of this paper to assure asymptotic tracking and disturbance
rejection. The control law, we use here, is based on a given dynamics
that we have to follow precisely. The control law requires the choice of
four parameters A,(i), B,(i), K (i) and Ky(i), for all i € B. This robust
control law is described by the following dynamics:

%, (1) = Ar(r(2))x,(2) + B, (x(2))y(2), )
u(?) = Ko (r(1))x(2) + Ki (r(1))x,(2), (10)

where x,(7) € R™; A(x(?)), B,(r(?)), Ki(r(¢)) and K,(x(¢)) are constant
matrices with appropriate dimensions for each value of r(f). Their
values are chosen to assure the required performances. Note that the
eigenvalue assignment design technique can be used to determine these
matrices for each value of r(¢) € B.

Equation (9) describes the dynamics that we have to track and
Eq. (10) is the expression of the control law. It is assumed in the rest of
this paper that the system is stochastically controllable and observable.

3 ROBUST STABILIZABILITY OF ULSMJP

The aim of this section is to establish, under some appropriate assump-
tions on the system’s uncertainties, the sufficient condition which
guarantees the stochastic stabilizability of the class of ULSMIJP.

Let us consider the following uncertain dynamical systems:

x(1) = A(r(0)x(2) + B(r(1))u(?)

+ AA(r(2), )x(2) + AB(x(2), )u(?), (11)
y(#) = C(r(0))x(¢) + D(r(2))u(r) + AC(r (1), £)x(2)

+ AD(x(1), )u(?), (12)
x(0) = xo,

where the matrices AA(-), AB(-), AC(-) and AD(-) are real-valued
functions representing time-varying norm bounded uncertainties. Note
that, when the Markov process is at time ¢ at state i, these matrices are
time-varying with bounded entries.
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For each mode i € B, the admissible uncertainties in Eqgs. (11)—(12)
are assumed to be of the following forms:

AA(L 1) = H ()F (i, )E (i), (13)
AB(i, t) = Hi ()F (i, ) Ex (i), (14)
AC(i, t) = Ha(D)F (i, 1)E (i), (15)
AD(i, t) = Hy()F(i,1) Ez (i), (16)

where H;(i), Hy(i), E;(i) and E,(i) are known constant matrices of
appropriate dimensions and F(i,f) is an unknown matrix function
satisfying the following condition:

F'(i,)F(,0) <L, VieB, t>0, (17)

with I the matrix identity of appropriate dimension and F(i, ) being
Lebesgue measurable.

Remark 3.1 The parameter uncertainty structure as in (13)—(16),
when r,=i, i€ B, has been widely used in the problems of robust
control and robust filtering of uncertain systems (see, e.g. [22,23] and
the references therein) and many practical systems possess parameter
uncertainties which can be either exactly modeled, or overbounded
by (17). Observe that the unknown matrix F(i, #) in (13)—(16) can even
be allowed to be state-dependent, i.e. F(i, 1) =F(i, x, t) as long as (17)
is satisfied.

Combining the controller dynamics and the system dynamics, we
obtain the following closed-loop systems dynamics:

o

()
[ A(r (1)) + B(r(1))Ka(x(1)) B(r(£)K (r(1)) ] [X(t)]
B, (r(1))C(x(1)) + By (r(1))D(r(1))K2(r(r))  Ar(r(1)) + B, (e(1))D(x(0)Ki (r(1)) | Lx,(2)
N AA(x(1), 1) + AB(x(1), 1)K (r(2)) AB(r(1), K, (x(2)) ] [x(r)]
B, (r(1))[AC(x(2), £) + AD(x(¢), )Ka(x(2))] B, (xr(1))AD(x(¢), K, (r(2)) ] Lx,(0) ]

1) =[C(x(£)) + D(x(1))Ka(x(2)) D(x(2))K;(x(£))] [x(f) }

x,(?)

+ [AC(r(2), 1) + AD(x(2), 1)Ko (r(1)) AD(r(2), 1)K (x(1))] [ :

o)

¥
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Using the form of uncertainties given by Egs. (13)—(16), we obtain
the following dynamics:

(1) = [A(r(2)) + H(r(2))F (x (1), ) E(r(2))]%, (18)
y(2) = [C(x(2)) + Hy(r(2))F(x(2),0)E(r(2)) X, (19)
where
=30
A(r(1)) =
[ A(r(2)) + B(r(2))Ka(r () B(r(¢))K (x(2))
B, (r(1))C(x(1)) + B,(r(1))D(x(2))Ka(x(2))  A,(r()) + B, (r(£))D(r(2))K; (r(2)) |°

T ()

H(x() = [Br(r(z))nz(ra»]’

E(r(1)) = [E1(¢(0)) + E2(F())Ka(e(1)  Ea(r()K1 ((0)].
C(r (1)) = [(Cr(t)) + D) Ka(e(1))  DE(e))K (1))

Before establishing the sufficient condition which guarantees the
stochastic stabilizability robustness of ULSMJP, let us introduce the
following proposition which will be used in the proof of the result of
this section.

ProrosITION 3.1 [23] Given any constant p >0 and matrices H,E,F
with compatible dimensions such that ¥'F <1, then for any x

2(x'PHFEXx) < p(x'PHH'Px) +£(x'E’Ex). (20)

THEOREM 3.1 The system (11)—(12) is robust stochastically stabilizable
for all admissible uncertainties if there exists a control law given by
Egs. (9)—(10), such that for a given selection of scalars p(i)>0, i€ B,
the following set of N coupled algebraic Riccati equations:

A'(D)P()) + P()A() + p())P())H()H' (i) P (i)

+ 30 0P0) + BB + Q) =0 1)

JjeB
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has symmetric positive-definite solution, P(i) for any given symmetric
positive-definite matrix Q(i).

Proof Suppose that the condition (21) is satisfied and let the candi-
date stochastic Lyapunov function v(i, X) be defined by:

v(i,X) = X'P(i)X. (22)

Consider now the weak infinitesimal operator A of the process
{(x(2),x(1)), t € [0, T]}, which is the natural stochastic analog of the
deterministic derivative (see [19]). This weak infinitesimal operator A
is defined by

AV(LTK)=;iirg)%[E{V(r(Hh),i(Hh))l X(2), x(1) =i} —v(x(2) =1, X(2))]
which is given by

Av(i, %) =X'[A'()P(i) + P()A(i) + 2P()H()F (i, )E() + > _ g;P())IX.

JjeB
(23)
In order to obtain the required upper bound for Av(i, X), we will use
the inequality of Proposition 3.1. By applying inequality (20) to various
terms in the expression (23), we have

2[XP()H()F(i, )E(1)X] < p(i)X'P())E()H (i )P(i)i+$i’E’(i)E(i)i.

Given any admissible uncertainties and using the condition (21), then
the expression (23) becomes

Av(i,x) < X[A/()P(D) + P( '>A< i)+ p(i)P(EL)H ()P ()
+5aiP( +—E’< )E(i)]x

JjeB
—-xX'Q(i)x.
Dividing both sides by v(i, X), for X # 0, we obtain
Av(i, X) - Q( )X
v(i, X) "P(i ))T(
(
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If we define a real number « as

_ )\min (Q(l))
“= mm{&mAPUD}

which is positive, then we obtain

Av(i, x) < —av(i, X).

Using now Dynkin’s formula and Gronwall-Bellman lemma and the
proof used by Ji and Chizeck [17], we obtain

T
lim E{/ %' (1)%(t) dt| Xg,ro} < x|, Pxo,
0

T—o00

where

P4
P =max—— -,
s ol P

which proves the sufficient condition.
For the output, based on Eq. (19), we get

Iy (D1 = (1) (C(x()) + Ha(r (1) F(x(2), NE(x())) (C(r(1))
+ Hy(x(0))F (r (1), )E(x(2)))x(2)
=X'(1)(C'(x(1))C(x()) + 2C'(r(1)) Ha (x(1))F (x(1), ) E(r(1))
+ (Ha(r(1))F(r(2), )E(x(1)))’ (H2(x(2))F (x(2), ) E(r(2)))x(2).

By Proposition 3.1, we can get
2x'C (r(1) Ha(r(1) F(e (1), 1)E(x(1))
< X'C'(r(2))Hz () Hy (r(1)C(r(1))x + X'E'(r(0) E(r(1))x
< (ICEE)IPIH @)1 + [EE)IP)Ix]?
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and
X' (Ha(r(2))F(x (1), E(r (1)) (Ha(r(r))F (x(2), ) E(r(r)))x
< [ (x(0) |2 (e(0) |21
Then Eq. (24) can be rewritten as

Iy < (ICHI + IEGI?)(1 + [H2)[1P) x|

< BlIx*
with
8 =max{(ICH) I + [EQ M) (1 + [Hx() ) }.
Then
T T
lim E{ | v@rar) yo,r<0>} < 8 Jim { JAECIRY xo,r<0>}

< lyoll’,

where ¢ is a positive constant.

Remark 3.2 The special case where A,(i)=B,(i)=K;({)=0 for all
i € B, was considered by Boukas [5]. It represents the robust state feed-
back control under matching conditions. Under additional assump-
tions Boukas [5] proposes a procedure for the design of the robust
controller which assures the robust stabilizability of the system under
study.

Remark 3.3 The solution of the coupled Riccati equations type is
given by algorithm of Abou-Kandil ez al. [1]. The choice of the
parameters p(i),i=1,..., N is discussed in [22].

Based on the previous theorem, we can propose a design procedure
for the robust controller. For instance, a way to design the robust
controller can be obtained by following the procedure where the steps
are as follows.

Step 1: Choose A(i) such that the nominal system (18) is stochasti-
cally stable. In order, we propose the following method.
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Choose adequately the desired n eigenvalues A, k = 1,2,...,n for
each mode i, i=1,2,...,N to get the desired specifications; and
construct A(i) by using

A(i) == T ! (i)diag [\},---, AJT(i)
Ai(i) Ax(d)
As() Aq()) |

where T(i) is any adequately invertible chosen matrix and diag() is a
diagonal matrix.

Step 2: Given a positive-definite and symmetric matrix Q(7), initia-
lize p(i), i=1,2,...,N, to some starting value; e.g. set p(i)=1,
i=1,2,...,N. Determine the symmetric positive-definite matrix P(i),
i=1, 2,...,N by using the condition (21) and the algorithm [1]. If
the solution is not positive-definite symmetric, then replace
p(i) = p(i)/2 and repeat step 2.

Step 3: Determine the matrices A,(i), B.(7), K (i) and K,(7) by using
the matrix A(i) such that

K, (i) = BT ()Ay(i),

2(i) = B* (i) (A1(3) — A(3),
B, (i) = A3(i)(C(i) + D()Ka(i)) ",
A, (i) = A4(i) — B.()D(D)K; (i),

where M denotes the pseudo-inverse of matrix M.
Step 4. Obtain the robust controller from Egs. (9)—(10).

=

4 ILLUSTRATIVE EXAMPLE

Let us assume in this example a system with three modes, i.e. B={1, 2,
3} and the transition rate matrix A between these modes is given by

-3 05 25
A={(1 -2 1.
1.7 03 -2

The dynamics of the system in each mode is assumed to be described
by the following differential equations:
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mode 1
25 03 087 [xi()] [0707 0 07 [w(d)
(=] 1 =3 02||lx@|+| 0 1 o |w@
0 05 —2]|x(0) 0 0 1] |uso)
[0.12sin(dmt)  0.15(sin(4mt) + cos(int)) 0 x1(2)
+ 0 0.125 cos(§mt) 0.075sin(Ars) | | x2(2)
| 0.12sin(4mr) 0.15sin(4nt) 0.075sin(irs) | | x3(2)
[ 0.09sin(3rr)  0.15cos(3rr)  0.12sin(inr) | [ui(2)
+ 1 0.105sin(rt)  0.125cos(dnt)  0.105sin(ime) | | ua(2) |,
| 0.195sin(4r) 0 0.225sin(3re) | [ us()
1 0 0 )C](l)
y&)=10 1 0| | x(2)(;
00 1] |x0)
mode 2
=2.5 1.2 03] [xi1(2) 0.707 0 0 ui (1)
X(l): -05 5 -1 X2(t) + 0 1 0 uz(l)
025 12 5 || x0) 0 0 0707w
i 0 O.ISSin(im‘) 0.1355in(%7rt)
+ 10.09 cos(dmz) +0.0625 sin(%mt) 0.15cos(irr) 0.0625 sin(3mr)
0.075 sin(7) 0 0.075 sin(47)
31 (1)] [0.075sin(irr)  0.105sin(! ) 0 wi (1)
x | x2(1) |+] 0.135cos(3me)  0.135sin(37t)  0.075sin(3me) | | ua(2) |,
[ x3(7) 0 0.15sin(4wr)  0.09sin(3me) | | us(z)
10 07 [x(r)
yO) =10 1 0} |x() 3
0 0 1] |xs0)
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mode 3
2 15 —047 [x(0) 0.707 0 07 [u(t)
x(f)=(22 3 07 x()[+] 0 1 Of[u()
11 09 -2 ||x00) 0 0 1] |w@
[ 0.125sin(3nt)  0.1sin(}mr) 0.125 sin(4nr) x1(2)

+ [0.0875 cos(imrr) 0.1 cos(dnt) 0.075 cos(}mr) x2(2)
10.0875 cos(4mr) 0.1cos(4mr) 0.075cos(ymt) + 0.15sin(§ ) | | x3(f)
[0.125 sin({m) 0.125 sin(4r7) 0.1625 sin(4m?)

+ | 0.075 cos(dmr) 0.0625 cos (L) 0.0875 cos (L)
| 0.075cos(3ms)  0.0625 cos(ims) + 0.15sin(4ms)  0.0875 cos(dmr) + 0.125 sin ()
[ (1)

x | u(t) |,

L u3(2)

1 0 0] [xi(r)
y() = [0 1 0] [xz(t)].
0 0 1 x;(t)

We assume also that the initial conditions at time =0 are given by
x(0) =000,  x(0)=[000, Po=[f}4]"

In this example, the norm bounded uncertainty form is used, that is,
for each mode i € S, these uncertainties are given by

sin(mr) 0 0
F(1,¢) =F(2,¢) =F(3,1) = 0 cos(4mt) 0
0 0 sin(m7)

which satisfy the inequality F(i, 1)'F(i, /) <I, Vt>0,i=1,2,3.
Let us also assume that the required matrices H; (i), E(i) and E,(i),
i € B, are given as follows:

mode 1

03 03 0 04 05 0 03 0 04
H()=|0 025 03|, E(I)=]|0 05 0 |, Ex()=]| 0 05 0 |;

03 0 03 0 0 025 035 0 035
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mode 2
03 0 0 0 0.5 045 025 035 0
Hi2)=|0 03 025|,E;(2=|03 025 0 |, E(2)=[045 0 0 |;
0 0 03 0.25 0 025 0 05 03
mode 3
0.25 0 0.25 0.5 0 0 0.5 0 025
HG3)=| 0 025 0 |, E3)=[035 04 03], E;3)= |03 025 035].
0 025 03 0 04 05 0 05 04

Based on the proposed algorithm if we choose the same eigenvalues
for the three modes and the matrices T(1) =T(2) =T(3) =T with the
numerical values

—18.75, —8.25, —13.6, —10.5, —12.45, —9.65 eigenvalues
0.0457  0.4023 —0.1372 —-0.5602 0.2583 —0.0265
—-0.7501 0.4814 —0.7165 0.4495 —0.4371 0.1074
—0.5860 —0.3267 0.5407 0.4965  0.1708 —0.5800
T1 02930 04092 02145 02616 02265 0.6445 |’
—0.0328 —0.1719 —-0.2388 —0.3489 0.5324 —0.2399
0.0703  0.5502  0.2693  0.2180 —0.6151 —0.4225

we obtain the following expression for A(i), i= 1,2:
A(l)=A(2) =

[—8.6949  0.1744 0.6304 —0.0723  —1.8088  0.0356 T
—4.1814 —-15.2306 —1.9633 4.8802 5.2402 6.0079
—9.7455 —1.8326 —16.0953  1.8841 10.4481 5.9355
5.3195 1.1901 24710  —11.5805 —6.1133 —-2.8973
—0.3145 —-04335 -0.4160 —1.1461 -11.9730 0.0513
L 1.0874 0.7281 0.9453 1.6556 23253  —9.6257 |

which gives in turn the following matrices for the required controller:

—11.5805 —6.1133 —-2.8973
A())=| —1.1461 —-11.9730 0.0513 |, i=1,2,3;
1.6556 2.3253  —9.6257
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53195  1.1901  2.4710
B.(i) = | —0.3145 —0.4335 —0.4160 |,
1.0874  0.7281  0.9453
([—0.1023 —2.5584 0.0504]
48802 52402 6.0079
| 1.8841  10.4481 5.9355 |
[—0.1023 —2.5584 0.0504]
Ki(i)) =< | 48802 52402 6.0079
| 26649 147781 8.3953 |
(01023 —2.5584 0.0504
48802 52402  6.0079
| 1.8841  10.4481 5.9355
([-8.7622 —0.1777  —0.2399
~5.1814 —12.2306 —2.1633
| —9.7455  —2.3326 —14.0953
[ —8.7622 —1.4506  0.4673 ]
Ky(i)) = { | —3.6814 —20.2306 —0.9633
| 141379 —4.2894 —29.8378 |
[—15.1272  —1.8750  1.4574 ]
~6.3814 —18.2306 —2.6633
| —10.8455 —2.7326 —14.0953 |

285

i=1,2,3;

if the mode is 1,

if the mode is 2,

if the mode is 3;

if the mode is 1,

if the mode is 2,

if the mode is 3.

The required robustness conditions for stochastic stability (21) are
verified for p(i)=1, Qi) =1 for all i=1, 2, 3 and the simulation results
(Fig. 1) show the robust controller trajectories for ULSMJP. We have
used Matlab on PC to do the simulation.

5 CONCLUSION

In this paper, we have dealt with the uncertain class of linear systems
with Markovian jumping parameters. Under the assumptions of the
controllability of the system, the observability of the continuous state
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x(#) and the mode i and the norm bounded uncertainties, a robust
controller design approach in the time domain has been presented for
this class of systems. Sufficient condition guaranteeing the stability
robustness has been established which is in terms of a set of coupled

Evolution mode, states and controls trajectories versus times.

Ricatti equations.
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