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General nonlinear control systems described by ordinary differential equations with a
prescribed sliding manifold are considered. A method of designing a feedback control
law such that the state variable fulfills the sliding condition in finite time is based on
the construction of a suitable simplex of vectors in the tangent space of the manifold.
The convergence of the method is proved under an obtuse angle condition and a way
to build the required simplex is indicated. An example of engineering interest is
presented.
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1. INTRODUCTION

We consider general nonlinear control systems described by ordinary
differential equations, with a fixed sliding manifold which has been
designed in order to fulfill given control aims. An effective way to con-
trol such systems is the method based on variable structure techniques.
We refer the reader to [1] for a survey.
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The standard approach to drive and maintain the system state vector
on the sliding manifold requires designing a feedback control law
which is obtained componentwise, i.e. if

are the equations representing the sliding manifold, the design of a
pair of control laws is required for each i=1,..., M.

The simplex control method was firstly introduced in [2] for control
systems with control variable appearing affinely in the dynamics. The
approach is simpler than the standard one since the required number
of control variables is decreased to M + 1. Applications of the simplex
control method to particular control systems has been reported in [3,4]
showing interesting properties of robustness, simplicity and good
performance even under deterministic uncertainty acting on the plant.
Therefore it is of interest to extend the applicability of the methods to
more general classes of systems than those originally considered in [2].

In this paper we generalize the method to nonlinear control systems
with available states and known dynamics. Under an obtuse angle con-
dition on the simplex vectors we prove the convergence of the method
in finite time. The proof requires to verify some geometric properties
of the simplex vectors, and a detailed analysis of the dynamic behavior
of the system under the discontinuous feedback provided by the sim-
plex algorithm we consider.

An outline of the paper follows. In Section 2 the control problem
is described. In Section 3 we list the assumptions under which the
simplex method will be shown to converge in finite time. In Section 4
we describe the choice of the feedback control law. Moreover the
geometrical meaning of the main convergence condition is explained.
Several elementary properties of a simplex of vectors (used in the
method) are collected in Section 5. Section 6 is devoted to the
convergence proof. In Section 7 we present three examples of control
systems which can be handled by the simplex method. Computer
simulations are included. The last example describes a real control
system of engineering interest which is operated by using this method.
In Section 8 we indicate an explicit construction of a fixed simplex as
required by our convergence theorem.
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2. PROBLEM STATEMENT

We consider the control system described by the state equations

x=ft,x,u), t>0, (1)
the control constraint
ueU, )
the sliding manifold
s(x) =0. (3)

Here the state variable x € RV and the control constraint U C RX.
The sliding manifold is defined by the mapping s:R"Y — RM and is fixed
in order to fulfill prescribed control objectives.

We assume that the dynamics given by

f:10,400) x 2 x U— RV,

where Q is an open bounded set, are completely known, moreover
every state variable x=x(¢), ¢t > 0, is available to the controller. A
known constant L > 0 is fixed such that Q contains the ball in R" of
center 0 and radius L. We want to control the state variables x = x(t)
of the system which fulfill the condition

x(1)| <L, t>0 4)

in order to verify the sliding property
s[x()] =0 (5)

for every ¢ sufficiently large. Condition (4) is reasonable on physical
grounds; we want to control those states which are contained in a
(sufficiently large) fixed ball.

Remark We shall employ in this paper the notion of Filippov’s
solutions x of (1) corresponding to discontinuous feedbacks u (see [5]
and [6]). According to this definition, every system’s state x fulfills
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almost everywhere the condition
x(t) € clecof(t, x(¢), U),

where clco denotes closed convex hull. For general nonlinear dy-
namics (1), the sliding motion equation is not unique and the choice of
a suitable feedback control which guarantees (5) is not obvious, see [1,
Chapter 3]. Methods which select the appropriate control law are
therefore of interest in this context.

3. ASSUMPTIONS

We employ standard notations. A prime denotes transpose and |- | is
the Euclidean norm. The following conditions will be assumed through-
out the paper.

N > M, se C'(RY, R™) and the Jacobian matrix

Os
Ox

U is a nonempty closed set in RX; fis a Carathéodory mapping such
that there exists 4 > 0 with

(x) has maximum rank M for almost every x. 6)

flt,x,u))] <A ift>0, xeQ, uel. (7)
The key assumption is the following.
There exist constants a >0 and ¢ # 0, and for every ¢ > 0, x € 2 with
|x| < L and s(x) # 0 there exist points

Ui (l, x), cees Up (I, x)

in U such that each u; is a Carathéodory function and, writing

gi=gi(t,x) = %(x)f[t,x, uw(t,x)], i=1,....,M+1,
we have 0 < a <|g,| for every i and

gign < —c*lgillgal if i # h. (8)
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By the following Lemma 6 in Section 5 it will follow from (8) that for
every g € RM there exists a proper subset 7 of {1,..., M+ 1} such that

q € cone(g;: i €1). 9)
In (9) we denote by cone(g;: i € I') the set of all points

Z{Oéjgi! i€ 1} with o; >0, i€l

4. THE SIMPLEX CONTROL ALGORITHM

By (9), for every ¢ > 0 and x fulfilling (4) with s(x) # 0 there exist
coefficients a;=q,(t,x) > 0,i=1,..., M+ 1, such that

M+1

s(x) = Z igi(t, x) (10)
=1

and some oy, =0.
Let A= h(t, x) denote the smallest index k between 1 and M + 1 such
that

s(x) =Y fougi(t,x): i=1,....M+1,i#k}.
Then define

u (8, x) = uy(t, x). (11)

The feedback control law defined by (11) will be referred to as the
simplex control algorithm for the control system (1)—(3).

The basic condition (8) means the following. For every point (¢, x)
we can choose control laws u; = uft, x), i=1,..., M+ 1 such that the
corresponding vectors g;= gi(t, x) define a simplex in R" whose edges
form uniformly obtuse angles. More precisely, the scalar products of
the normalized edges are bounded from above by a fixed negative
constant, as required in (8). It follows that the space R is partitioned
in M+ 1 cones

0y = {Zaig;:aizo,i= 1,...,M+1,i7éh}, h=1,... M+1,
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with pairwise disjoint interiors. Given x € R", the vector s(x) will
belong to some well-defined Q, (with the smallest index /). Then g
corresponds to u;, and points outside Q. The choice of the simplex
control u*(¢,x) is then exactly u(z, x). It is reasonable, on intuitive
grounds, to guess that the simplex control algorithm fulfills the sliding
condition (5). The main mathematical problem is to prove this basic
convergence property.

5. GEOMETRY OF THE SIMPLEX

In this section we collect some lemmas which will be used in the proof
of the main result of the paper. These lemmas, of elementary character,
provide a number of geometrical properties of the simplex obtained by
considering the vectors g; as in condition (8).

In this section g; denote fixed vectors of RM.

LEMMA 1 Letg,...,gn41 be such that
ggn <0 ifih, (12)

and g1, ...,gn are linearly independent. If gni1 = Zfilyigi with real
coefficients y;, then y; <0 for all i.

Proof By (12) we see that

gvng =yile1]’ +y2gig + -+ yngien <0,
g’N+,g2 = ylgﬂgz +y2|g2|2 + .- +yNg'2gN <0,

gN418N = V1818N + Vaghen + - +yN|gN|2 <0.

This gives the system of linear inequalities
N
> auye <0, i=1,...,N, (13)
k=1

where the coefficients a; <0 if i#k, a;>0 and the Gram matrix
A=(a;) is symmetric and positive definite by linear independence.
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Solving (13) by Gaussian elimination, the inequalities are preserved at
each step and we get Dyyy/Dy_1 <0, where Dy, Dy_; are principal
minors of A4 (see [7, pp. 238-239]), hence Dy >0, Dy_; >0 whence
yn <0, and recursively y; <0 for all . O

LEMMA 2 Let gi,...,8n>8n+1,EN+2 be such that gig, < 0 if i # h and
g1,---,8n are linearly independent. Then gy, ...,gn,8gn+1 are linearly
independent as well.

Proof The equality gyy = Zfi  yigi for some real coefficients y;
implies by Lemma 1 that y; <0, contradicting gy, ;gn+2 < 0. O

LeEMMA 3 Ifgy,...,gxfulfill(12) then K< M + 1.

Proof Let N be the maximum number of linearly independent g;
N<Kand N<M. If K>M+1, by Lemma 2 we get the linear inde-
pendence of gy, .. ., gn1 contradicting the definition of N. d

LEMMA 4 Let gy,...,8n41 fulfill (12). Then g,,...,ga are linearly
independent.

Proof Let N be the maximum number of linearly independent g;.
If N< M, by considering g1, ...,8n,&n+1,&N+2 WE get a contradiction
by Lemma 2. O

LEMMA 5 Let gy,...,8um+1 fulfill (12). Then there exist coefficients
a; > 0 such that

M+1

Z aigi = 0.
i=1

This obvious consequence of Lemmas 1 and 4 justifies the name of the
simplex method.

LEMMA 6 Letgy,...,gan+1 fulfill (12). Consider
C; = cone(gy: k # i).

Then

JtCiri=1,... ., M+ 1} = RM.
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Proof By Lemmas 1 and 4, gy, ..., g are linearly independent and
M
EM+1 = Z U8k
k=1

where each a;<0. Fix any ye€ R™. Then y = Zf‘il hig; (again by
Lemma 4) with suitable coefficients 4;. Let

hp/a, = max{h;/a;:i=1,...,M}.

If h,/a, <0, then each h; > 0 hence y € Cpsy. If h,/a, > 0 then we have

hl hp hM hp hp
y=a <a1 ap)gl 4+ 4 aM(aM a g+ ang“’

moreover a;(h;/a; — hy/a,) > 0 for every i, hence y € C,. O

As claimed before (end of Section 3), Lemma 6 shows that (9)
follows from (8). The proof of Lemma 6 can be used to build an
algorithm which locates a cone C, to which any given point in RM
belongs. This is of significance in order to implement the simplex
control algorithm, which according to (10) requires knowing a cone to
which s(x) belongs.

6. CONVERGENCE OF THE SIMPLEX CONTROL ALGORITHM

This section is devoted to the proof of the convergence theorem. Given
u* defined by (1), a vector x=x(¢) € R" will be called a state cor-
responding to #* if x is a Filippov solution to (1) in [0, +00) with
u=u". For the notion of Filippov solution to (1) (a standard one in
variable structure control theory, see [1]) we refer to [5] and [6].

THEOREM 1 Suppose that the assumptions (6)—(8) hold. Then every
state x corresponding to u*and fulfilling (4) verifies the sliding condition
(5) for every t sufficiently large.

In the proof we shall need the following

LEMMA 7 The mapping (t,x)—f[t,x,u"(t,x)] is (Lebesgue)
measurable.
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Proof Step 1. Given t > 0 and x with |x| <L we can choose the
coefficients a;(z, x) in (10) in a measurable way.

Consider the multifunction I" defined by

M+1
I(t,x)={we RM+1. Z wigi(t, x) = s(x), w; > 0 for every i}.
=1

By (9), I'(1, x) is nonempty for every (¢, x). The R™-valued function

M+1

G(t,x,w) Zw,g,tx—s(x)

is measurable by the assumptions, hence Step 1 is proved by an
application of the implicit measurable function theorem ([8, Theorem
2], p. 178)).

Step 2: u* defined by (11) is measurable.

Let A(t,x)=min{ie {l,...,M+1}: a(t,x)=0} (where «; are as
in (10)), which is well defined by Lemma 6. We show measurability of 4
by proving measurability of

H(a) = {(t,x) € R"': 1> 0,x € Q,h(1,x) < a},

for every a € R. If H(a) is nonempty then
= U{(t,x) € RV 1> 0,x € Q,05(t,x) = 0 for some j < a}

a finite union of measurable sets by Step 1. To prove Step 2 we
consider

Ai={(t,y) e R"':t>0,y e Lh(t,y) =i}, i=1,...,M+1.

Each 4, is measurable, and we have

M+l

w'(6,x) =Y ui(t,x) char(4;,1,x),

i=1
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where char (4,t,x) denotes the value at #,x of the characteristic
function of the set A (which takes on the value 1 at the points of 4,0
elsewhere). Hence u* is measurable, whence (¢,x)— f[t, x,u*(z, x)]
is since f is Carathéodory ([8, Corollary 2B, p. 174]). The proof of
Lemma 7 is now complete. O

Proof of Theorem I Let x = x(¢) be a Filippov solution in [0, +00) of
(1) corresponding to u*. Write

[t x) = f[t, x,u" (1, x)).

By Lemma 7 and Eq. (7) we can apply a characterization of the
Filippov solutions ([5, p. 202]).

Write co for the convex hull, cl for the closure and B(x,r) for the
open ball of center x and radius 7 in R".

We get

X(1) € cleof* (8 B(x(1),1/p)\T) (14)
for every p=1,2,..., almost every ¢ > 0 and any subset T of R" of

N-dimensional Lebesgue measure 0. Now fix ¢ such that there exists
x(2), s[x(?)] # 0 and (14) holds. Write for short notation

s=s[x(0)], $=35[x(0)], & = g&lt, x(1)].
Given T, by (14) for every p there exists a point
¥p € cof"(t, B(x(1), 1/p)\T)

such that |y, — x(#)] < 1/p. By the Carathéodory convexity theorem
(I9, Theorem 17.1, p. 155]) for every p we can find numbers \;, > 0,
Jj=1,...,N+1, which sum up to 1, and points z;,¢ T such that

|zjp — x(O)] < 1/p, (15)

N+1
Vo= Ap f*(t.zp) = %(1) as p — +oo. (16)
j=1
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Now only two possibilities arise. Let us write int for the interior and
bdry for the boundary. Recall the definition of 4 (before (11)).

Case I: seint cone (g;: i # h).
Case 2: s €bdry cone (g;:i # h).

Suppose that Case 1 occurs. Since x is differentiable at ¢ and s is
smooth,

ss=s gj—c [x(2)]x(¢)

is the limit (by (16) and (10)) as p — 400 of

, 85 N+1 .
S o o2 (0] D NS (1 2p): (17
i#h Jj=1

For every j and every sufficiently large p, (15) yields
5(zjp) € int cone(g;: i # h).
By the assumptions, g(t, - ) is continuous, hence
5(zjp) € int cone(gi(t,zj): i # h)
whence
u* (1, zjp) = un(1, Zjp)- (18)
Then (17) and (18) show that s's is the limit as p — +oo of

N+1

S il o 0] Y N T s (1) (19)
ih =1

Passing to a subsequence we can assume that
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Then the corresponding subsequence of (19) converges towards
, Os
> gy (LS (8, x(2), unt, x(1))
< X
i#h
due to the continuity of u,(¢,-) and f{¢, -, -). Summarizing,

ss/lsl = (1/1s]) D cuglgn- (21

i#h
Suppose that Case 2 occurs. Write

I={1,...,M+1}\{h}.

Then s belongs to some face of cone(g;: i # h). Then there exists a set
J C I'such that

s € bdry cone(g;: i € J).
Write
C=cone(gi:i#h), T=s"'(bdryC).

We shall need the following.
LEMMA 8 The N-dimensional Lebesgue measure of T is 0.

Taking Lemma 8 for granted, it follows by (14) that there exist
points z;, fulfilling (15) such that

s(zjp) ¢ bdry C  for every j and p,

moreover there exist numbers ), fulfilling (16). Now we have only
three possibilities.

Subcase 1: For some subsequence, s(z;,) € int C.

As before, for every jand p

u'(t, zjp) = un(t, zjp), (18)
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then, by (17) and (18), §'s is the limit as p — +o0 of

, N+1 . )
S et Mo | 01 52 G| T2
+%(ij)f[t, Zjp, un (1, ij)]}' (22)

Since |x(#)] <L, by (15) we see that |z;,| < L+1 for every j and p. It
follows by (7) that there exists a constant 4 (independent of ¢) such
that

|f (2 zjps un(t, Zjp)| < A.

Since 9s/0x is uniformly continuous on compact sets, given € >0
we get

Os Os

a[x(f)] - a(sz) <e

for every j and sufficiently large p. It follows that the first term of (22)
is bounded above by

Ae

)

Z igi

i#h

while the second term may be written as

N+1

SO vpai{lgi — it zp))'gn(t, Zip) + 8ilts zp) ga(t 2p) Y. (23)

i#h j=1

Given € > 0, the uniform continuity of g{z, -) and the equiboundedness
of gu(t,z;,) imply that the first term of (23) is bounded above by
Wed3~,,, ci, where the constant W > |0s/0x(z;,)| for every j and p.
Assumption (8) implies that the second term of (23) is bounded
above by

N+1

=N " adplai(tzp)llgn(t,zp)l-

i#h j=1
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Then s's/|s| is the limit as p — + oo of a sequence of points, each term
being bounded from above by

Ae(l + WZ > 2220" Ninl&i (2, zjp)[1gn (2, pr)l. (24)

z;éh iZh =1 Is]

Subcase 2: For a subsequence s5(z;,) is exterior to C.

Since s belongs to some face of C, there exists an index set J
containing at most M — 1 points, such that

s € rel int cone(g;: i € J),

where rel int denotes the relative interior. Thus we can write

§= Z «igi,

ieJ

where «; > 0 for every i € J, moreover the number of indices in J is the
smallest possible. Since s(z;,) —s as p— +o0, for every j and p we
can find a set H of indices such that JCHC{l,...,M+1} and
s(zjp) = Y jcr Pigi» where 3;>0 for every i€ H. Indeed, let s(z;,) be
represented (for a suitable subsequence) as a positive linear combina-
tion of g;, i € P with P strictly included in J. Then s(z;,) € cone(g;: i € P)
which is closed, hence s would belong to the same cone, contradicting
the minimality of J. It follows that for every j=1,..., N+ 1 and every
p there exists an index k =k(j, p)¢ H, hence k¢ J as well, such that

u'(t,zpp) = (1, Zjp)-

By taking a subsequence of z;, we can choose k =k; independent of p.
Then /5 is the limit as p — 400 of the sequence

N+l Os
ZZ {a, i [g, [x(0)] —gi(t»ij)'-ag(Z_/p)]f[f’ Zjps (1 Zjp)]

ieJ j=1

81,35 5 () 02t (1,53 3)
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As in the calculations yielding (24), given € >0, s's/|s| is the limit as
p — +oo of a sequence, each term of which is bounded above by

€AY i 0, = |gi (%, zjp) || gk; (. Zjp)|
A Zies i _ E E NipQii . 26)
|| o7 = » | D e cugil (

Having fixed the vectors g;= g{t, x(¢)], i # h, consider

Z={weRM:wiZOforeveryiandw;éO},

y(w) = _wigign/

i#h

Z Wigi

ih

WEZ. (27)

Then y is continuous on Z, positively homogeneous of degree 0, and
by (8) y(w)< —c’a, we Z. Consider D={we Z:|w|=1}. Since D is
compact, it follows that there exists a constant k # 0 (independent of ¢)
such that

max y(D) = —k* = max y(Z). (28)
In Case 1 we have, by (21) and (28)

5§ < —k2|s). (29)

Now we show that (29) holds also in Case 2. Remembering (20), (24),
(26) and (28) we get in each subcase

ﬁ (l—l—-WZ ) 222)\a1}|¢illl|gk, i (30)

IEJ ieJ j=1

where W > 0 and each k;¢ J, a suitable subset (abusing notation) of
{1,...,M+1}. Given any nonzero point w such that w; > 0, i€ J,
consider

S f[Sns)

ieJ
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Then q is everywhere positive and positively homogeneous of degree 0.
Hence g(w) < sup{q(y):y; > 0 for every i, |y| = 1} which is finite, as we

prove in the following lines. It suffices to show that there exists a
constant b > 0 such that

M+1
Z wiyil > b (31)
i=1

for every choice of the vectors y, ..., yay1 in RM fulfilling |y,| > a for

each i, yly; < —c?|yi||y;| if i # j, and for every choice of the nonnegative
numbers wy,...,wy fulfilling w,=0 for some index 4, with
Zf‘i}” w? = 1. Arguing by contradiction, suppose that (31) fails. Then
we can find sequences y7,w}, i=1,..., M +1 such that w} > 0,

M+1
Zw""—»O as n — +o0, (32)

M+1
Sy =t ()
i=1

wi = 0 for some index h=h(n), and |y}| > a, y{'y} < =|yi|Iyf|if i # ).
Passing to some subsequence we can assume that 4 does not depend of
n. Consider

z =y!/a.

By (32), M+ wrizn — 0, hence M wiz'zl — 0. However 2z} <
—c?|z8|2}| and |zf’| 2 1, whence

M+1 M+1

E w}’l n/ n § W;’.

Then we get lim sup ZM+1 7 <0, hence "Mt wr — 0, whence
w! — 0 for each i, contradxctmg (33). In particular

Zai/lsl <0 (34)

ieJ
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for a suitable constant Q (independent of ¢), for every «; and ¢ > 0.
Since |gx| > a by assumption, the last term of (30) is bounded
above by

—(ca/ls)) Zailgi] < -ca. (35)

ieJ

Then by (34) and (35) the right-hand side of (30) is bounded above by
eA(1+ WQ) — a< —k?* for some k0, provided e is sufficiently
small. This shows that (29) holds in the previous subcases.

Subcase 3: We can partition {1,..., N+ 1} in two nonempty subsets
F,G such that for a subsequence s(z;,) €intC if j€ F, and s(z;) is
exterior to C if j € G. Following the reasoning of the previous subcases,
we have

u'(t,zpp) = up(t, zjp) if j € F,u*(t, zjp) = wy,(t,2,) ifj € G,

where 4 and each k; do not belong to J. By (17), §'s is the limit as
p— —+ooof

Zaigﬁg[X(t)] (Z N S [t Zpr n (5, 2ip)] + D Njp S 11 Zjps i (1, ij)])-

ieJ JEF JjeG

Using the same estimates as in the previous subcases, by (24), (26),
(34) and (35) we get again (29).

Thus (29) holds in all cases, and as well known, (29) yields the
conclusion. O

Proof of Lemma 8 Let E=bdryC. Let A be any bounded measur-
able subset of s~'(E). Then the restriction of s to A is Lipschitz, and it
can be extended to a Lipschitz function on the whole R". The coarea
formula ([10, Theorem 1, p. 112]) yields

[ ipsiax= [ mvansto)dy

< / HYM[s 1 (E) N5~ ()] dy = 0
E
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since meas E=0. By arbitrariness of 4 we get [,-i(z)|Ds(x)|dx=0.
Since |Ds(x)| > 0 almost everywhere by (6), it follows that s~'(E) is of
measure 0. O

Remarks (1) Existence of Filippov solutions to (1) in (0,400)
corresponding to u* is assured provided f'is a Carathéodory function
in [0,4+00) x RY x U and for every compact set BC R" there exists
A >0 such that |[f(t,x,u)| <A if t >0, xeB, uc U ([5, Theorem 4,
p. 212)).

(2) In order to check the boundedness condition (4) is often possible
to rely on a priori estimates also involving bounds on the initial states
we want to control. As a particular case, let f be as in the above
Remark 1. Suppose there exists a function B such that f0+ © B(t)dt
converges and | f(z, x, u)| < B(z) for almost every ¢, every x, u. Then (4)
is fulfilled if the initial states are uniformly bounded. (General criteria
yielding bounded states can be obtained from [6, Theorem 5, p. 151].)

7. EXAMPLES

(1) Let M =1 so that the sliding manifold (3) (modulo condition (6))
is of dimension N — 1 in R". Then the key condition (8) reduces to the
following. For every ¢t > 0 and x €  with s(x) # 0 there exist u;, u, € U
such that g(¢,x) >0, gx(¢,x)<0. In this case the simplex control
law is the standard one in variable structure control theory (see
[1, Chapter I]), namely u* =u, if s(x) > 0, u* = u; if s(x) <O0.

(2) Consider the scalar input system

X1 =u—Xx1, Xp=x -, X3=u, U=][-2,2]

sl(x) = X1 + X2, Sz(x) = X3.

Here N=3, M=2, K=1. We have (9s/0x)f=(u—u’,u)’ and by
taking u; =1, up=-2, u3 = —1/v/3 we get a (fixed) simplex with
obtuse angles (Fig. 1). The dynamic behavior of some states x cor-
responding to the simplex control is shown in Fig. 2, where x(0)=
(10,20, 30)’ or (100, 200, 300)’.

(3) An interesting example of a real control system is given by
the control of a finger of an artificial hand especially designed for
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A

FIGURE 1 Simplex with obtuse angles.

underwater operations. (This system has been developed at DIST,
University of Genova, European project AMADEUS.) The finger, see
Fig. 3, is constituted by three bellows filled with oil and connected by
two plates. The hand has three fingers, one plate is rigidly connected
to the base of the hand and the other (the tip) is free. The relative
position of the two plates is kinematically determined by a rigid stick
connecting the centre of the tip to the centre of the base through a
cardan joint, see Fig. 3. The bellows are coupled with other control
bellows whose length is modified through the pressure exerted by a
linear motor of the voice-coil type (2kHz bandwith), see Fig. 3. The
dynamics of the centre of mass of the tip are given by

X1 =Xy, X2 = —ki(x1 —xq), X3 = x4, Xa =ki(x1 — x4) + oy,
X5 = x¢, X¢ = —ka(xs5 —xg), X7 =x3, Xg = ka(xs5 — xg) + au.
(36)
The components of the control vector, given by
w = (V3/2)d(Fy — F3), w = (d/2)(F>+ F3 — 2F)), (37)

are the components of the torque generated by the three forces with
modulus F;, F», F5 respectively, developed by the three motors. In (37)
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d is the constant distance between the bellows. In (36), (x1, xs) are the
coordinates of the centre of gravity of the tip, (x3,x7) are
the projections of the displacements of the control bellows on the
reference frame and (x4, xg) are their velocities. All these quantities
are measurable or computable by using the sensing devices. Moreover
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The finger.

44— Control bellows.

vy

Cardan joint.

FIGURE 3

« is a positive constant, k; and k, are elastic constants. We fix two
constants x7}, x5, the desired positions to be tracked. Then the sliding
manifold is given by

s1=Xx4+ c3x3 + (%) — XT) =0, (38)
§2 = xg + ¢7x7 + ¢s(xs — x3) = 0.

On the sliding manifold (38), the zero dynamics are those of a couple
of third order asymptotically stable systems if the constants ¢y, ¢3, s, ¢7
are suitably chosen. The nature of the control system (36)—(38) is well
suited for the use of the simplex method. By activating the motors, one
at a time in a fixed direction with a suitably chosen constant force
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modulus, due to the position of the bellows we obtain three vectors
forming a simplex with obtuse angles.

In the following we check the assumptions required by our con-
vergence theorem. Qur example has N=8, M=K=2. We fix arbi-
trarily L > 0. Of course assumptions (6) and (7) are verified. To fulfill
(8) we consider the following three control vectors

y = (0, —dF), w= (V3dF/2,dF/2), z=(~V/3dF/2,dF/2), (39)

where F= F; = F,=F; is a positive constant to be chosen later. Thus
v,w,z are the control laws corresponding to the activation of the
motors one at the time, respectively. Now let s =(sy,5,)’ be given by
(38) and consider

Os Os Os
g1 = af(t’xa V), 82 _af(t,)@ W), g3 = ’a_xf(tax’z)’

where, according to (36), f(¢,x,u) is the vector of components x,,
—ki(x1 = xq), X4, k1(x1 — Xg) +uy, Xg, — ka(xs — Xg), X5, ka(Xs — xg) +
au,. Write

03] (x) =c1x +e3xg + ky (Xl — X4),

$2(x) = csx6 + c7x3 + ka(xs — X3)

and fix any ¢>0. Elementary computations show the following
properties. There exists a constant H > 0 such that if |x| < L then

lg1] + |g2| + |g3] < H.

Then gigy < —c?|gil|gal, as required by (8), if gjgi < —c*H?, i# h. On
the other hand

gigr = —(0?2)d P + (a/2)d(V3¢1 — $2)F + ¢} + 63,
183 = —(0?/2)d*F* — (a/2)d(dr + V341 F + ¢ + ¢3,

ghey = —(a?/2)d P + adpyF + ¢ + ¢3,
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hence (8) is fulfilled if F'is a suitably large constant. Finally we have

g1]* > o?d*F* - 2¢sadF,
|ga|? > o2d*F? + ad(¢y + V3¢1)F,

lgs|* > o?d?F? + ad(¢, — V3¢1)F.

Fix any a >0, then |g] > a, i=1,2,3, when |x| <L if Fis a suitably
large constant.

In conclusion, all conditions required by the convergence theorem
are satisfied by a proper choice of F. This choice can be made within
the range of the forces allowing safe performance of the system.
Examples of the real behavior of the finger tip when tracking a time-
varying trajectory are shown in Fig. 4.
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FIGURE 4
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8. CONSTRUCTION OF A SIMPLEX

The simplex method was introduced in [2] for smooth dynamics of the
form

flt,x,u) = A(t,x) + B(t,x)u, K=M

and time dependent sliding manifolds, based on considering a fixed
simplex of constant vectors u;€ R¥, i=1,...,M+1. The conver-
gence of the method was proved assuming that (0s/Ox)B is uniformly
nonsingular, without requiring the obtuse angle condition (8) about
Os/ox)f(t, x,u),i=1,... , M+1.

In this section we show, in a particular case, how to build a simplex
of vectors g;, i=1,..., M+ 1, fulfilling the conditions required by our
convergence theorem.

Step I: In the following we describe, in a recursive fashion, the cons-
truction of a fixed simplex in R with obtuse angles. The procedure
ends just at the Mth step.

(1) We choose any vector E; € RM, |E;|=1, and we consider V; =
—E,, thus E|V; <0.Set oy = 1.

(2) Choose a unit vector N; orthogonal to Ej (certainly existing if
M > 2) and consider

ELEy=(Vi+N)/V2, Vi=—(E+E)/a
with a; > 0 such that | V| = 1. Then
E|E; <0, ElV2<0, EfV2<0, 3= |Vi—E[ =2-V2

thus 1/v2 < ap < V2.
(3) Choose a unit vector N;, orthogonal to both Ej, E, with
|N12| =1 (certainly existing if M > 3) and consider

E1,E2,E3=(V2+N12>/\/§, V3=—(E1+E2+E3)/a3
with a3 > 0 such that | V3] = 1. Then
E{E3<0 if i #3, E;V3<0 ifi=1,2,3,

a%z]anz—E3|2:a%—\/§a2+l, thus 1/\/§<C¥3 < \/§
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(4) Let Ey, B, ..., Ex_1, Vk_1 be K unit vectors of R™, K< M, such
that E/Vk1<0, i=1,...,K—1, Vi,=—-(1/ax) 2 5'E,
1/ V2 < ag-1 < V2. Choose a unit vector Nip, ... k-1 orthogonal to
E,i=1,...,K—1 (certainly existing if M > K) and consider

E\E,...,Ex 1, Ex = (1/V2) (Vi1 + Nia. k-1),

K
Vg = —(l/ozK)ZE; = (1/ak)(ak-1Vk-1 — Ek),

i=1

with ag > 0 such that |Vg|=1. Then

E:Ex = (1/V2)E/Vk1 <0, ElVg <0
ifi=1,...,K—1, ExVg <0,

Oz%( = |ozK_1VK_1 — EKI2 = 0‘%{—1 - \/EOZK_l + 1, thus 1/\/5 < ag <\/2—~
In particular (K= M) we get a simplex with obtuse angles made up by
the unit vectors Ey, . .., Epy, Epgy1 = Vg of RM.

Step 2: The following procedure, of a local character, shows a way to
build in a special case a simplex fulfilling (8). Assume that the control
vector has M components (a significant case in variable structure
control theory, see [1]), that the system is autonomous, 0 is an interior
point of the control region U, f{x,0)=0 for all x with |x| <L, f(x,-) is
differentiable in a neighborhood of 0 if |x| < L with Jf/0u depending
continuously on x, u, and

%(x, 0) is nonsingular if |x| < L,
where g(x,u) =(0s/0x)(x)f(x,u). Then (by continuity) there exists
r > 0 such that (9g/0u)(x, u) is nonsingular if |x| < L and |u| <r. By the
local inverse function theorem, g(x, - ) is one-to-one on B(0, r) the open
ball in R™ of center 0 and radius r. Since g(x,0)=0 we have
lg(x, )| > 01if lu| =r and |x| < L, whence

2m = min{|g(x, u)|: [u] = r,|x| < L} > 0.



486 G. BARTOLINI et al.

We check that
B(0,m) C g[x,B(0,r)] if |x| < L. (40)

Fix x with |x| < L,y € RM with |y| < m and consider h(x) = |g(x, u)—y|,
|u| <r. If |u| =r we have h(u) > |g(x,u)| — |y| > m, moreover h(0) < m,
hence the global minimum value of 4 is attained at some interior point
ii. It follows that 7 is a critical point of 4, hence

M
ogi,  _ .
> (gilx. @) —yi)a;i(x,u) =0, j=1,...,M,

i=1 7

whence g(x,#) =y. This yields (40). Now consider the vectors
E,, ..., Eyq obtained in the previous Step 1, and let

ee=mE;, i=1,...,M+1.

By the local inverse function theorem, for every x with |x| <L we
can find points w;=u/x) such that |u(x)|<r and g[x,u(x)]=e;
i=1,...,M+ 1. Uniqueness of u; implies their continuity. Finally (8)
is obviously fulfilled.

Remarks (1) The proof above is nothing else than the standard
variational proof of the local surjectivity theorem (see e.g. [11,
Theorem 7.3, p. 141]) taking into account the uniformity with respect
to the parameter x.

(2) Any simplex Ej, ..., Eys fulfilling (8) will work in the previous
construction.

(3) The same construction works in principle in the case when
g(x,0) #0, provided we can apply a global inverse function theorem
to g(x, ).

9. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have extended the simplex control method of [2] to
general nonlinear control systems, assuming that the plant and the
state vector are completely known to the controller. A convergence
theorem has been proved, and a method of constructing the required
simplex has been described.
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Due to the robustness properties inherited by the method, and
taking into account the results of [3,4], it is natural to guess that
a suitable version of the simplex method can be formulated to deal
with nonlinear control systems subject to deterministic uncertainty,
provided that the system states are available to the controller. We
expect that convergence properties in the uncertain case hold along the
lines presented here.

A second interesting development deals with the possibility to avoid
the obtuse angle condition (8) by using a fixed simplex of vectors.

Work is in progress about the above topics.
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