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This paper studies the problem of robust control of a class of uncertain bilinear
continuous-time systems. The class of uncertain systems is described by a state space
model with time-varying norm-bounded parameter uncertainty in the state equation.
We address the problem of robust H,, control in which both robust stability and a
prescribed H, performance are required to be achieved irrespective of the uncertain-
ties. Both state feedback and output feedback controllers are designed. It has been
shown that the above problems can be recast into H,, syntheses for related bilinear
systems without parameter uncertainty, which can be solved via a Riccati inequality
approach. Two examples are given to show the potential of the proposed technique.
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1 INTRODUCTION

One of the most important requirements for a control system is the
so-called robustness. In the past decades, the design of control systems
that can handle model uncertainties has been one of the most
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challenging problems and received considerable attention from control
engineers and scientists. A number of approaches to the problem
of robust control design for uncertain dynamical systems have been
proposed, for example, robust stabilization, sensitive minimization
and H, control, see [3,5,15,36] and references therein.

Since the pioneering work on the so-called H,, optimal control
theory [36], there has been a dramatic progress in H,, control theory
in the past few years. Both the cases of continuous-time and discrete-
time systems have been intensively studied. The essential idea of H,
control is to design a controller to optimize the closed-loop system
performance for the worst exogenous input. The goal in H,, control is
to design a controller such that the H,, norm of the transfer function
from the disturbance input to the controlled output is minimized.
Many familiar robust control problems can be recast as an H, control
problem. It was shown in [14,19] that the state feedback H.,, control of
linear systems can be solved in terms of an algebraic Riccati equation.
In the seminal paper [6], the state—space solution to the output
feedback H,, control problem was developed. Similar to the linear
quadratic Gaussian control problem, the output feedback H,, control
can be solved in terms of two Riccati equations. Recently, the problem
of nonlinear H,, control has been intensively investigated, see, e.g.,
[2,12,13,16,17,22,23]. A solution is presented in [12] to the problem
of disturbance attenuation via a measurement feedback with internal
stability for an affine nonlinear system, which is related to the
existence of solutions of a pair of Hamilton—Jacobi inequalities [13].
Also, [17] has solved the H_, control problems for a class of nonlinear
systems via a convex optimization technique. Moreover, it has been
proved that the existence of a continuous, local viscosity supersolution
of the Hamilton—Jacobi—Isaacs equation corresponding to the H,
control problem is sufficient for its solvability [31]. However, to
the best of authors’ knowledge, the design of robust controllers
for uncertain bilinear continuous-time systems has not been fully
investigated.

Bilinear systems comprise perhaps the simplest class of nonlinear
systems which have a lot of practical applications in various fields
(see, e.g., [18,32] and reference therein). The problem of dynamics
of heat exchanger with controlled flow is studied in [4] while [7]
tackled the problem of reduced order bilinear models for distillation
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columns. The application of stabilization of bilinear control systems
to nonconservative problems in elasticity is considered in [30].
Communicative bilinear systems are investigated in the work of [33].
Recently, the issue of control of hydraulic multi-motor systems based
on bilinearization is discussed in [11]. Note that all the above practical
examples can be modelled as nearly linear systems but containing the
interconnections between the states x(f) and control inputs u(¢), which
is critical to the characterization of the underlying systems and can not
be neglected. Actually, this interconnection plays an important role to
describe the real phenomenon in some situations. It should also be
noted that, in practice, it is almost always impossible to get an exact
mathematical model of a dynamical system due to the complexity of
the system, the difficulty of measuring various parameters, environ-
mental noises, uncertain and/or time-varying parameters, etc. Indeed,
the model of the system to be dealt with almost always contains some
type of uncertainty. There are two main categories of uncertainty.
The first one arises from neglected high-frequency dynamics, such
as actuator and sensor dynamics, or structural modes. The second
category of uncertainty results from unknown and/or time-varying
real parameters of the system and can be thought of as low-frequency
modelling errors. The motivation to consider norm-bounded time-
varying parameter uncertainty in control systems of this paper
stems from two facts: (i) the assumption of boundedness of the
uncertainty in real systems is reasonable and most of uncertainties
satisfy this condition; (ii) the norm-bounded uncertainty has been
widely used by scientists and engineers, see, for example, the references
in Remark 2.1.

In this paper, we extend the control design methodology proposed
in [28] to handle the problem of robust control of a class of uncertain
bilinear continuous-time systems. The class of uncertain systems
is described by a state space model with norm-bounded parameter
uncertainty in the state equation. We address the problem of robust
H,, control in which both robust stability and a prescribed H,
performance are required to be achieved irrespective of the uncertain-
ties. Both state feedback and output feedback control problems will be
investigated. Our results show that the above problems can be recast
into H,, syntheses for related bilinear continuous-time systems with-
out parameter uncertainty. Therefore, the control results on bilinear
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systems (see, €.g., [28]) can be used to obtain a solution to the problem
of robust H, control of uncertain bilinear continuous-time systems.

NOTATION  Throughout this paper the superscript “T” denotes matrix
transposition and the notation X > Y (respectively, X > Y) where X and
Y are symmetric matrices, means that X — Y is positive semi-definite
(respectively, positive definite). I is the identity matrix with suitable
dimension. L,[0,00) stands for the space of square integrable vector
Sfunctions over the interval [0, 00). || - || will refer to the Euclidean vector
norm whereas || - ||j0, o) denotes the L[0, co)-norm over [0, 00).

2 PROBLEM FORMULATION AND PRELIMINARIES

In this section, first, we formulate the problem we shall investigate,
and second, we design state feedback and output feedback controllers,
respectively, for the nominal systems.

21 Systems Description

Consider the following time-varying uncertain bilinear continuous-
time system:

(2): x(r) = [4+ AA(D)]x(r) + Bywi (1)
+ [By + Bx(t)]u(t), Vte[0,00), x(0)=0, (2.1)
z(t) = Cix(t) + Diou(t), Vi€ [0,00), (2.2)
y(t) = Cax(t) + Dyywa(t), Vi€ |[0,00), (2.3)

where x € R" is the system state, u € R’ is the control input, wy is the
disturbance input, w, € R? is the measurement noise, w; and w, belong
to L,[0,00), yeR™ is the output measurement, z€ R" is controlled
output, 4, B, By, By, C, Cp, Dy, and D, are known real constant
matrices of appropriate dimensions that describe the nominal system,
AA(?) is a real time-varying matrix representing norm-bounded para-
meter uncertainty.

It should be pointed out that if the matrix B in (2.1)—(2.3) has full
column rank which can ensure Bx # 0 for any x # 0, system (2.1)—
(2.3) will be strictly bilinear which is our interest in this paper. If
Bx =0, system (2.1)—(2.3) will reduce to linear system which has been
studied intensively in the literature, for example, [6].
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The admissible parameter uncertainty is of the form
AA(t) = HF(t)E (2.4)

where E€R/*" and He R" " are known real constant matrices, and
F(f) e R'™/ is an unknown time-varying matrix satisfying

IF(n <1, Ve>0 (2.5)

with the elements of F(¢) being Lebesgue measurable.

Remark 2.1 The matrix F(¢) contains the uncertain parameter in the
state matrix of the system (X) and it is allowed to be state dependent,
as long as (2.5) is satisfied along all possible state trajectories. The
matrices £ and H specify how the uncertain parameters in F affect the
nominal matrices of the system (X). Observe that the unit overbound
for F(¢) does not cause any loss of generality. Indeed, F(¢) can always
be normalized, in the sense of (2.5), by appropriately choosing the
matrices £ and H. Note that the parameter uncertainty structure as in
(2.4)—(2.5) has been widely used in the problems of robust control and
filtering of uncertain systems (see, e.g., [8,15,24-27,34] and the
references therein) and many practical systems possess parameter
uncertainties which can be either exactly modelled, or overbounded by
(2.9)-(2.5).

In this paper, we will investigate the design of a feedback controller
(G) for (2.1)—(2.3) that reduces z uniformly for any w = [wT,wl|" in
the sense that given a scalar > 0, the closed-loop system of (2.1)-
(2.3) with the controller (G) satisfies

121,00y < 7 W1l (2.6)

for any nonzero w € L,[0, 00) and for all admissible uncertainties. In
this situation, the closed-loop system of (2.1)—(2.3) with (G) is said to
have a robust H, performance ~ over the horizon [0, co).

The robust H,, control problem we address in this paper is as
follows: Given a scalar v >0, design a controller G based on the system
states, x(t), if they are available, or output measurements, y(t), such that:
the closed-loop system of (2.1)—(2.3) with G is robustly stable and has
a robust H, performance v over [0, 0o).
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In the above, ‘robustly stable’ means that the closed-loop system is
globally uniformly asymptotically stable about the origin for all
admissible parameter uncertainties.

We shall make the following assumption for the system of (X):

AssuMPTION 2.1 (a) D,C, =0, (b) D,Din=1, (c) BD], =0,
(d) D21D"2rl =1I

Remark 2.2 Note that Assumptions 2.1(a)—(c) cause no loss in
generality, and are adopted only for the sake of technical simplifica-
tion. They are also standard assumptions in H,, and LQG control and
can be easily removed, see, e.g. [1,9,37]. Assumption 2.1(d) means that
the robust control problem is “nonsingular”. Also, it was implicitly
assumed in system (X)) that the controlled output is disturbance free.

ASSUMPTION 2.2 (i) (A4, By) is stabilizable and (C,, A) is detectable.
(ii) (4, B,) is stabilizable and (C,, A) is detectable.

Remark 2.3 Note that, as in Assumption 2.1, Assumption 2.2(i) is
made for technical reason, which simplifies the theorem statements
and proofs in next section. It should be noted that Assumption 2.2(ii)
is sufficient for the existence of a stabilizing controller for the nominal
system of (X).

2.2 H_, Controllers Design

In this sub-section, we will present solutions to the problems of H,
control for the nominal bilinear systems of (2.1)-(2.3). We shall
formulate the results in state feedback and output feedback cases,
respectively.

Firstly, we assume the perfect state x(f) is available for feedback.
Let us consider the following Hamilton—Jacobi—Bellman (HJB)
inequality

H(x,w,u) =Vy(x)[Ax + Biw + (B2 + Bx)u]
+1xXTCTCix + JuTu = 1y*wiw; <0 (2.7)

where V,(x)=0V(x)/0x, V(x):%xTPx and P is a positive definite
matrix to be chosen.
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From (2.7), it is easy to show that the suboptimal control law which
minimizes H(x, w, u) is given by

u=—(By + Bx) Px. (2.8)
Similarly, the worst case sup,, ¢, 0, o) H(X, W, u) occurs when
wi =y 2Bl Px. (2.9)
Substituting (2.8) and (2.9) into (2.7), one has

H(x,w,u) = x"PAx +1xTCTC1x — L x"P(B, + Bx)(B; + Bx)" Px
++472xTBB] Px < 0. (2.10)

It has been shown in [28] that the solution of (2.10), P, satisfies the
following Hamiltonian matrix:

A —B,BY +~72BBf
Hy =

- 2.11
WeiYe! —AT @11

However, in order to guarantee P satisfies (2.10) as well, we also need
(see [28])

cTc, - PB,BIP >0, if BxBI #0. 2.12
1 2 2

The Hamiltonian matrix (2.11) is associated with the following
algebraic Riccati inequality:

ATP+ PA — P(ByB} —v2BBT)P + CIC; <0. (2.13)

Summarizing the above, we have the following result on H,, state
feedback control of system (2.1)—(2.2):

THEOREM 2.1 Consider the system (2.1)—(2.2) (with AA(f)=0)

satisfying Assumptions 2.1 and 2.2. Then, given a >0, there exists a
state feedback controller such that the closed-loop system is stable and

2 2010112
zlljo,00) < ¥ I1Wllio,00)
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for any nonzero w € L0, 00), if and only if there exists a matrix P=
P >0 satisfying (2.13) and (2.12). Moreover, a suitable state feedback
controller is given by

u(t) = —(By + Bx(1))" Px(2). (2.14)

Next, we consider the case when only the output measurement y()
is available. In order to provide a state estimate, the following observer
designed based on system (2.1)—(2.3) is adopted:

%fc(z) — AX(1) + [By + BR(D|u(t) + K[y(1) — Cox(1)], 2(0)=0
(2.15)

where the filter gain K is a constant matrix to be designed. Based
on the state estimate x(¢) in (2.15), we are looking for the output
feedback

U= u(fc), Wi = wp ()2), Wy = W2()AC) (2.16)

such that the following HJB inequality is satisfied:

_OV(x,%) i oV (x,x) 1

H(x,x,wy,wy,u) = pe + % 52+§xTC1rC1x
1 1 .
3T (Su() ~ 37 WS (3)
3 T E(3) <0 217)

where V(x, %) is a Lyapunov function candidate for the closed-loop
system of (2.1)—(2.3) with (2.16).

Similar to Theorem 2.1, the worst case sup, ,,cz,(0,00)
H(x, X, w, wp,u) occurs when

V(x, %)\ " o (OV(x, )\
wy :’y“zB}-(%?—)) , Wy=¢% 2KT<%) . (2.18)
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Taking (2.1)—(2.3) into account, together with (2.15) and (2.18), one

has from (2.17)

Q%’Q‘—)[A + (B, + Bx)u(2)]
8V(x X)
———aA

- —xTcch,x + %u (%)u(%)

2
1 L0V(x%%) , o (0V(x 2\
27 Ox BB

1
2

H(x,X, w1, wy,u) =

[A% + (By + BX)u(x) + K(Cox — Co%)]

+ ox

L OV(x, %) o pr (M)TS 0. (2.19)

ox ox

Using the same argument as in [28], one can assume that V(x, %) has
the following form:

V(x,%) =3x"Px+1y2(x - )Tz (x - %) (2.20)
where
Z=QUI-7"pPQ)"

and P and Q are positive definite matrices to be chosen such that
PQ < ~*I. Now, one has from (2.20) that

V(x,x) oV(x, x

_ T 200 Tl aA):_z _ Tl
=" P+~ (x—-2%)Z, % Y(x—-%x)Z".
(2.21)

By Theorem 2.1, it is natural to consider the controller u(-) being the
following form:

u(%) = —(B, + B%)" P%. (2.22)

By setting x = X and considering (2.21) and (2.22), one has from
(2.19) that

H(x, x,wy, wy,u) = xTPAx + %xTCTclx - %xTP(Bz + Bx)
X (B, + Bx) Px+ 1y 2xTB BT Px < 0. (2.23)



514 P. SHI et al.

By the result of [28], the positive definite matrix P satisfies the
following Hamiltonian matrix:

g o_| 4 BB +7’BB]
* | =CT¢ —AT
and
CTCi — PB,B]P >0, if BxBl #0.

Similarly, by setting X = 0 in (2.21) and considering (2.22), from (2.19)
it results that

H(x, %, wi, wa, u)

1 1 .
=" xTQ ' Ax + 1xTCTCyx + EfyszQ‘lBleQ"‘x - Efyle ClCox

1 -21.2 I 0 2 I 0
< .
+—-2"y |:’y C2X+K <‘« ¥ C2X+K 0% 0

(2.24)

It can be easily shown that the optimal controller which minimizes
H(x, X, w;, wz,u) in (2.24) is given by (2.22) and (2.15) with

T
KT (815') = —’yZsz
ox

which implies that
K=2C] = 0(-77PQ)"'C.

Hence, the solution of (2.24), Q, satisfies the following Hamiltonian
matrix:

S| AT rida-da
® | =B BT —4

which means that Q is a positive definite solution of the following
algebraic Riccati inequality:

AQ + QAT — Q(CTCy —472CTC)Q + B BT < 0. (2.25)
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All the above analysis leads to

THEOREM 2.2 Consider the system of (2.1)—(2.3) (with AA(f)=0)
satisfying Assumptions 2.1 and 2.2. Then, given a v > 0, there exists an
output feedback controller such that the closed-loop system is stable and

2
“2”[20,00) < 72”w”[0,oo)

for any nonzero w € L[0, 00), if and only if the following conditions hold:

() there exists a matrix P=PT >0 satisfying (2.13);
(i) there exists a matrix Q = Q" > 0 satisfying (2.25);
(iii) PQ <~I
(iv) if Bx({)BY # 0, then (2.12) is true.

Moreover, a suitable output feedback controller can be chosen as

u(t) = —(B, + Bx(t)) " Px(1), (2.26)
% = A%(1) — [By + BX(1)][B> + Bx(1)] " Px(1)
+Q(I-7?PQ) "' CI1y(1) — Co%(1)]. (227)

3 MAIN RESULTS

This section deals with the H,, synthesis for system (2.1)—(2.3) in order
to achieve a robust H,, performance in the presence of parameter
uncertainty. We will derive results for the H,, control problems by
both state feedback and output feedback.

Before stating our main results, let us recall the following lemma.

LeEmMMA 3.1 ((10]) Consider the system

%(1) = [A + AA(0)]x(1) + [By + AB,(1)]w(1)
+ [B, + AB,(1)u(?),

2(f) = [C; + AC,(0)]x(2) + [Daw + AD., (1)w(2)
+ [Dow + AD(1)u(t),

¥(1) = [Cy + AC()]x(2) + [Dyw + ADy, (£)]w(1)
+ [Dyy + ADy, (1)]u(t),
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where u(t) is the control input, w(t) is the disturbance input, y(t) is the
measured output and z(t) is the controlled output, with uncertainties

AA(f) AB,(t) AB,1) H,
AC,(t) AD,,(t) AD.(t) | = | H; |AQW)|[Ex E, E,],
ACy(t) AD,,(t) AD,(1) H,

AT()A() < I

This system is stabilizable with disturbance attenuation v > 0 by a linear
output feedback control if and only if there exists a A >0 such that the
uncertainty-free system

%= Ax(t) + [B, YAH.] [:Eg] + Buu1),
ol Loslo s T ol [
910 = G030 + Dy ) 0 | 4 Do)

(3.1)

with u(?) the control input, (W (t) WT(2)]" the disturbance input, y(t) the
measured output and [z¥(¢) £¥(1)]" the controlled output, is stabilizable
with disturbance attenuation -y via an output feedback control.

Remark 3.1 Lemma 3.1 establishes that the problem of output
feedback H,, control of uncertainty systems can be converted to a
standard H,, control problem for systems without parameter uncer-
tainty. Note that the latter can be solved by existing results, (see,

e.g., [20]).

We also recall a matrix inequality which will be needed in the proof
of our main results.

LEMMA 3.2 ([15]) Let A, E, F and H be real matrices of appropriate
dimensions. Then, for any scalar € >0 and for all matrices F satisfying
IFI<1,

1
HFE+ E'FTHT < - HH' + ¢E"E.



CONTROL OF BILINEAR SYSTEMS 517

In connection with the problem of robust H,, control for system
(2.1)—(2.3), motivated by Lemma 3.1, we introduce the following
auxiliary system:

(B X() = Ax(t)+ [e'H ~7'By w1 (1)

+ [B2 + Bx(1)]u(t), x(0) =0, (3.2)
o | EE 0 13
1) = [Cl O+, |0 (33)
() = Cox(t) + [0 7Dy Ja(1) (3:4)

where x() € R” is the state, w;(7) € RP* is the disturbance input,
2 € R+ is the controlled output, y € R™ is the output measurement,
Wy € N9V is the measurement noise, v > 0 is the prescribed robust H,,
performance we wish to achieve for system (2.1)—(2.3), £ > 0 is a scalar
to be chosen (like the parameter ) in Lemma 3.1), 4, B, By, B, Cy, C,
D5, Dy, Eand H are the same as in system (2.1)—(2.3).

The motivation for introducing the auxiliary system (3.2)—(3.4) for
system (2.1)—(2.3) is that if we are able to solve the H,, control
problem for the uncertainty-free system (3.2)—(3.4) by Theorem 2.1,
then we may solve the same problem for uncertain system (2.1)—(2.3)
via Lemma 3.1.

3.1 State Feedback

We now present a solution to the robust H,, state feedback control
problem for system (2.1)—(2.2).

THEOREM 3.1 Consider the system (2.1)—(2.2) satisfying Assumptions
2.1 and 2.2. If there exists a state feedback controller, G of the form
(2.14), such that the closed-loop system, (X)) of (3.2)—(3.3) with G is
globally uniformly asymptotically stable and

120,00y < 191110009

then the closed-loop system of (2.1)—(2.2) with G is robustly stable and
has a robust H, performance ~y over the horizon [0, c0).
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Proof By Theorem 2.1, the closed-loop system, (X)), of (3.2)—(3.3)
with G is globally uniformly asymptotically stable and

) P
”Z”[O,oo) < ”wln[O,oo)’
implies that there exists a matrix P= PT >0, such that

ATP+ PA — P(By,BY — v 2B \BY)P + ¢ >PHH'P
+EETE+ CICy < 0; (3.5)

and (2.12) is true.

Next, in view of Lemma 3.2, it results from (3.5) that

(A + HF({)E)"P + P(A + HF({)E) — P(B,B}) — v 2B, B} )P
+CIc <o, (3.6)

for any admissible parameter uncertainty F(¢) satisfying (2.4) V¢ > 0.

Combining the inequality (3.6) with (2.12), applying Theorem 2.1
again, we conclude that the closed-loop system of (2.1)—(2.2) with G is
robustly stable and has a robust H,, performance -y over the horizon
[0, 00).

3.2 OutputFeedback

A solution to the robust H,, output feedback control problem is
provided by the next theorem.

THEOREM 3.2  Consider the system (2.1)—(2.3) satisfying Assumptions
2.1 and 2.2. If there exists an output feedback controller, G of the form
(2.26)—(2.27), such that the closed-loop system, (X)), of (3.2)—(3.4) with
G is globally uniformly asymptotically stable and

120 00) < 19¥110)-
where w = (WY, wl|", then the closed-loop system of (2.1)—(2.3) with G is

robustly stable and has a robust H., performance v over the horizon
[0, 00).
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Proof Applying Theorem 2.2, the closed-loop system, (X)), of (3.2)—
(3.4) with G is globally uniformly asymptotically stable and

1200y < 19100y
implies that there exist matrices P=P" > 0and Q = Q" > 0, such that
AP+ PA— P(B,B] — v °B\B])P
+€e?PHH'P+&E'E+ C]C, <0, (3.7)
AQ + Q4T — O(CIC, — CTC1)Q + £2QETEQ
+e2HH" +~72BBf <0, (3.8)
PQ < I, (3.9)
and (2.12) is true.

Now, consider Lemma 3.2 with (3.7) and (3.8), respectively; we
have that

(A + HF(t)E)" P + P(4 + HF(1)E)

— P(ByB] — v *BBT)P + CTC, <0, (3.10)
(4 + HF(1)E)Q + Q(A + HF(1)E)"
—o(Cctc, - cfen)Q +~72B,Bf <0 (3.11)

for any admissible parameter uncertainty F(¢) satisfying (2.4) V¢ > 0.

Therefore, considering (3.10), (3.11), (3.9) and (2.12), the desired
result can be established by applying Theorem 2.2 to the closed-loop
system of (2.1)—(2.3) with G.

Remark 3.2 Theorems 3.1 and 3.2 show that the problems of both
state feedback and output feedback robust H,, control for the
uncertain system (2.1)—(2.3) can be solved in terms of H,, syntheses
for related bilinear systems without parameter uncertainty. Hence, the
techniques for standard H,, bilinear control of Theorems 2.1 and 2.2
and some existing results (see, e.g., [28,29]) can be used to solve the
above robust bilinear synthesis problems in terms of Riccati inequal-
ities, like linear continuous-time case with one extra condition (2.12).
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Motivated by the more recent results of H,, output feedback
control for bilinear systems [21], we may consider that the controller is
of the form

(1) = m(&) + m(&u+m(&)y, (3.12)

u(t) = 0(¢), (3.13)

where 7,(£), 72(£), n3(€) and 6(£) are sufficiently smooth functions to be
chosen, with 7,(0) =0 and 6(0) =0.

THEOREM 3.3  Consider the system (2.1)—(2.3) satisfying Assumptions
2.1 and 2.2. Suppose there exist matrices P >0 and Q >0 such that for
all (x, &) # 0, the following inequalities hold:

P(4+77?QCICy) + (4 +777QCIC1)"P - P[B(&)B"(€)
— v 2QCCQ]P+ CIC +e*PHH'P+E?ETE< 0,  (3.14)
QA" + 40 — Q(C]C, — 7 CC1)Q + B1 B

+ e 2PHH'P + ¢*E"E < 0, (3.15)
ETiE+72(x— 0’07 T2 + 0{u(OM)" + {a(O)M}Q]
x Q7' (x-¢) <0, (3.16)

where B(§) = By + B, Ty and T, are the left hand sides of (3.14) and
(3.15), respectively, v(¢)=—BY(§)P¢, M is a matrix such that
Bxu= Mux and € > 0 is a scalling parameter.

Then, the closed-loop system, (X4), of (2.1)—(2.3) with (3.12)—(3.13)

is internally robust stable in the maximum hyper-ellipsoid
Q) = {6 OIETPE+P(x - 9TQ (x-S}

where ¢y > 0 is a constant, and has a robust H, performance 7.
Furthermore, the controller of (3.12)—(3.13) is given as

x(t) = Ax — B(x)B"(x)Px + 7 *QC[ Cix + QC} (y — C2x),
(t) = —B"(x) Px.
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Proof 1t can be established by using the same technique as in
Theorem 3.2, together with Theorem 3.1 in [21].

THEOREM 3.4 Consider the system (2.1)—(2.3) satisfying Assumptions
2.1 and 2.2. Suppose there exist matrices P >0 and Q > 0 such that for
all (x, &) # 0, the following inequalities hold:

PA+ AP — P[B(x)B"(x) — v 2BB]|P + CTCy
+ e *PHH P +*E'E <0, (3.17)
Q4+~ ?BiBIP)" +(4+7BiB{P)Q
- Q[C3C, — v 2PB(x)B" (x)P]Q + B B]
+ePHH'P + ’E"E < 0, (3.18)
TSix -+ 2 (x = €207 [ + 0O MY + (MO} Q)
x Q7' (x — &) + || BT (x)Px — B" (&) Pg|?
— 1B (x)P(x - O)I* <0, (3.19)
where B(£) = B, + B¢, B(x) = By + Bx, S, and S, are the left hand
sides of (3.17) and (3.18), respectively, ¥(¢) = — BT (€) P¢.

Then, the closed-loop system, (¥q) of (2.1)—(2.3) with (3.12)—(3.13) is
internally robust stable in the maximum hyper-ellipsoid

Q) = {(xQIETPE+ 72 (x ~ 970 (x - ) < o}

where ¢y > 0 is a constant, and has a robust H, performance ~y.
Furthermore, the controller of (3.12)—(3.13) is given as

%(t) = A% — B(%)B"(£)P% + v 2B BT P2 + QCY(y — Cu%),  (3.20)
u(t) = —BT (%) Px. (3.21)

Proof It can be carried out along the same line as in Theorem 3.2,
combining with Theorem 3.2 in [21].

Remark 3.3 1In Theorem 3.3 (respectively, 3.4), the positive definite
solutions P and Q of (3.14)—(3.15) (respectively, (3.17)—(3.18))
are used to construct the controller of (3.12)—(3.13) (respectively,
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(3.20)—(3.21)), and (3.16) (respectively, (3.19) is used to evaluate the
domain , (respectively, €2,) in which the closed-loop system, (2), of
(3.2)—(3.4) with (3.12)—(3.13) (respectively, (3.20)—(3.21)) is internally
robust stable. Note that the Riccati inequalities (3.14)—(3.15) (respec-
tively, (3.17)—(3.18)) correspond to the Riccati inequalities in a linear
H, control problem.

4 APPLICATION EXAMPLES

41 Paper-making Machine System

This example is from [35] for the nominal system. The dryer section of
a paper-making machine is described by the following second order
single input bilinear system:

x(t) = [A + AA(2)]x(t) + [B2 + Bx(1)]u(t) + Byw(1), (4.1)
z(t) = Cix(t) + u(t), (4.2)

where

—0.046 0 0.986
A= s BZ = 5
—-0.7632 —-3.197 0

B_[-0.027 0 c—[l 0
1 o0 o) o 1)

0
B = [_3.197], AA(f) = HF(1)E,

H= [3:(1)3}’ E=[0.06 0.15], F(r) = §(2), [6(r)] < 1.

We can solve the Riccati inequality (3.5) for y=1.5125 and e =1; we
have that

p— 1.034 0.0379
~10.0379  0.9986 |

It can be verified that the closed-loop nonlinear system, (4.1)—(4.2)
with the controller, u(f) = —(B,+ Bx(f))"Px(1), is globally uniformly
asymptotically stable for ~>1.5125. Also the condition, CTCi—
PB,BIP > 0is satisfied.
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4.2 Motor Bilinear System

Let us consider a motor system which contains two sets of windings
shown in Fig. 1. One set is the armature, and the other is the rotating
part of the machine. For the armature, the time domain equation
governing the electrical part of the system is

dia _ Rai-l—le Le
- L LT LY

In the mechanical portion (Fig. 2), it is general to analyze the system
assuming a simple, inertia load on the system, so

Jj+ Fi+ Kq = Tp.

The definitions and values of electric and mechanical parameters are
shown in Table 1. The flux in the air gap is a function of its armature,
which can be applied for the state feedback control law. Assuming that
the torque is proportional to the flux in the air gap and armature
windings gives

T = Kiyie.

Furthermore, the back emf induced in the armature windings is
assumed to be proportional to the angular velocity of the output shaft.
Therefore,

ey = ine.

FIGURE 1 The motor system with the bounded uncertain load.
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FIGURE 2 The state responses of the mechanical part of the controlled motor
system.

TABLE I Coefficients and values for the motor system

ey Back emf voltage (V)

ey Applied motor voltage (V)

F=1 Load (N s/rad)

AF (J|AF||<0.8)  Bounded uncertain load (N s/rad)
iy Armature current (A)

J=1 Moment of inertia of motor (N s*/rad)
K =1 Armature constant

K=1 Torsional spring constant (N/rad)
L,=1 Armature inductance

q Angle of the link

R,=1 Motor resistance (£2)

T Torque constant (N)

We assume that the load on the motor is variant as (F+ AF), where AF
is bounded under a certain value. In this paper, | AF||=0.8F is used to
find the robust control for the motor bilinear system (Fig. 3). Com-
bining all the formulations and assumptions described on the above
and employing the small perturbation theory for the system, the motor
control problem can be described as the following state space model:

x(t) = (A + AA)x(t) + Biw(t) + (B2 + Bx(t))u(z), (4.3)
Z([) = Clx(t) + D]zu(t), (44)
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FIGURE 3 Control responses of the controlled motor system.

where
—R,/L, 0 0 -1/L, 0
A= 0 0 1 , B= 0 01,
0 —-K/J —-F/J 0 0
—R,/L, 0 0 Kx;
Bl = 0 0 N B2 = 0 0 >
0 —F/J 0 Kx;

C1 = B3, Dy = Dyo.

Note that the states are x = (i,, ¢, q)T, w is the disturbance, and the
control input is u = (e, i)

We will design a robust controller for the uncertain bilinear system
such that the resulting closed-loop system can be robustly stabilized.
By using Theorem 3.2, the following algebraic Riccati solution can be

obtained:
04142 0 O

0 1 0
0 0 L5

P
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Note that the following values of (¢, E, H) are employed to compute
the solution of the Riccati inequality:

0 00 0 0 O
e=1, E=|0 0 0|, H=|0 0 O
0 0 1 0 0 0.1

Therefore, the state feedback control can be obtained as

[ 041421x,
u(t) = [—0.91421x1X3} (43)

Remark 4.1 Note that the asymptotic stability of the closed-loop
system (4.3) with the controller (4.5)

—1.41421x; — 0.91421x,x2
x(t) = X2 x(t) + Gw(t)
—Xy — (1 + AF)X3 — 0.91421)(%)63

for all admissible uncertainties, [|AF || <0.8, can be easily checked by
choosing the Lyapunov function

V(x) =103+ x3 +x3).

5 CONCLUSIONS

This paper has considered the problems of robust H,, synthesis for a
class of uncertain bilinear continuous-time systems. The uncertainties
we considered comprise norm-bounded parameter uncertainty in the
state equation. Both H,, control problems via state feedback and
output feedback have been studied. It has been shown that controllers
for the above problems can be designed by solving H,,, syntheses for
related bilinear continuous-time systems without parameter uncer-
tainty, which is in terms of one (respectively, two) Riccati inequality
(respectively, inequalities) for state feedback (respectively, output
feedback) control with one constraint. Two examples are presented to
illustrate the theoretic results.
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