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This work describes an analytic solution to predict the forced oscillation of a suspended
cable and an attached ball. The oscillations are driven by a sinusoidal movement at the
fixed end of the cable. This problem may be used in the verification of numerical software
which is commonly used to design systems with suspended cables.
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INTRODUCTION

Suspension cables are common elements of large-scale structures such
as stadiums and bridges. With the advent of computer-aided-design
(CAD) software packages it has become common that such structures
are designed and analyzed with CAD software. The value of using such
software packages in the analysis of structures is well known.

To insure that these CAD software programs accurately predict the
behavior of the structure caused by both internal and external forces it
is important that each software package be tested in each area in which
the software is used for structural analysis. One of the problems asso-
ciated with extensive use of CAD is that the accuracy of many soft-
ware packages is not adequately tested for certain situations for which
it is used.
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The intent of this work is to present an analytic solution to predict
the vibration in a suspended cable which results from the forced
oscillation at the upper-end of the cable. It is expected that this
solution may be used as a verification problem for CAD software. A
practical physical example of this system is a wrecking ball attached to
a chain which is being forced to oscillate at the upper end of the chain.

ANALYSIS

Problem Statement

The problem is illustrated in Fig. 1. A ball with a mass of my, is sus-
pended from a flexible cable of mass m,. The upper end of the cable is
forced to oscillate in the lateral direction according to the relation:

y(L, t) = esin(wt). (1)

Some important assumptions used in this analysis are:

e Attributes associated with the cable:
(1) The cable has a fixed length of L;
(2) Itis infinitely flexible (it may sustain no moment-arm);
(3) The measure of the angle between the x-axis and the cable, a(x),
is always small such that a(x) < 1;
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FIGURE 1 Schematic of a cable with an attached ball.
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(4) The cable has a mass of m. which is uniformly distributed over
the cable length;
(5) At x= L, the cable is forced to oscillate with y(L, f) = e sin(w?);
(6) Cable motion is only in the lateral direction with y(x, 7) being
the dependent variable (no variation in the z-direction).
e Attributes associated with the ball:
(1) The suspended ball is attached to the cable at x =0;
(2) The ball has a mass of m, but no volume (infinite density).
e Attributes associated with both the cable and ball system:
(1) The system is in a constant gravitational field g which acts in the
opposite direction of the x-axis (normally g =9.81 N/kg);
(2) There are no frictional effects;
(3) The system is initially at rest with y(x, 0) = y(x,0) = 0.

Mathematical Formulation

The partial differential equation associated with the lateral vibration
of a cable of tension T is derived in many texts on applied differential
equations and is given by the following equation:

m, 0%y 0 (. 0y
T 52 = ox Tax for0<x< L, (2)

where T is the tension in the cable. Normally, the tension is treated
as a constant. In this situation, the tension varies with x, since as x
increases the total weight carried by the cable increases linearly:

T(x) =g(mp +m5%) for 0 <x < L.

Substituting this relation into Eq. (2) yields the following partial differ-
ential equation for the motion for the cable:

mcay_ 9 X QX
fb’t?'gax[(m”’”%)ax} for 0 < x < L. (3)
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Equation (3) may be set into a non-dimensional form using the fol-
lowing dimensionless parameters:

="
me’
r=2 M-’r—%,
T=1 %,
and
h(r,'r)=M.

€

The non-dimensional partial differential equation is

AR
92 rorl| or

] for 2vVM < r < 2v/M + 1. 4)

This may be restated as the wave equation in cylindrical coordinates:

%h _,
2= Vh

where V7 is the one-dimensional laplacian:
10 0

2 T e — —_—

V—r&PJ'

The boundary condition where the cable is forced to oscillate, at

x=L(orr=2v/M+1)is
y(x = L,t) = esin(wt). (5)
In dimensionless parameters, this boundary condition is

h(r=2vVM +1,7) = sin(w*7) (6)
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wherew* = 1/ L/g w. Theboundary condition where the ballisconnected
to the cable (at x=0 or r = 2v/M) may be derived from Newton’s

second law of motion:

0%y
" or = T
or
9%y dy
e = Pgax

Using dimensionless parameters, this boundary condition is

8%h
or?

1 Oh
r=2vVM \/- 6r

The initial conditions imposed on A(r, 7) are

r—Z\/_

no velocity

no displacement
h(r,0) =0 and Oh

or =0.

=0

™)

(8)

©)

The solution to Eq. (4) may be obtained with an analysis using a con-

volution integral with Duhamel’s principle:
P
h(r,7) = / F(r 3 (r il dy.

In Eq. (10) ®(r, 7) is the solution to Eq. (4);

VZ
0%d 190 ¢8<1>
—=——|r—| for2vM<r<2VvM+1,
or?  ror| or

with the following boundary conditions and initial conditions:

VM +1,7) =1,

__1 o®
oyt VM Or |, m

®(r,0) =0,

o
or?

(10)

(11)

(12)
(13)

(14)
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and

0o
E T=0_ 0

The function F(7) in Eq. (10) is the boundary condition at the top of
the cable, at r =2/ M + 1:

F(r) = sin(w*7). (15)

Solutionfor &(r, 1)

The solution for ®(r,7) may be found with the use of separation of
variables. The function is assumed to be separable in r and 7:

O(r,7) = Y Ry(r)Tu(7), (16)

where for at least some values of n, R,Y,#0. Following the tradi-
tional ‘separation of variables’ procedure, Eq. (11) leads to the follow-
ing sets of ordinary differential equations:

Y, _Ry+(1/nR, 2

It may be shown that all characteristic values, )\3, are real and R,
may be taken to be real.* It is demonstrated in the Appendix that if A2
is negative then, R,(r) =0. There are non-trivial solutions associated
with A2 =0 and X2 > 0. Each of these two cases are investigated
separately.

A2 is Zero  When X2 = 0, Eq. (17) corresponds to

Yo _ Ry +(1/NRy _

T R 0. (18)

where Ry and Ty correspond to the distinct value A\g=0.

* See Problem 28 of Chapter 5 of Hildebrand.
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The general solutions to Eq. (18) are
To(r)=car+c
and
Ry = d) + dp In(r).

The boundary condition for ® at r = 24/M + 1, Eq. (12), may be satis-
fied completely by the product Yo(7)Ro(2v M + 1) if

To(’r) = Ro(r) =1.

Since Ry(r) satisfies completely the boundary condition at r =
2v/M + 1, all other solution components must have the following
boundary condition at r = 2/M + 1:

R,(2VM+1)=0 forn#0. (19)

A2 is Positive. When A2 > 0, Eq. (17) corresponds to

Y., RI+(1/nR,

)2
T R =N (20)

In this case, the boundary condition at r = 24/M + 1 results in the solu-
tions for R,(r) and T ,(7) being

Ru(r) = Yo(QMvVM + 1)Jo(Mar) — oAV M + 1) Yo(Aar)  (21)

and
To(7) = Ancos(MT) + By sin(A,7).

The value of )\, may be obtained using Eq. (13). In this case, ), is
the nth positive root of

dR,

—XR,2VM) = i
r=2vM

(22)

sl-
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or

MR,(2VM) — 5,Q2VM) _ 0, (23)

VM

where
Sn(r) = Y0(2)‘n VM + I)Jl (Anr) - J0(2)‘n VM + I)Yl()\nr)' (24)
The complete solution for ®(r, 7) is of the form:

®(r,7) =1+ i Ry (r)[An cos(AnT) + B, sin(A,7)]. (25)
n=1

The unknown coefficients 4, and B, may be found considering the
initial conditions on ®(r, 7):

o =0= B,=0. (26)
or 7=0
With B, =0, Eq. (25) reduces to
o0
O(r,7) =1+ AnRy(r) cos(M,7). (27)
n=1

The coefficients 4, may be obtained by use of the relation

o(r,0)=0 = 1+ Y A,Ry(r) =0. (28)
n=1

Equation (28) does not give the values of the coefficients 4, in an
explicit form. Normally, differential equations, and the associated
boundary conditions used in a separation of variable analysis involve
a ‘proper Sturm—Liouville’ problem (see Ref. [2]). With a proper Sturm—
Liouville problem the functions R,(r) would be orthogonal on the
interval 2¢/M < r < 2v/M + 1 with respect to the weighting function r.
However, this problem is not a proper Sturm-Liouville problem and

the functions R,(r) are not orthogonal.



VIBRATION OF A BALL ATTACHED TO A CABLE 21
Approximate Solution for A, An approximate solution for the

coefficients 4, may be obtained by truncation of Eq. (28) with appro-
priate substitutions:

Pmax

D AuR(r) 1. (29)
n=1

A system of equations for the coefficients 4, may be found by taking
the inner product of each side of Eq. (29) with the function R,(r) (with
1 <m < npay):

Pmax

ZAn m(r)] = =[1 o Ry(r)], (30)

where the inner product between two functions f(r) and g(r) is
defined as:

2V/M+1
f(r)og(r) = /2\/1t7 [rf(r)g(r)]dr.

In matrix format, the system of equations implicit in Eq. (30) is

[ (RioR))  (ReoRi) -+ (Ru,oRi) |/ 4
(RioRy) (R20Ry) (R, © R2) Aj
| (R1oRy,,.) (RaoRy,,) (Ritnas © Ri) | \ A
—10o Ry
—1oR,
~ (31)

—10oR

Pmax
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There are three types of inner products used in Eq. (31), each of which
must be treated differently:

(1) The inner product R;o R;is given by:

2/MH
RioR; = / er(r) dr
M

2VM+1

r2
~ {510+ S?(rn} -
=2(M +1) S22VM + 1) - 2M[R}(2VM) + S} (2VM)).

(2) R;oR;withi#j

VM

2V/M+T
RioR; = -/2\&7 rRi(r)R;(r)dr

(2\/~

22 )\2) [)‘ iR (2\/——) ( \/A—l)— A,R,(2\/A—1)S,(2\/ﬁ)] .

(3) 1oR;:Y

2VM+1
loR;= / rR;(r)dr
2VM

— % VM +18VM+1) — VMS;(2VM)].

Implementation of Duhamel’s Principle Equations (27) and (15)
may be substituted into Eq. (10) to obtain the solution for A(r, 7):

o) = [ R - 2D 4y

= /0 ’ sin[(w* (1 — )] {f: —AnAnRy(r) sin()\n’y)} dy

n=1

 Equation (11.3.31) with . =v =0 of Ref. [1].
+Equation (11.3.29) with p = v =0 of Ref. [1].
YEquation (11.3.5) with p=v=0and p=1 of Ref. [1].
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o0 T

== A Re(7) / sinfu* ( — 7)] sin(wy) dy
n=1 0

= i AnRy(7)
n=1

Aw* sin(A,7) — A2 sin(w*7)
A~ (W) '

Using dimensional parameters the solution is

xt)—eZAR ( \/m"—+L>

[ L/gsin(1/g/L Mt) — A} sin( wt)} (33)

X = (Lw?)/g)

Truncation and Convergence As a practical matter, Eq. (32) and its
dimensional counter part Eq. (33) must be truncated. Approximations
for the coefficients A4, were obtained from the system of equations
implicit in Eq. (31) for 1 <7 <#nyax. The solution A, (7, 7) is defined
to be the approximation for A(r, 7) when the series is truncated at 7,y

2 aw* sin(A,7) — A2 sin(w*T)
nmax Z A R l: )\2 _ (w*)2 * (34)

Values of A4, are taken as zero for #n > nyax.

It was found that the convergence was fairly slow with respect to the
specific value of ny,«x. The convergence rate for Eq. (34) is illustrated in
Fig. 2 for values of ny,,, of 2, 3, 99, and 100. Notice that the curve for
nmax = 99 is nearly indistinguishable from the curve with s, = 100.

VERIFICATION EXERCISES

To help insure that Eq. (34) has been correctly derived and imple-
mented, a set of three analytic verification problems have been devel-
oped. The first involves the time required for the initial disturbance to
propagate downwards to the ball. The second is a comparison with the
special case where the ratio of masses, M, is very small (a very light
ball). The final test is for the special case where M is very large (a very
heavy ball).
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h(0,7)

FIGURE 2 Convergence of the truncated series for the special case of M =1, w* =4,
for nmax=2, 3, 99, and 100.

Propagation Time

The time required for the initial disturbance wave to travel through
the cable may be calculated as the integral of the inverse of the local

wave velocity:
A / 0 dx
P L v(x)’

where ¢, is the time required for the initial displacement wave to prop-
agate down the cable, and v(x) is the local wave propagation velocity.
The local wave propagation speed is

1)

Pl = /==

Initially, the wave is traveling in a direction which is opposite to that of
the x-axis resulting in the following integral:

o= /dx /\/mprcn{fx/md’“

1 X
B \/L:g/o VM + (x/L)
= 2\/%(\/W— VM).
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In terms of the dimensionless time this is

7 =2(VM+1~VM). (35)

Special Case Where M < 1

The second verification exercise is for the special case were the ball
is much lighter than the cable, M <« 1. For this special case, the non-
dimensional partial differential equation is:

B_Zh_l_a_ Oh
or2  ror

rg} for0<r<2.

The boundary conditions and initial conditions are

h(2,7) = sin(w*r),

no velocity

—~N
h(r,0)0 =0 and %

no displacement

=0.

7=0

The solution to this system of equations may be obtained using
Duhamel’s principle and orthogonal Bessel functions with

®(r,7) —I—Z/\le)‘ cos(A,7),

where ), is the nth positive root of
J0(22) = 0

The exact solution using dimensionless parameters is then

Z Jo(Agr) |w* sin(A,7) — A\, sin(w*T)

hrm) = =2 7 X2 — ()

(36)
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As a practical matter, the summation in Eq. (36) must be truncated at
some value of n, say #max. Using dimensional parameters, the solution is

(x t)n_eiJo@/\n\/x/L) (w\/L/g) sin(Ay\/g/L 1) — A, sin(wr)
TR W 02 — A (L/g) :

n=1

Special Case Where M > 1

The third, and final verification exercise is for the special case were the
ball is much heavier than the cable, M > 1. In this case, a second-order
ordinary differential equation approximately describes the displace-
ment of the ball, y,(2):

The initial conditions are
J’p(o) = J)p(o) =0.

The solution for this special case is simply

Jlim (y,) = g—_egm [Sin(wt) - w\/g sin (t\/% )] .

Using dimensionless parameters, this is equivalent to

. sin(w*T) — w* sin(7)
Jm () =, (37)

Test Problems

Two sample runs were performed to test Eq. (34) with the above spe-
cial analytic solutions [Egs. (35)-(37)].

The first test case was made with a very small value for M
(M = 10~°) for comparison purposes with Egs. (35) and (36). For small
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h(0,7)

FIGURE 3 Test case no. 1 with ny,, =100, w* =4, and M= 107S.

values of M, the dimensionless propagation time is given by:

1%41210 =2
Note in Fig. 3 that the dimensionless propagation time is very nearly
Tp=2. In addition, the displacement (at the lower end of the cable)
predicted by Eq. (36) is very nearly that predicted by Eq. (34).

The second test case performed was with M > 1 which may be used
to compare the predictions of Eq. (34) with those of Eq. (37). For this
test the following parametric values were used: M =100, #pyax =100,
and w* =4 were used. The resulting displacement at the lower end of
the cable is illustrated in Fig. 4.

For each of the above three criteria the propagation time, as well as
the special cases where M < 1, and M > 1 the fit between Eq. (34) and
the corresponding three analytic predictions was quite good.

CONCLUSION

An analytic solution has been presented which predicts the response
of a ball suspended to a cable which is subject to a periodic forced
oscillation. This solution may be used for verification purposes of
numerical software which is intended to simulate the dynamic response
of cables to forced oscillations.
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FIGURE 4 Test case no. 2 with npa =100, w* =4, and M =100.

NOMENCLATURE
g gravitational field strength
L length of the cable

h(r,T) dimensionless displacement, A(r, 7) = y(x, t)/e

m.,m,  mass of the cable and the ball respectively

M mass ratio; M =mp/m,

r dimensionless coordinate along the cable;
r=2y/M+ (x/L)

R,(r) function defined by Eq. (21)

S,(r) function defined by Eq. (24)

Iy propagation time required for the initial displacement to
travel to the ball

T(x) tension in the cable

x axis along the cable

y(x, 1) displacement of the cable
p(®) displacement for the ball if M > 1
€ amplitude of oscillations at x =L

" nth positive root of Eq. (23)

T dimensionless time; 7 = t\/:g_/-f

w radial frequency of the forced oscillations

w* dimensionless frequency of forced oscillations; w* = w\/L—/g
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APPENDIX: PROOF THAT IF )2 IS NEGATIVE, THEN
R,(r)=0, FOR CONTINUOUS REAL FUNCTIONS

Let u, be a positive number such that x, = —A2. Multiplication of the
Eq. (17) by rR%(r) yields

1
R, (R;' ; ;Rﬁ,> — R (38)

thus

d ( dR,\ _ 2
R,,a (r P ) = pnarR;,.

Integration by parts from 2v/M to 24/M + 1 results in the following:

dR 2VMH1 2VM+1 dR.\2 2W/M+1
[rR,,(r) —"] - / r( ") dr = py, / rR2(r)dr.
dr Jlhvaz WH; dr WM
(39)
The first portion of the left side of Eq. (39) is
2VM + 1 R,(2VM + 1) dR, —2VMR,2VM) dR, .
T r=2yM 1 dr |, oy

The boundary conditions imposed on R,(r) are
R,2vM+1)=0

and Eq. (22)

1 dR,
Man(zv M) = \/_A—l dr iy
r=2vM
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or

Rl MRV,
dr |,_, it

Substituting these values into Eq. (39) yields

(AR, /dn)\,—ay3

N

0 — 2VMR, (VM) VMR (2VM )]

WM /4R \2 2v/M+1
:/ r( "> dr+u,,/ rR:(r)dr
2VM dr VM

or

2VM+1 dR.\ 2 2VM+1
_IMRQ2ym) = / r( ) dr + / rR(F)dr.  (40)
WM dr WM

Clearly the right side of Eq. (40) is non-negative, for real values of
R,, and the left side is non-positive. Hence both sides of the equation
must be zero:

WM+ /4R N\ 2 2VM+
/ r ( "> dr +/ rR:(r)dr = 0. (41)
M dr WM

For real continuous functions, Eq. (41) implies that R,(r) =0 if 2 is
negative.



