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In this paper we consider fluid queue models with infinite buffer capacity which receives
and releases fluid at variable rates in such a way that the net input rate of fluid into the
buffer (which is negative when fluid is flowing out of the buffer) is uniquely determined
by the number of customers in an M/M/1/N queue model (that is, the fluid queue is
driven by this Markovian queue) with constant arrival and service rates. We use some
interesting identities of tridiagonal determinants to find analytically the eigenvalues of
the underlying tridiagonal matrix and hence the distribution function of the buffer
occupancy. For specific cases, we verify the results available in the literature.
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1. INTRODUCTION

In the last decade, the literature on queueing theory has paid consi-
derable attention to Markov-modulated fluid models (MMFMs). In
these models, a fluid buffer is either filled or depleted, or both, at rates
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which are determined by the current state of a background Markov
process. The main reason why the class of MMFMs has attracted so
much attention is that they are relevant for modelling certain pheno-
mena in telecommunication networks or otherwise shown to give good
approximations for the actual behaviour of network traffic ([1,6,7,
10,11, 14]). In such applications the bursts of data are usually
transmitted in many small-sized data packets or cells. Here, the use of
fluid models is particularly useful, since the variations on the cell level
are almost neglegible compared to those on the more important burst
level.

In [2,13], the authors analyze fluid queue models where the fluid
rates are controlled by finite state Markov chains. Fluid queue models
where the fluid rates controlled by a state-dependent queueing model
M,/M,/N/N with linear arrival and service rates have been studied
in the literature ([1,4,11,12]). In particular, in [1], the authors find
explicit expressions for the eigenvalues and eigenvectors of the
underlying matrix.

But there has been no work done in the literature for fluid queues
driven by an M/M/1/N queue in providing explicit expressions for the
eigenvalues of the matrix and the distribution of the buffer occupancy.

In this paper, we study fluid queues driven by an M/M/1/N queue.
In order to achieve closed form analytical expressions for eigenvalues
of the underlying tridiagonal matrix by using some identities of
tridiagonal determinants, due to Losonczi [9], we restrict our analysis
to three particular fluid queues whose net effective input fluid rates
differ when the number of customers in the M/M/1/N system is either
empty or full. We also give explicit expressions for the distribution
functions of the buffer occupancy. In [12], the author gives an explicit
expression for the density function of the buffer occupancy in
equilibrium for the special case N=1. We verify this result by our
results.

The rest of the paper is organised as follows: In Section 2,
preliminaries and the solution procedure are discussed. Three fluid
queue models driven by an M/M/1/N queue are analyzed in Section 3.

Throughout our analysis we use tridiagonal determinants and
tridiagonal matrices. Hence we present only the elements in the main
diagonal, upper and lower off-diagonals for the convenient sake and
other elements are assumed to be zero.
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2. PRELIMINARIES AND SOLUTION PROCEDURE

Let us denote the M/M/1/N queueing model by {X(¥), t >0} with
arrival rate A and service rate y where X(¢) is the random variable,
denoting the number of customers in the system, taking values in
§=1{0,1,...,N}. Let the generator of the process {X(#)} be denoted
by Q, that is

- A
poo—(A+p) A
Q= . .
A
B =B/ (N1 x (N+1)

Let C() denote the content of the buffer at time . Whenever
X(H)=j,j €S and C(¢) > 0, the net input rate of the fluid into the buffer
is r; (< or > 0) with the evident restrictions that at least one r,>0
(otherwise the buffer will remain empty forever) and the content of the
buffer cannot decrease whenever the reservoir is empty. That is,

dc(r) [0  if C(f) =0 and ry( <O0.
dr Tx(1) else.

In order that a limit distribution for C(f) exists as t— oo, the
stationary net input rate should be negative, that is,

N
Zpir,- <0.
i=0

where p,, i €S be the stationary state probabilities of the background
birth—death queue. We assume throughout the analysis that this
stability condition is satisfied.

Define

Fi(t,u) =Pr{X(t) =j,C(t) <u}, jES, t,u>0.
and

Fi(u) = tlirgloPr(X(t) =j,C(t)<u), je€S§, u>0
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That is, F;(z,u) denotes the probability that the regulating process is
in state j and the buffer content does not exceed u at time ¢. Then it
can be shown that [3]

dF;(u)
T

= AFp1(u) = (A + wFy () + pFr (), u>0, j€S. (2.1)
In matrix notation (2.1) can be written as

dF ()

. T
—.~ =R 'Q"F(u), u>0 (2.2)

where F(u) = [Fo(u), Fi(u), . .., Fp(u))" and R =diag(ro, r1,. .., rny) and
hence

A K
ro F
A _Mpop
r n r
RIQT = . . (2.3)
L
N-1
A B
™ N/ (N+1)x (N+1)

In [8], the authors give the solution of (2.2) as follows:

N, -1

Fiw)=pj+ Y mjexp(bu), j€S (24)
pary

where 7, ; has the following two representations (each representation
has its own advantage and disadvantage which we will discuss as we
proceed further):

)= K== (&) Ljes (25)

or

s = enjBi(§1) 3 om e s- AmCmnBm(&1)
N By(&)Byn@)

where &, £, ..., &y are the eigenvalues of the matrix R™'Q7, x;, /€S
are constants,

1j€S. (2.6)
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N-m .

Y1 Fms2 ) m <]_
=41, m=j, (2.7

j=m .

1itjt1 - rm-1’ m>]j

the polynomials B,(s) are defined recursively as follows:

Bo(s) = 1

i (542 ) =0

B.6) — (s+ 252 Bua(0) 8
+r,,_2£:_13”‘2(s)=0’ n=2,...,N

Bys1(s) — (s-i—;%)BN(s) By (s) = 0.

and d,=F,(0), meS.

Mitra [10] and Stern and Elwalid [14] show that R ~'Q7 has exactly
N, negative eigenvalues, N_ —1 positive eigenvalues and one zero
eigenvalue, where N, is the cardinality of the set ST = {jeS:r; >0}
and N_ is that of S~ = {j €S : r; < 0}. That is,

§<0, j=0,1,...,Ny—1, &, =0 and
€]>0, j=N++1,...,N.

The constants k;, /[=0,1,..., N, —1 in (2.5) are determined by solving
the system of equations

N.-1

P+ Z =0, jeS* (2.9)

whereas the constants d,,, m€ S~ in (2.6) are determined by solving
the system of equations ([8])

> dncmnBn(&) =0, I=Ny+1,...,N.

mes-

N
Z T'm@m = Po Z rim;.

meS- Jj=0

(2.10)
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where
Ao~ Aot

= el
Hip2 - -

We observe that the number of unknowns d,, in (2.6) is N_ and so
we need to solve as many Egs. (2.10) to find these quantities. The
number of unknowns «; in (2.5) is N, and thus we need to solve as
many Egs. (2.9) to find these quantities. Therefore, whenever N_ is
large, N is small, because N_+ N, =N, and hence it is convenient
to use the expression (2.5) because of a less number of unknowns x;
and whenever N _ is small using (2.6) is more convenient because of a
less number of unknowns d,,,.

In next section we consider three particular fluid queue models
driven by an M/M/1/N queue.

3. FLUID MODELS

In this section we consider three fluid models, driven by an M/M/1/N
queue whose net effective input fluid rates are given as follows:

M-1 The net effective input rates are ro = (A\r/(A — /Ap)), ri=r,
i=1,2,...,N.

M-2 The net effective input rates are ro = (A\r/(A— vAp)), ri=r,
i=1,2,...,N—1and ry = (ur/(p — VAp)).

M-3 The net effective input rates are ro = (A\r/(A — /Ap)), ri=r,
i=1,2,...,N—1and ry = (ur/ (s + V).

In all the three models, we assume r >0 and ) < pu, so that, rg <0
and r;,>0,i=1,2,...,N.

Before finding exact expressions for the eigenvalues and 7, ; for the
above three models, we give an explicit expression for B,(s) in the
following theorem which will be used in analyzing the models under
consideration. We use the following notations:

~ A B 7

TueoreM 3.1 For all the three models under consideration the
polynomial B,(s) in (2.8) can be given by, for n=1,2,...,N,
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oA Ap—rh) .
B,(s) = sind sin(n + 1)0 N sin nf

+ (A _)\rx)sin(n - 1)0} (3.2)

where s+ (\/r) + (n/r) = 2(v/An/r) cosb.

Proof From (2.8), B,(s) can be written in determinant form as
follows: forn=1, 2,..., N,

A K
S+r0 r
A Mpop
ro S+ n r
A Apop
r S+ r r3
By(s) = (3.3)
3
N
A Mp
N-1 s+’n—l nxn

Substituting ro=r¢and r;,=r,i=1,2,...,n—1 and using (3.1) in (3.3)
we get,

s+ A g
N A
A :S\'-i—;"f-[f /f N
By(s) = ¥ s+E+F §
L(s) =
©
A LA
2 s+?+%nxn
which can be written as
A A
stivs VX
A A AL
Db gyage VN
By(s) =
N
r
v s+24+8

r'nxn
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s+244 Vo

r

ﬂ S+-¢‘-+% ﬂ

r

(n~1) x (n—1)
s+244 VT

r

Vo s+2+8 L

r

VAT s+24+E

r

(n—2) x (n—-2)

The theorem follows by dividing each row by (1/Au/r), putting s +
(A/F) + (/1) = 2(v/Ap/r) cos 8 and using the following identity:

2cosf 1
1 2cosf 1 .
y . =sm(r‘t+1)0’ n>1.
sin @
1
1 2cosbl|,,,
|

We note that By 1(s), defined recursively by (2.8), can be given in a
tridiagonal determinant form as follows:

A B
s+,0 ,0/\
R
—A Mp _p
BN+1(S) = r s+ r r

£
s+ v {(N+1) x (N+1)
and hence By 1(s) is the characteristic polynomial of R 'Q7in s
of degree N+1. The above expression can be written as follows
[8, Theorem 4.1]:
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s+A+s L

m
A ﬁ L
" S+ ot P
By4i(s) = 5 X

L

N-1

A s A s

TN-1 IN-1 'NIN xN

(3.4)

Substituting ro=ry, ry=ry and r;=r, i=1,2,...,N—1 and using
(3.1) in (3.4) we get

s+A+E b

P e

Busa(s) = 5 (3.5)
u

r
A Ao
; STy N

Since in all the three modelsrg < 0and r; >0,i=1,2,...,N, S~ ={0}
and ST ={1,2,...,N}. Hence R'Q7 will have one zero eigenvalue
(=¢&o, say) and N negative eigenvalues (¢, /[=1,2,..., N, say). More-
over, N_ =1 we use (2.6) to compute 7, ;, which can be rewritten as

cniB; (&) docon

v (€& Hi‘v=1,i;£1(§l -&)

Since S~ = {0} and wj:pj,jes, where p=(\/u), the constant d, in
(2.10) can be given by

mj= (3.6)

d() ro(l _ N+1 Zr]p (37)

]—0

Also, for all the three models we have

_ (1 =p)p’
P =T v

JES.

Now we are ready to find exact expressions for F{u) for the three fluid
queue models under consideration. We present these results in the
following three theorems. We give the proof for all the three theorems
for we use different trigonometric identities in each of these theorems.
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THEOREM 3.2 For the fluid queue model M-1 the eigenvalues §;, [=0,
., N of the matrix R~'Q" are given by

U Vu cos (2l - Dm

A
§o—0,£1=—7—7+2 - NI I=1,2,...,.N (3.8)

and for j€ S,

(L=p)p  4doy/p™*?
1= T aNF

i s(1/2)[cos(2j+1) (1/2) — p~'Peos (2 — 1) (11/2)] .
= [1+p=2\/pcosyi]

Fi(w) =

xp (&iu)

where

1- 21 -1
d()=1—\/,5‘1—:7’%1v+—1 and ylzg—————)7I

Proof We use the following identity of [9] to find the eigenvalues of
the matrix R™!Q7 related to this model.

Identity

v—\Pq P
q v p

v p

9 Vinxnwn
N
B 2I-r
—1I=I1 (v 24/pqcos Wil )

Since ro = rA/(X — v/Ar) and ry=r we have from (3.1),

and ﬂ:%.
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Substituting for X and i in (3.5) we get

By1(s)
A
s3ap-YE
: ekt
=s§X
I
Eos+i+bly
(3.10)
Hence by the above identity we have
N
_ A p VA (21—
Bn+1(s) _sg (S+7+7—2 . cos w1 )
Therefore the eigenvalues of R~'Q7 are
A p A (21 -x
= =-=-L42 /I=1,2,...,N. (3.11
50 07 51 i‘ r + r cos 2N + 1 ) a2) 7N ( )

5 Now, we find an expression for B,(§)) for this model. Substituting
A= (Mr) — (vAp/r) and & in (3.2) and using the following identity

sin(n+1)0 — sinnf _ cos(2n+1)6/2

sin 0 ~ cosf)/2 (3.12)
we get
— (v )‘/4)'" o _ap Y
B"(&)_W cos(2n+1)5—p cos(2n—1)—2— , hES.
(3.13)
where y;= (21— 1)n/(2N+1). In particular,
_ 12 N
P2 (VAn) yi
= -1)=. .14
Bv&) =N eos () @V D3 (3.14)

Now we find an expression for & H?/=1,i;é1(§1 —&).
Substituting for £; in the above expression and using the following
identity [5]:
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N 2N +1

i=1;_i[¢l[cosy1 —cosy;] = 2¥+1cos (2N — 1)(y1/2) cos (y1/2)

(where y;=((2I-1)m)/2N+1),1=1,2,...,N) we get

N —1/2 N
g [ @-¢=- @V + l)l;r,v (v3)

i=1,i#l

[1+p—2p"cosy)]
cos (2N — 1)(y1/2) cos (v1/2)

Also, from (2.7) we have
{Ef# ji=1,2,...,N

Cni = »
YUla-ve e, =0
and

/\N
CON = v -
rN

(3.15)

(3.16)

(3.17)

(3.18)

Putting ro = A\r/(A — v/Ap) and r;=r, i=1,2,..., N in (3.7) we get

after some calculation

1—pV
do=1- oy

Substituting (3.13), (3.14), (3.16), (3.17) and (3.18) in (3.6) we get after

considerable simplification

 ddy 5
i T TIN

. Sos (1/2)[cos (2 + 1) (y1/2) — p~2cos (2j — 1) (y1/2)]

(1+p—2,/pcosy]
l,jeS.

Theorem follows by substituting for 7, ; in (2.4).
Special Case N=1.

The eigenvalues are

A
€ =0 and §1=—7—§ —=—$(1+p——\/ﬁ).

)
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The equilibrium distributions of the buffer occupancy are given by

1—
Fo(u) = 1+p p(1+‘f)e!<p(£1u), and
Fi() = 7 — i exp(Ew).

Hence, the marginal distribution of the buffer occupancy is given by

P(C<u)=Fy(u)+Fi(u)=1- 1\_/+_'5pexp(§1u).

Therefore, the probability density function b(u) of having ¥ amount of
fluid in the buffer is given by

b(u)_:%\/p(l"*‘p_\/ﬁ)

T exp(&1u)

with point mass d, at x=0:

which verifies the result for the case

r

N

S=1,c=0,0=r and n=

in [12, p. 122].
THEOREM 3.3  For the fluid queue model M-2 the eigenvalues &;, |=0,
., N of the matrix R~'Q7 are given by

f=0,6=-2-L VMo DT oy v i)

and for j€ S,

R = 08+ b

1-
2"’: sin yi(cos yi + 1) [cos(2j + 1) (v1/2) — p~"?cos(2j — 1) (1/2)]
cos(2N — 1)(y1/2)[N cos Ny, sin y; + sin Ny/|[1 4+ p — 2,/p cos yj]

exp (§u)

(3.20)

I=1
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where

dy = (1 _pN)(l _ \/ﬁ) and y = (1_ 1)71’

1= phHl N

Proof We use the following identity of [9] to find the eigenvalues of
the matrix R™'Q7 related to this model.

Identity

v—\Pq P

q v p

4 p
q v—\/p—quN

= ij (v — 24/pgcos ¢ —N1)7r).

Since rg =r\/(A—+/Au) and ry =rp/(—/Ap) we have from
(3.1,

D VA VA
X=2-Y2E and ﬂ:ﬁ— s
r r r r
Substituting for X and /i in (3.5) we get
By1(s)
Ap
sder-YE
: s+det
=8X

N xN

(3.21)

Hence by the above identity we have

u A Ve (I=1
BN+1(S)=SH(S+;'+%—2 “cos( )W).
1=1

r N
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Therefore the eigenvalues of R™'Q7 are

£0=0, &= 2B VM U= DT o N (2)
r o r r N

_ Now, we find an expression for B,(¢) for this model. Substituting
A= (A/r) = (VAp/r) and & in (3.2) and using the identity (3.12) we get

B,(&) = Fg()\/j——g,—?/z—) cos (2n + 1)%-— p~2cos (2n — 1)%], nes
(3.23)
where y;= (/- 1)7/N. In particular,
_ (1= (vm)" Y
By(&) = W o0s (1/2) cos (2N — 1)5:. (3.24)

Now we find an expression for & H?’:,#,(& - &).
Substituting for &; in the above expression and using the following
identity [5]:

N cos Ny, siny; + sin Ny,

N
TT Tcosy — cosyi =

i 3.25
i=1,itl 2¥-Tsiny;(cosy; + 1) (3.25)
(where y,=(—1)7w/N, [=1,2,...,N) we get after some simplification
N 1/2 N
p (VA
& H & —¢&)= ————(rN—)—
i=1,i1

N cos Ny;siny; + sin Ny,
siny;(cosy; + 1)

[1 + p— 29" cos ]
(3.26)
Also, from (2.7) we have
il i=1,2,...,N
ch — = » N j I Rt I (327)
(1=vP ), j=0
and
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Putting ro=Mr/(p—+vAn), rv=pr/(A—+vA) and r=r,
i=1,2,...,N—1in (3.7) we get after some calculation

o 1= 0=y

1 — pN+

Substituting (3.23), (3.24), (3.26), (3.27) and (3.28) in (3.6) we get
after considerable simplification

42
mj=do\/p’"

siny;(cosy;+1) [cos(2j+1)(v1/2) — p~/*cos(2j — 1) (y1/2)] Lis
cos (2N —1)(y1/2)[NcosNy;siny; +sinNy,|[1+p—2,/pcosy;]’ o

Theorem follows by substituting for 7, ; in (2.4).
Special Case N=1.

The eigenvalues are

€=0 and ¢ =—%—ﬁ+2

r r :_%(1__\/7))2'

3

The equilibrium distributions of the buffer occupancy are given by

_ 1
Fow) = 155~ T4 ep(Ew), - and
Fl(u) 14 14

= m 17 pexp(glu).

Hence, the marginal distribution of the buffer occupancy is given by

P(C<u)=1- ——\/E(ll—_:—pi_ezexp({lu).

Therefore, the probability density function b(x) of having u amount of
fluid in the buffer is given by

buy = 2SI e
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with point mass dp at x=0:

which verifies the result for the case

r 1= p)
S=1,c=0,6= and n=——"F
I-p (1-yp)

in [12, p. 122].

TueoreM 3.4 For the fluid queue model M-3 the eigenvalues &;, |=0,
1,...,N of the matrix R~'Q7 are given by

A \/Xﬁ (2l - _
& =0,§= +2 . T I=1,2,...,N (3.29)
and for j€ S,
(1-p)p/ _doy/p™'(1+ \/p)
Ff(u) 1-— N+1 N
XNZ‘”" y1eos(2) +1)(n/2) = p~V2eos(% ~ (/2]
p ©;sin Ny;[1 + p — 2\/ﬁ cos yj|
(3.30)
where
_(1+M0-vp) _@ -
e R
and

0, = [cos(2N+ 1)%—P‘l/zcos(2N— 1)% '

Proof We use the following identity of [9] to find the eigenvalues of
the matrix R ~'Q7 related to this model.
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Identity

v—\Pq P

9 VH+VPalyyn

= ﬁ <v -2 pqcosglz—Tl)ﬂ).

Since rg =rA/(A—+/Ap) and ry =rp/(p++/Au) we have from
(3.1,

)::é— VA and ﬂ=ﬁ+ A,u'
r r r r
Substituting for X and  in (3.5) we get
sHA+E— \/'\—” £
A 542 ape &
BN+1(S)=SX .
L
e W
(3.31)

Hence by the above identity we have

VA 21 -1
Byii(s -sH(s+ _+_N 2 r“o( 2N)7T>.

Therefore the eigenvalues of R™'Q are

_ A oV (-7 _
=0, &= . r+2 008 I=1,2,...,N. (3.32)
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_ Now, we find an expression for B,({;) for this model. Substituting
A= (A/r) = (v Ap/r) and & in (3.2) and using the identity (3.12)
we get

A n

(3.33)

where y;=(2/—1)7/2N. In particular,

By(&) = % [cos(ZN + 1)% — p~2cos(2N — 1)%] . (3.34)

Now we find an expression for ¢; nﬁil#,(gl - &).
Substituting for £, in the above expression and using the following
identity [5]:

N .
Nsin Ny,
[cosy; — cosy] = = (3.35)
i=];i[;él 2NV-Isiny;

(where y,=QI/-1)x/2N, [=1,2,...,N) we get after some simplifica-
tion

N —1/2 N 912
N, V) sinNy; [1 + 2p'/*cosy
51 H (§I _ é-t) - _ P ( eru‘) yl[ 4 Sinpyl l] (336)

i=1,i#l

Also, from (2.7) we have

N—j

) i=1,2,...,N

c,vjz{ A (3.37)
(1_\/5 )u;N—J’ ]=0

and

)\N
cov = (1+v/) - (3.38)
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Putting ro=Ar/(A—+Au), rv=upr/(p++vAp) and ri=r,
i=1,2,...,N—1in (3.7) we get after some calculation

L M-y
0= 1— v

Substituting (3.33), (3.34), (3.36), (3.37) and (3.38) in (3.6) we get
after considerable simplification

do/p’*' (1 + /p)
sin yi[cos(2j + 1) (v1/2) — p~'cos(2j — 1)(31/2)] Ljes
©ysin Ny;[1 + p — 2,/pcos yi] o '
Theorem follows by substituting for 7, ; in (2.4). | J ]

Special Case N=1.

The eigenvalues are

- __A_K__H
& =0and & = S r(1+p)'

The equilibrium distributions of the buffer occupancy are given by

_ 1 yl-p)
Fo) =1~ T+ o0 +\/7))CXP(£1”)’ and
p

p
Fi(u) = —"——
1) I+p 14p

exp(&1u).

Hence, the marginal distribution of the buffer occupancy is given by

P(C<u) =11 _\{_/f/pexp(glu).
Therefore, the probability density function b(u) of having u amount of
fluid in the buffer is given by

b(u) = E\/ﬁ(l +7)

p T:\/‘Z)—Cxp(ﬁlu)
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with point mass dy at x=0:

1

dy = ——
*T1+p

which verifies the result for the case

in [12, p. 122].
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