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1. INTRODUCTION

Queueing systems where the server does not start service until the
queue size has reached a specified level have been extensively stud-
ied by different authors, sometimes under different appelations, such
as service delayed models, models with accumulation level, quorum
models, models under g-policy, etc. Results and applications of these
models and of their various variants are reported by Dshalalow [3, 4].

Just as much studied, if not more, are priority queueing systems.
Many real world queueing systems have their customers divided into
classes. It is only reasonable to distinguish between express and regular
mail, rush and ordinary jobs, and, generally speaking, important and
less important customers. The use of priority discipline improves the
measures of performance of the higher priority classes at the expense
of the lower priority classes.

The present paper incorporates a priority discipline into a service
delayed queueing system. Customers are divided into two classes: a
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class 1 (high-priority) customers and a class 2 (low-priority) customers.
The interest is on the joint queue size distribution, and we derive it in
the steady state.

The organization of this paper is as follows. In Section 2, we report
some results related to the service delayed queueing system M/G"/1.
In Section 3, we introduce the service delayed queueing system
with priority discipline M',M?/G"/1 and derive the joint queue size
distribution in the steady state. A summary and directions for further
research are given at the end of the paper.

2. THE M/G"/1 MODEL

Consider a queueing system where customers arrive to the facility
and wait for service on a first-come, first served basis. Arrivals
occur according to a Poisson process with rate A. Assume there
is one server. Assume also that the server becomes idle after a
departure if the queue size is smaller than a given level » and that
he resumes work when the queue size has grown up to the level r.
The size of the batch of customers taken for each service is fixed
and equal to r. Let Q(¢f) denote the number of customers in the
system at an arbitrary time ¢ and let Q, be the number of custom-
ers in the system at the completion epoch T, of the nth service, that
is O, = Q(T;}). Also, let A,,, be the number of arrivals during
the service period of the (n+1)th batch. Then, (Q,) satisfies the
recursion

Qn+1 = (Qn - r)+ +An+1- (2'1)

(Q,) is a Markov chain. It is ergodic if and only if Ab < r, where b is
the mean service duration. Denote by P,(x) = E[x2"] the probability
generating function of Q,, by p;=1lim,_.P{Q,=i} the steady-state
distribution. Also, let A(x) = E[x*] = B*(\ — Ax), where B*(s) is
the Laplace—Stieltjes transform of the service time distribution B,
let U={1,2,...,r—1} and let I(-) denote the indicator function of
set U.
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TueoREM The probability generating function in the steady state
P(x) = lim,_,..P,(x) satisfies the following relation:

_AWH() - HE))

P(x) ¥ A (2.2)
where
H(x) = ipixi = lim E[x21y(Qn)). (23)
i=0 o
Proof

P,,+1(x) — E[erH-l]
- E[x(Qn-’)++An+l]

= A(x) (x "E[x%Iye Q)] + Elly(Ca)])
= A(xX)(x{Pu(x) — Ex®"Iy(Qn)]} + Ellu(Qn)]).

Now, let n— oo and solve for P(x) to get (2.2).

The result above is given for example in Dshalalow and Russell [5].
They also show how to get the unknown probabilities py, . ..,p,_; in
(2.2) using a variant of Rouche’s theorem.

We will be needing in Section 3 the distribution of the first return
time for the subset {0, 1,...,r—1} of states to itself. It was shown by
Tadj and Rikli [7] that the transition probability matrix of (Q,)

fo i L f
H A £ B
0= fo 1;1 fz 1;3 (2.4)
0O fo i o -

0 0 f A

where

00 k
fo= [ G s, ko (25)
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can be partitioned into blocks of dimensions r x r as follows

By B, B, B
Ao AL Ay As

0 Ay Ay Ay ---
2=10 0 4 4, --- (2.6)

0 0 0 A

where, for n > 0, the matrices B, have r identical rows with elements
(Bn)j = far+jy 5,7 =0,...,r—1, (2.7)

for n > 1, the matrices 4,, have elements
(An)y = forsjmi  LJj=0,...,r =1, (2.8)

and A, is upper triangular with elements
(A0)y =f-in 1<), 6,j=0,...,r—1. (2.9)

Using the terminology of Neuts [6], O is said to be a stochastic
matrix of M/G/1 type. Informally speaking, level i, i >0, consists of
the r states in the ith row of matrix Q, as represented in (2.6). For
k>1,0<i,j<r—1, let K;(k) be the conditional probability that the
Markov chain, starting in state i of level 0, returns to level 0 by hit-
ting state j, after exactly k transitions. Because the matrices B,, n > 0,
have identical rows, the probabilities Kj;(k) are independent of the
initial state i and will be denoted Kj(k). For k> 1, let K(k) =[Kq(k),
Ky(k),...,K,_(k)] and let K*(z) = Y 5o, K(k)z*. Then, using Neuts’
method [6], the vector K*(z) is given by (see for example Choi and Lee
[1D:

K*(2) = 2lfo, - oSt + D 2lfoms - s fintr1]G7(2), (2.10)
n=1

where the matrix G is the solution to the matrix equation

G(z) = zf:A,,G”(z). (2.11)

n=0
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3. THE M', M%G"/1 MODEL

We want to generalize and “refine” the previous model by assuming
that customers are divided into two classes: high-priority and low-
priority customers. Customers of each class follow an independent
Poisson arrival process with rates A\; and \,, respectively. They are
accommodated in an infinite capacity waiting room. The service time
distribution of each size r batch of customers is B, the same for both
priority classes. At time T, (the end of a service), the server takes r class
1 customers for service, if available. Otherwise, if there are i (i <r)
class 1 customers, then the server completes the batch by taking (r— i)
class 2 customers. Finally, if less than r class 1 and class 2 customers
are waiting, then the server idles until the level r is reached.

The analysis used in this section is not new. It generalizes that of the
previous section, making use of indicator functions. It has been used,
for example, by Choi and Lee [1] in studying a priority queueing
system, by Dshalalow [2] in studying the theory of fluctuations, etc.

Let Q'(¢) be the number of class i (i=1,2) customers in the system
at an arbitrary time ¢ and denote by @), = Q'(T;}) the number of class
i (i=1,2) customers in the system at a service completion epoch
T,. Then (Q), Q%) is a two-dimensional Markov chain satisfying the
following recursive equations:

:H—l = (Q,I,—")++An+l7 (3.1)

Qr1 = (0 — (r— Q) ) + Buni, (3.2)

where A, (respectively B,,;) is the number of high priority
(respectively low-priority) arrivals during the service period of the
(n+1th batch. The necessary and sufficient condition for the sys-
tem to reach steady-state is obviously (A +Ay)b <r. Let P,(x,y) =
E[x2+y2:] denote joint probability generating function of (Q}, 02), and
let A(x)=E[x""]=B*(\1 — A\1x) and B(x)=E[x?"]=B*(\, — \x).

THEOREM  The joint probability generating function in the steady state
P(x,y)=lim,_, . P,x,y) satisfies the following relation:

X"A(x)B(y)

o) = = A9B0)

(E[IU(Q1 + 0% - %ELvQ”QZIU(Q‘ +0%)]

- RG)+ LRO)), (3)
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where
R(x,y) = E[x?'y%'Iy(Q")] (3.4)
Proof
Poi1(x,y) = E[xrym]

= E[x(@)" HAn1(@~(=0)") +Bun]

_ E[xAm]E[me]E[X(Ql.—r)+y(Qﬁ—(r—Q,',)+)+]

= A(x)B(y) (E[x®"y2 Iy ()] + Ey @2 Iy(0})))

= A9B0) (5% 1on(0])]

+ Ey2 Iy (01 Iy (01 + 02)]

+ Elly (0} +Qﬁ>1)

= A0080) (35 {Pu(x) ~ BB 1001}
+Elly(Q, + 23)]
+ BN 15(0))

~ EpO G, (0 + Qf,n})

= A(x)B(y) (;Cl;P,,(x, y) + Elly(Q, + 03)]

1 1 2

- )7E[YQ"+Q”IU(Q,1, +02)]
1 1 2

+ ?EUQ"’LQ"IU(Q},)]

1 1 2
- LBy Q)]

Now, let n — oo and solve for P(x, y) to get (3.3).

Note that in the quantity between parentheses on the right-hand-
side of (3.3), the first two terms can be derived from (2.2) and that
only R(x, y) needs to be determined for P(x, y) to be fully determined.
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In order to obtain R(x,y) we follow the analysis of Choi and Lee [1],
and consider the joint distribution of the numbers of high and low
priority customers at a service completion in which Q' <r. So let 1,
denote a service completion epoch in which Q' <randfori=1,2, let
0, = Q'(t,). Also, let x, be the time period between t, and t,,,.
Define the joint probability generating function R,(x,y) = E[xQ:yQ:]
and the joint probability generating function in the steady state
R(x,y) = lim,_, R,(x,y). Then R and R are related by

R(x,y) = P{Q' <r}R(x,y), (3.5)

so that P(x, y) is fully determined if R(x,y) is. Note that for /> 1 and
j=0,...,r=1,P{x, = ,0,,, = j} = K;(l) is determined by (2.10). Let
C, denote the number of class 2 arrivals during the time period
x,. Then the embedded processes Q,ll and Qi satisfy

2

0ri1 = (0, +0p—1)" +Cy, (3.6)

THEOREM The joint probability generating function in the steady state
R(x,y) = lim,_oR,(x,y) satisfies the following relation:

R(x,y) = ((y,y> EN+21,(0" + 0°) + YE[IL (0" +0Y))

X —foK*(B (3.7)

]—0

Proof
Rn+l (x,y) E[x n+lan+1] — E[xQn+1y(Q +Q +C’l]

= ZE[XQ"*‘y@"+é"")++c”1{l} (xn)]
I=1

_ B[y @ B] iw@n’fz[xélw{,} ()]
=1
—1 oo

_.E[y(Q,,-(—Q,—' ZZXI[B ]K

Jj=0 I=1

= (EY2+ O "1ye(0} + OD)] + Elly(0 Z XK (B
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a2 1L 1 a1l
= (EYy&+%Iye(Q, + 01 + YEllu(Q, + 02))) ;fox; (B®))
j=0

= (Ru(y,) — ED® @ 1y(0) + O] + Y Ellu (D + 02)])
r—1
x -1— XK} (B())-
Y=
Now, let n— oo to get (3.7).

Note that in the quantity between parentheses on the right-hand-
side of (3.7), the first two terms are unknown.

COROLLARY

R(y,y) = (VE[u(Q' + 0%)] — Ep2 2 1y(Q" + 0%))) S YK (BG))
’ ¥ — VK (BO))

(3.8)

Proof Letting x=y in (3.6) and solving for R(y,y) we get (3.8).

The only unknown term in (3.8), E[yQIJ“QZIU(QI +0%), can be
determined by applying Rouche’s theorem to y" — E]’;é ny;(B(y)),
(see Choi and Lee [1]). Indeed, y" — Z;;é YK} (B(y)) has r roots in
the region |y| < 1. These roots must also be roots of the numerator in
(3.8) since R(y,y) is analytic in |y| < 1. Having determined R(y,y) by
(3.8), one can backtrack to get R(x,y) by (3.7) then R(x,y) by (3.5)

and finally P(x,y) by (3.3).

4. CONCLUSION

The probability generating function of the joint queue size is derived in
a service delayed queueing system with two priority classes. Among
the possible research directions:

— study the continuous time version of the process considered here.

— check the conservation law that the intensity of the system is equal
to the server capacity, as in most queueing systems.

— assume a different service distribution for each class.

— consider more than two priority classes.
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Extensions of this model are as numerous as the variants of the

service delayed queueing system. One may consider, for example:

a bulk arrival process

a modulated input process

a state dependence of the service process
an hysteretic control policy

an N-policy

a vacationing server

a random server capacity

customer impatience, etc.
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