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The paper shows how to compute a diffeomorphic state space transformation in order to
put the initial mutivariable nonlinear model into an appropriate regular form. This form
is an extension of the one proposed by Lukyanov and Utkin [9], and constitutes a
guidance for a “natural” choice of the sliding surface. Then stabilization is achieved via a
sliding mode strategy. In order to overcome the chattering phenomenon, a new non
linear gain is introduced.
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I. INTRODUCTION

Sliding mode control is based on variable structure systems theory: the
control commutates in order to force the systems motions to behave
on a desired surface (called the sliding surface). Sliding regimes are
unaffected by perturbations satisfying the well-known matching
conditions (see [1,2, 12]). The choice of the surface is mostly related
to some stabilization problem: the shape of the surface is selected a
priori, leading to a set of parameters that are to be computed
(adjusted) in order to obtain the desired dynamics ([2, 3, 10, 15]). For
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LTI systems, a natural shape for the sliding surface is a linear one
(hyperplan), but for nonlinear ones, one can tranform the initial
system into:

1. a linear one and then, select an hyperplan (see [4, 12— 14]);
2. transform the initial system into an appropriate form which
provides a guide for the choice of the surface.

The last approch is investigated in this paper. For this, we consider
MIMO systems modeled by:

X =f(x) +G(x)u, (M) (1)

where x € R” is the state vector, u € R™ is the control vector (m inputs),
f:R"—>R", a smooth drift vector field, G(x) = (g1(x), . . ., gm(X)) is an
(n x m)-matrix and the g;: R"—R" are smooth vector fields, g;(x) is the
control gain of the jth input acting on the ith state space variable.

Section 2 gives first a static feedback in order to obtain (1) with an
input gain matrix of full rank and then, solves the question of
obtaining (through a regular change of coordinates) an equivalent
“regular form” to (1), defined as follows:

21 =f1R(21722) + GR(ZI722)u7
(RF) = z = fX(z1,22), (2)
Z1 € Rd, Zy € R(=4)

Here, the number d may be greater or smaller than the number of
input m (see Theorem 2), whereas in [9] d=m: thus our result is more
general. On the basis of such a regular form, results of Section 3 are
devoted to the stabilizing controller design. Moreover, in order to
overcome the ‘““chattering” phenomenon, that is an important draw-
back of sliding mode control, we introduce a new nonlinear gain for
the signum function such that the gain decreases as the motions
converge towards the origin.
The following notations are used throughout the paper:

e for smooth n-vector fields, f(x), g(x), [8]: [f,g](x) L (Og(x)/0x)
f(x) — (0f (x)/0x)g(x), (Lie bracket). The Ad operator is defined by
AdPg(x) 2.5(x), Ad) (£) (x) 2 [f, £](v), . AdF(x) & [f, AdE~"](x).

e for a smooth real-valued function A(x), [8]: dA(x) & ((ON/Ox1),...,
(OA/0x;), ..., (ON/0xy)), (the “gradient” of X).
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e Sgn(¢) and Sgn(z) are respectively scalar and vector signum
functions defined as follows:

sen() = { T} £50 3)
SGN(z) = (Sgn(z1),...,Sen(z)),ze R, 4)

e k(-) stands for a function k£ of the state variables that may be
constant.

ll. OBTAINING THE REGULAR FORM

The problem is to find a diffeomorphic state space transformation
z=¢(x) changing (M) (1) into (RF) (2). The proposed procedure is:
firstly, transform (M) (1) into a model with full rank gain matrix;
lastly, define conditions on the existence of a regular form.

lIl.LA. On the Rank of the Input Gain Matrix

In [9], the hypothesis rank(G(x))=m was combined with some
additional integrability conditions to obtain (RF) (2) with d=m.
The next theorem shows how to recover this hypothesis from the
general case through a static feedback:

THEOREM 1 Let xo € R. If rank(G(xo)) =r, then there is a static feed-
back u=W(x)(",0,...,0)", ve R", with W nonsingular in a neighbour-
hood N (xp) of xq, such that:

G(x)W(x) = (G'(x)|0, x pn-n), VxEN(x0). (5)

combined with (M) (1) leads to:
x=f(x)+ G (x)y, (M) (6)
where v is the new control vector, G'(x) is a (n X r)-matrix of full rank r.

Proof This comes out directly by performing a Gauss reduction on
columns (using elementary columns transformations: interchange,
sum, scalar multiplication by a(x)). Recall that in order to compute
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(5), one can perform on G(x) and on the (m x m)-identity matrix the
same operation which leads respectively to the right-hand side of
Eq. (5) and to W(x). Note that det(W(xo)) = 1. |

In the following, we consider that rank(G(x))=m, otherwise
(rank(G(x)) =r < m), the previous theorem allows us to consider the
system (M) (1) with static feedback (5) which leads to (") (6).

I.B. On the Existence of a Regular Form

The given results are local, but when asumption H1 (see theorem
statements) holds everywhere in the state space, then the diffeomorph-
ism is global and so are the results. The following statement can be
regarded as an extension of previous results for nonlinear systems
using differential geometric approach (see [8]):

THEOREM 2 Let A be a distribution such that:

(H1) A is nonsingular at x (i.e., of constant dimension dimA =da < n),
(H2) A is involutive: V11 € A, VT, € A [T, o] €A,
(H3) span {g1(x), ..., gm(x)}C A,

then there exist a neighbourhood N (xy) of xo and a local diffeomorphism
z=¢(x) defined on N (x,), such that (M) (1) is transformed into (RF)
2) with d=da <n.

The involutive closure' of span {g(x),...,gn(x)} denoted by Ag,
satisfies the assumptions of Theorem 2.

Proof Under assumptions (H1)—(H3), one can find (n—ds) real
valued functions ); such that the anihilator A* = {w* € (R")*:(w",
v)=0, veA) of A is spanned by the covectors d\; (Frobenius
Theorem). Selecting ¢4, +: 2 A, for i€ {1---n—du} and completing the
basis with real valued functions ¢; for i€{l---da}, such that
rank(dg;:i€ {1---n})=n, leads to the result. |

Remark 1 Note that, for m=1 with g(x¢)#0, the distribution
A =span{g;(x)} is involutive and (M) (1) can be transformed into
(RF) (2) with d=dimA = 1. Now, if A =span{g;(x), .. ., gm(x)} satisfy

Isee [8] for its construction.
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(H2) and (H3) of Theorem 2, then one obtains the classical result of [9]
(d=dx=m). So, our result is an extension which, as we will see in the
following sections, provides a guidance for the design of sliding mode
controller in the general case: d may be greater or smaller® than m.

lll. STABILIZING SLIDING MODE CONTROLLER

From (RF) (2), it is clear that, in order to make the origin of (M)
(1) stable, one can design a sliding mode control in the following
way:

1. let s=z; — p(z2) € R%, where the d-vector valued function p is to be
defined,

2. design a sliding mode control such that a sliding regime occurs on
the manifold s =0 of dimension (n—d),

3. define p such that the origin z, =0 is locally asymptotically stable
for z, = fX(p(22), z2) (dynamics in sliding regime).

In this procedure like in the center manifold theory (see [5]), there
are two time scales: a fast one (the hitting phase is in finite time) and a
slow one (asymptotic stabilization in sliding regime). Thus the sliding
manifold plays the same role as the center manifold does in the theory
of the same name.

This idea was first used in [9] under three assumptions: first d=m,
secondly rank(G(x)) =m and under an integrability condition on G(x)
(which is always fulfilled when m=1). In the following we give a
generalization of these results. According to the previous section, we
can distinguish the two following cases®:

1. r=rank(G(xg)) =dimAg;
2. r=rank(G(xp)) < dimAg.

Here, we shall consider the first Case 1; the second case will be
treated through Example 2. Note that this first case is also considered
in [9], but in the paper, all trajectories (this means for all initial

2if we do not use Theorem 1.
3 After eventually applying static feedback of Theorem 1 (see Section IT.A).
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conditions) belonging to the surface must converge asymptotically. In
our case, only local asymptotic stability is required. The sliding gain is
calculated in such a way that the motions reach the sliding surface in
its stable part.

THEOREM 3 Let us suppose that:
(H1) Ag exists with dimAg=r=rank(G(x,)), one obtains (RF) (2)
withd=r,

(H2) fR is at least C'\(R"R" "),
(H3) the origin 0 € R"™" of system:

Z =f2R(p(Zz),Z2), (7)

is locally asymptotically stable, with p(z;) € CY(R"~7;R"), p(0)=
0eR’,

Then, defining the sliding surface as s =z, —p(z,), we have:

(C1) there exists a gain k() providing a local asymptotic stabilization of
the origin w.r.t. (RF) (2), by means of the control:

Op(z2)

u=(G"(2))™ (~f() — k()SGN(s) + =5
22

7)), (8)

(C2) if in addition 0 € R =", is globally asymptotically stable for (7),
then the origin of (RF) (2) is globally asymptotically stable under the
control (8) defined with any non zero constant gain k(-).

Proof (constructive) (H1) implies G®(z) is nonsingular and (G%(z)) ™'
exists (for all z in a neighbourhood of z).

Point (C1): ||x||; = 31, |xil, x€R". From (H3) using a converse
Lyapunov theorem (see [7]), there exist a Lyapunov function
Va(z2) e C{(R”"~7;R,) and p, >0 such that for every motion of
system (7) starting in Sy(p2) = {z2€ R"~™: Vy(z,) < po}, we have
Va7, <0. So, let us consider V(z) =(c/2)s"s+ Va(z2), with a >0, and
restrict our attention to S(p2) = {z€R":V(2) < ps}:Vps < 00, S(po) is
compact.

i
Vi = o854 G2 U e1, )~ 0(e), 20 + (), )
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vy
‘5‘2— 1, 22) — £ (p(z2), 2]
22

<Z

8V2

(6V2> ’l £ (z1,22) = £ (p(22), 22))

Ilfz (z1,22) — 5 (p(22), 22) I

(H2) implies that fR is uniformly Lipschitz on S(p,), and
as  (21,22) € S(p2) = (p(22),22) € S(p2), thus IL,, : V(z1,22) €S(p2),
1 (z1,22) = fR(p(22), 22)lly < L llz1 — p(22)]ly = Lyps™ SGN(s). With
control (8), this leads to:

oV,

Vig < = ak()s'SGN(s) + Ly, || o= s

sTSGN(s)

1

i
O R (p(z2), ), V2 €8(00) o)
22

We can now choose k(-) =1+ (L,,/a)|(0V2/0z2)]; : Vl(2 < —oas'
Sgn(s) + (8V2/8z2) 'fR(p(z2), z2). V2 is a Lyapunov function for (7): if
z€ S(p2)CR” then z; € Sy(p2) C R ™™, s0 Va7 (av2 /82, R (0(22),
;) is negative define Vz; € S»(p). Therefore (6V2 /0z2) ' fR(p(22), z2) is
negative V, € S(p,) C R”, which ends the proof.

Point (C2): first show that solution tends to the sliding surface in finite
time (see for example [10]), then the result follows obviously. [ |

THEOREM 4 If (H1) and (H2) of Theorem 3 hold and (H3) is replaced
by: (H3') there exist a Lyapunov function V,(z,) and a constant p, such
that Sy(py) = {2, € R ™7 : Vy(2,) < py} is an estimate of the domain of
asymptotic stability of the origin 0,€ R"~" of (7), then, the control u
defined by (8) with gain k() = k/'(-) + (L,,/2)||(0V2/022)|,, k'(z) > 0,
a > 0, achieves asymptotic stability of the origin for system (RF) (2)
with S(py)={z€R":(/2)s s+ Va(z2) < p2} as an estimate of the
domain of asymptotic stability.

Proof direct extension of the proof of Theorem 3. |

Remark 2 1If, in addition, lim,,_ ||(8V2/0z,)| = lim,—ok'(z) =0,
then “chattering” tends to zero as the motion approaches the origin.
This condition is not very restrictive because, it is fulfilled if the
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Lyapunov function ¥V is, locally, at least quadratic (k'(-) can be set to
(Ly,/a)(0V2/02,)||, for example). Note that k'(-) can also be set to any
other sigmoid function zeroing at the origin: in [14], the sign function
is replaced by a saturation function in order to smooth the
discontinuity.

Example 1 Consider the following nonlinear system

X1 = X3 +u,
Xy = X1 +uy + uy, (10)
X3 = X1X3 + uz.

Distribution A =span {g,g5}, g1=(1,1,1)7, 2,=(0,1,0)", is a two-
dimensional involutive distribution. In order to find ¢, one has to find
a basis of A*:

drg1 =0 (OX/8x1) + (ON/Dx2) + (OA/Bx3) = 0
{d/\g-—-O‘:’{ ) Em?azg:% = , (11

which has solution A(x)=x;—x3. Thus z=¢(x)=(x1, X2, X1 —X3)"
leads to (Theorem 2)

21 =22+u1v
Zy=z1+u; + up,

23 =2z — 21(21 - 23).

Here rank(G)=2, so according to Theorem 4, let u be defined as
u=(=x24v,X2—x;—vi+)", and let s be defined as s=(z1—z3,
Z3423) =(xX3,X1+X2—x3)'. Let v = —Sgn(x3)+x3—x1x3, V=
—Sgn(x;+ X, —x3) — X2+ x1x3. Then, in sliding regime 23 = —z3, and
global asymptotic stability of the origin is achieved (Fig. 1).

In order to reduce the chattering phenomenon one can use a
nonlinear gain as proposed in Theorem 4 : V,(z;) = (z3/2) leads to
choose the gains of Sgn(x3) as |x; —x3| and of Sgn(x; +x, —x3) as 2 |x;|
|x1—x3| (Fig. 2). Here, one can take two different gains, for this,
rewrite k(-)s' SGN(s) as _/_, ki(-)|s;| in the proof of Theorem 3.

Example 2 This second example illustrates the case rank(G(xp))=
r<d=dimAg. The obtained regular form in Section I provides
informations: as rank(G(xg))=r < d=dimAg, G®(z) the obtained
input gain matrix in (RF) (2) can be splitted into 7(z) a low triangular
(r x r)-matrix and R(z) a rectangular matrix. This is possible due to the
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FIGURE 1 Stabilization of (10) using constant gains for sign functions.
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FIGURE 2 Stabilization of (10) using non linear gains obtained via Theorem 4.

use of the prestatic feedback u= W(x)(»",0, . ..,0)7 given by the Gauss
reduction in the proof of Theorem 1 and using, if required, a
permutation of the coordinates. Let us denote by i < r the number of
rows of T which are necessary to span the rows of R. Then using i
integrators, one can obtained a dynamical extension for which
Theorem 3 or 4 may apply. This procedure is going to be applied on
a monocycle (see Fig. 3) with the pedaling rolling action (u;) and the
rotating action ((df/dt) = u,).

The model, which also express the dynamics of a two-wheel cart (see
[6]), is:

dx1

E = sin 0“],
d
% = cos fu, (12)
db
=Uup.

i
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FIGURE 3 Monocycle.

Let g;(x)=(sinf, cos6,0)", g,=(0,0,1)". As gi(x)=I[g1, )=
(—cosb,sin6,0)" ¢span{g(x),g2(x)}. Let Ag=span {g(x), g2(x),
g23(x)}, this is a three-dimensional involutive distribution (compute
the Lie brackets [gy, g3] and [g;, g3]). Note that dim(Ag)=3 implies
that (12) is locally accessible. The proof of Theorem 2 implies that for
this system one cannot obtain (RF) (2) with d less than 3 : thus (12) is
in a regular form with rank(G(xp))=2<3=dim Ag From this
regular form and the introduction of this example, permutting x, and
6, it comes out that the last and first rows of G®(x) are dependent
thus adding an integrator on the first input will break this link and
leads to:

dx1 o
= = S (0)¢,
2 — cosloe,
13
@ (13)
dt =Uy =V,
d
'a§ =V, U= 6

Then, according to Theorem 4, let s=(£6)  —p(x1,x2), thus
§1 = vy — sin (0)€ = —k1(-)Sgn(s1), §2 = vo — cos (0)§ = —ka(-)Sgn(s2).



SLIDING MODE CONTROL 25

In sliding regime,

X1 = sin (pa(x1, x2))p1(x1, x2),
Xy = cos (pa(x1, x2))p1(x1, x2),

which can be set respectively to the values —ax; and — fBx;,, for some
a>0and 8> 0. For this, let p;(x;, x2) = — (ax;/sin(arctan(ax;/6x2))),
and p,(xi, x;) = arctan(ax;/Bx,). Moreover, in order to stabilize
the origin of (12), we need # to tend to zero which is achieved
if lim,_, | (arctan(ax,(?)/Bxx(f)))=0. A sufficient condition is
(—a+B3) <0 (see [6]). Let us select a=2 and @=1. Thus, global
asymptotic stability of the origin of (12) is achieved using the control
laws defined by:

! &(4sin (0)x; + cos (0)x2)
u = — Sgn(sy) — T)dT,
0= [ (- xoy /(1 + 4(:%/33)) )0

(14)
. 2¢(sin (6)xy — cos (6)x1)
Uy = Vy) = k2( )Sgn(sz) + 4x% T X% )
_ 2X1
si=E+ sin (arctan(2x;/x,))’ (15)

2x
S =60 arctan(——l)
X2

Note that Gulden and Utkin ([6]) used an other approach, imposing
the cart (or monocycle) to approach the origin according to a
“Lyapunov Navigation Function” (the tracked path is derived from
this Lyapunov function).

Figure 4 illustrates the stabilization of the origin under the controls
(15) with k;—;2(-)=1. The simulations were achieved from the
following initial conditions: x;(0)=1.2, x»(0)=2, 6(0)=0.2(rd),
£0)=0 (no control at time zero). One can note that the first control
u; is rather smooth (no chattering) : this is due to the presence of an
integrator before the physical actuator. For the second control u,,
there is some chattering which can be smoothed using different
technics (see for example [14] or sigmoid functions). But, we can use a
nonlinear gain as proposed in Theorem 4. Using the Lyapunov

function Va(z;) = x} + (x3/2) leads to choose ky(-) = 0.24/4x3 + x3.
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FIGURE 4 Stabilization of (12) using (14) with k;_; o(-)=1.
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FIGURE 5 Stabilization of (12) using (14) with k(-) = 0.24/4x? + x3.

“1”

This gain replaces the gain of the signum function Sgn(s,) in (15)
and yields the simulations of Figures 5.

IV. CONCLUSION

A first contribution of this paper is to complete the general problem of
regular form initiated by Lukyanov and Utkin [9]:

1. The given results (Theorem 2 and consequences) are general (d may
be greater or smaller than the number of inputs m) and do not
depend on the rank of the input gain matrix (contrary to [9]).
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2. The construction of Ag is easily obtained applying the algorithm

for the involutive closure of span {g;(x),...,gm(X)}.

In addition, Section III gives the design of a sliding mode controller
achieving asymptotic stabilization of the origin. The proposed design
procedures take into account the rank of the input gain matrix and the
dimension of Ag which lead to the regular form. Lastly, a nonlinear
gain is given in order to reduce the chattering phenomenon as the state
converges asymptotically to the origin.
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