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Wave propagation in a transversely isotropic unbounded medium rotating about its axis
of symmetry is studied. For propagation at high frequencies, effects of rotation are
negligible but for a frequency which is much smaller than the frequency of rotation,
there is a fast wave and two very slow waves. When the two frequencies are equal, the
speed of a wave becomes unbounded.
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1. INTRODUCTION

Schoenberg and Censor [1] have considered the effect of rotation
on plane wave propagation in an isotropic medium. Their results
showed that a rotating isotropic medium behaves like a transversely
isotropic medium to the extent that, in any given direction, there
propagate three waves having different polarizations and phase
speeds. They also showed that such waves are, in general, neither
dilatational nor transverse. Such waves exist only if the axis of
rotation and the direction of propagation are either parallel or
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perpendicular to each other. Chandrasekharaiah and Srikantiah
[2] discussed thermoelastic waves in a rotating medium and
Chandrasekharaiah and Srinath [3] have discussed thermoelastic
plane waves without energy dissipation. However it has been recently
shown by the present authors [4,5] that the results of [2] and [3]
are erroneous since the dilatational and transverse waves cannot
propagate in an arbitrary direction.

Chadwick [6] has discussed, in great detail, wave propagation in a
transversely isotropic medium. He gives expressions for the three wave
speeds and the corresponding polarization vectors for propagation in
an arbitrary direction. One of the three waves is always transverse and
the other two, in general, are neither longitudinal nor transverse save
for some special directions.

In this paper we shall discuss wave propagation in a rotating
transversely isotropic medium. We find that for a frequency much
smaller than the frequency of rotation, there is a fast wave and two very
slow waves. Also for frequencies approaching the rotation frequency a
very fast wave will propagate in an arbitrary direction. We present
numerical results for cadmium for four directions of propagation.

2. BASIC EQUATIONS

The constitutive equation of an anisotropic elastic solid is expressed by
the generalized Hooke’s law, which can be written as

gij = Cijkl Exl i, j, k, 1= 1, 2, 3,

where oy; are the Cartesian components of the stress and ey is the
strain tensor which is related with the displacement vector, u;, as

1
& =5 (o) +m),

Cijui are the components of a fourth-order tensor and are called the
stiffnesses of the medium. The Einstein convention for repeated indices
is used. For a homogeneous elastic body

gij; = Cijki Uk, i1, (1)
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where the comma denotes differentiation with respect to the appro-
priate component of x. If a body is rotating about an axis with a
constant angular velocity {2 then the equation of motion in the absence
of body forces can be written as

oij = p{iii + Qi — P + 2e Y}, (2)

[1], where the dots indicate differentiation with respect to time.
The ¢ is Levi—Civita tensor and p is the mass density of the ma-
terial. Thus the equation of motion (2), by using the relation (1),
becomes

ijk|ukJ1 = p{ﬁi + leljﬂi - Qzui + 2Eijkﬂjﬁk} (3)
We assume a plane wave solution of the form
u; = Alexp{i(k nj x; — w t)}]p;.

Here w is the frequency and k is assumed to be a complex wave
number. The amplitude A is also assumed to be complex whereas n;
and p; are unit vectors specifying the direction of propagation and
the polarization of the displacement wave. The speed of the wave is
given by

w

Re(k)’ “)

Substitution of u; in Eq. (3), after cancellation of A and the
exponential factor, gives

—K*Cija nj m py = p{—w’ p; + Qp;d
— Q% p; — 2 i weij  pi}
which can be written as
—K*Qy pr = p{—w’ pi + Qp; € — Q° p;
— 2 i weijk Px} (5)

where
Qik = Ciju nj ny,
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is the acoustical tensor for the problem. It is shown in [6] that

p'Qi = {2 — (&2 — as)(e.n)*}6ix + (a1 — @2)niny,
— (a1 — ap — as)(e.n)(ngéj3 + nibk3)
— {a2 —ay — (a1 + a3 — 2a4 — 2a5)(e.n)2}6i36k3. (6)

ai, a, etc., are related to the stiffnesses of the material by the following
definitions

1 1 1
ay =—Cn, a2 =~(011 - 012), az = —Cs3,
P p p
1 1
as = —Ca4, as =—(C13 + Ca4)
P P

p being the density of the material. These parameters have the
dimension of the square of velocity and e is the axis of symmetry i.e.,
¢; = ;3. Equation (6) gives

Qi Px = pl{az — (a2 — as)n3}p; + (a1 — az)my py 1y
— (a1 — ay — as)n3(ng pydiz + 0 p3)
— {az — as — (a1 + a3 — 2a4 — 2a5)n§}p3 6i3]. (7)

From Egs. (5) and (6), it follows

—K*[{a2 — (a2 — aq)n3}p; + (a1 — az)ny py D
— (a1 — az — as)n3(nk pidiz + nj p3)
- {a2 — ag — (al + a3 — 2a4 — 2a5)n§}p3 6i3]
= {—u” pi + O 0% — 9 p; — 2 i weiY P}
or
[(w? + 9%) — K*{az — (a2 — as)n3}]p; — K*[(a1 — a2)ny py 1y
— (a1 — az — as)n3(ng pydis + n; p3)

- {02 — a4 — (a1 + a3 — 2a4 — 2a5)n§}p3 5i3]
= {Qj p; Q-2 iWEiijj pk}.

We assume, for simplicity, that the body is rotating about its axis of
symmetry, thus = (0,0, 1). We choose a coordinate system such



WAVE PROPAGATION 151

that the propagation vector m is in the yz-plane i.e., n=(0,ny,n3).
For i=1,2, 3, the following system of equations is obtained

[(1+T?%) - x*{a 03 + as n3}]p; — 2iT p, =0, (8a)
2i T py +[(1+T?%) - x*(a n3

+ a4 n3)]p, — x* as np n3 p; =0, (8b)

—x% as ny n3 p, + [1 — x*(a3 03 + a4 n3)]p; = 0. (8c)

where we have defined I' = (Q/w) and x = (k/w).

For a nontrivial solution one must set the determinant of the above
system to zero. This gives the characteristic equation which can be
solved for (w/k) to find the velocities of the three waves which
propagate in the medium. The determinantal equation is

14T2—x?(ayn3+a4n}) -2iT 0
A= 2T 1472 —x2(an2+a4n3)  —x%asnpn;  |=0.
0 —x2asnyn; 1—-x2(asn3+a4n3)

3. WAVE SPEEDS AND POLARIZATIONS

3.1. Two Special Cases

First we consider two special cases. When, I' > 1, we can approxi-
mately write A as the product of the diagonal terms and it will vanish
if X =X, X5, X3 where

1 r
X = ———, X &= —————,
1/0311% -+ a4n§ ”aﬂ’l% +a4n§
T
X3 =

A/ azn% + a4n§

If 6 is the angle between the propagation vector and the axis of
symmetry, nz3=cosf, n,=sinf and we conclude that for the three
waves travelling in an arbitrary direction and having a frequency w
much smaller than the rotation frequency one will be a fast wave
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having the speed

Vas cos20 +ay sin26

while the other two will travel at a much slower speed. In the limit
I — oo, these latter speeds approach zero. From Eq. (8) it is obvious
that for the fast wave p;=p,=0 and p3=1, thus this wave will be
longitudinal. Another observation about the determinant A is that the
choice I'=1, x =0 makes it vanish. This implies that the speed of a
wave, whose frequency equals the rotation frequency, will approach
infinity. However various approximations involved in the theory, will
set an upper bound on this speed.

3.2. Special Directions

Consider a wave propagating parallel to the axis of symmetry i.e.,
n,=0, ny=1. In this case, Eq. (8) gives us a longitudinal wave
travelling with speed /a;. For the other two waves we have, from Egs.
(8a) and (8b)

(14T2 — a4x?)* — 41?2 = 0,
or

|1+
s

Thus there are two waves with speeds respectively (y/as/|1 +I'|) and
(v/as/|1 —T|). The speed of the second wave will be unbounded when
T"'—1, as has been noted above. Both of these waves will be transverse.

Now consider wave propagation in the basal plane i.e., a plane
perpendicular to the axis of symmetry. Here n;=0 and n,=1.
Equation (8c) gives a transverse wave traveling with a velocity of ,/ag.
The speeds of the other two waves, which are neither longitudinal nor
transverse, are determined from the equation

(1-T2%4 -~ (1 + T (a1 +a)? +a1 ay =0

where we have put v =(1/x). The above equation is a quadratic in v
and has two positive roots.
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3.3. Arbitrary Directions

The characteristic equation for an arbitrary direction is a cubic and
can be solved for any given material and a specified direction. For
cadmium the material parameters are as follows, in units of giga
pascals

Material pa 02y paz Py pas  p (Density)
Cadmium 116 37 509 196 60.6 8642kg/m>

In Table I we list values of the three velocities for four directions of
propagation ie., §=0°, 30°, 45° and 90°, as a function of (Q/w).
Table I exhibits the qualitative features discussed above.

TABLE I Velocities of propagation (m/sec.) in

cadmium

r vy 28 V3

(a) §=0°

0 1505.99 1505.99 2426.9
0.1 1369.08 1673.32 2426.9
0.5 1003.99 3011.97 2426.9
0.99 756.717 150599 2426.9
10 136.98 167.332 2426.9
100 14.91 15.21 2426.9
(b) 0=30°

0 1408.52 1664.74 2838.51
0.1 1375.18 1700 2875.78
0.5 1094.3 1943.92 4171.77
0.99 845.77 1998.81 197842

10 155.87 192.82 2236.87
100 16.62 17.93 2232.61
(c) 9=45°

0 1407.93 1809.62 3153.1
0.1 1395.06 1811.48 3211.01
0.5 1198.71 1822.84 4902.11
0.99 952.02 179829 2358.1
10 174.16 229.8 2027.4
100 18.08 21.99 2019.71
(d) =90°

0 2069.16 3663.72 1505.99
0.1 2040.71 3752.31 1505.99
0.5 1671.96 6045.43 1505.99
0.99 1280.38 297526 1505.99
10 204.07 275.23 1505.99

100 20.68 36.64 1505.99
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