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The solution of time-delay systems is obtained by using a hybrid function. The properties
of the hybrid functions consisting of block-pulse functions and Chebyshev polynomials
are presented. The method is based upon expanding various time functions in the system
as their truncated hybrid functions. The operational matrix of delay is introduced. The
operational matrices of integration and delay are utilized to reduce the solution of time-
delay systems to the solution of algebraic equations. Illustrative examples are included to
demonstrate the validity and applicability of the technique.
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1. INTRODUCTION

There are three classes of sets of orthogonal functions which are
widely used. The first includes sets of piecewise constant basis func-
tions (PCBF’s) (e.g., Walsh, block-pulse, etc.). The second consists of
sets of orthogonal polynomials (e.g., Laguerre, Legendre, Chebyshev,
etc.). The third is the widely used sets of sine-cosine functions in
Fourier series. While orthogonal polynomials and sine-cosine func-
tions together form a class of continuous basis functions, PCBF’s
have inherent discontinuities or jumps. References [1] and [2] have
demonstrated the advantages of piecewise constant basis spectral
methods over Fourier spectral techniques. If a continuous function is
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approximated by PCBF’s, the resulting approximation is piecewise
constant. On the other hand if a discontinuous function is approxi-
mated by continuous basis functions, the discontinuities are not pro-
perly modeled. Signals frequently have mixed features of continuity
and jumps. These signals are continuous over certain segments of time,
with discontinuities or jump occuring at the transitions of the segments.
In such situations, neither the continuous basis functions nor PCBF’s
taken alone would form an efficient basis for the representation of such
signals.

Delays occur frequently in biological, chemical, electronic and
transportation systems [3]. Time-delay systems are therefore a very
important class of systems whose control and optimization have been of
interest to many investigators. Much progress has been made towards
the solution of delay systems using the orthogonal functions (OF’s).
Special attention has been given to applications of Walsh functions
[4], block-pulse functions [5], Laguerre polynomials [6], Legendre
polynomials [7], Chebyshev polynomials [8] and Fourier series [9].
In general, the computed response of the delay systems via OF’s is not
in good agreement with the exact response of the system [10].

In the present paper we introduce a new direct computational
method to solve delay systems. This method consists of reducing the
delay problem to a set of algebraic equations by first expanding the
candidate function as a hybrid function with unknown coefficients.
These hybrid functions, which consists of block-pulse functions plus
Chebychev polynomials are given. The operational matrix of delay is
introduced. This matrix together with the operational matrix of
integration are then used to evaluate the coefficients of the hybrid
function for the solution of delay systems. Here we will demonstrate
the results by considering three illustrative examples.

2. PROPERTIES OF HYBRID FUNCTIONS
2.1. Hybrid Functions of Block-pulse and Chebyshev
Polynomials

Hybrid functions b(n,m,t),'n=1,2,...,N, m=0,1,...,M—1, have
three arguments: # is the order of block-pulse functions, m is the order
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of Chebyshev polynomials, and ¢ is the normalized time. They are
defined on the interval [0, ) as

Tw((2N/t)t = 2n+1), t€[((n—1/N))ts, (n/N)t;)
0, otherwise.

b(n,m,t) = {
(1)

Here T,(f) are the well-known Chebyshev polynomials of order m

which are orthogonal with respect to the weight function w(f) =
1/v/1 — 2 on the interval [—1, 1] and satisfy the following formulae:

T.()=1, Ti(t) =1, (2)

Tint1(t) = 2tT(£) — Trp—i (1), m=1,2,3,.... (3)

2.2, Function Approximation
A function f{f) defined over the interval 0 to ¢, may be expanded as
N M-1
F(t)= YY" e(n,m)b(n,m,1) = C"B(1), (4)
n=1 m=0
where
C =[c(1,0),...,c(1,M —1)|c(2,0),...,c2,M - 1)|---
|e(N,0), .., e(N,M = )], (5)

B(1) = [b(1,0,1),...,b(1,M — 1,8)|b(2,0,1),...,b(2,M — 1,1)| - -
|b(N,0,1),...,b(N,M —1,1)]". (6)

The integration of the vector B(f) defined in Eq. (6) can be approxi-
mated by

/ "B(¢)df ~ PB(1), ™)
0

where P is the NM x NM operational matrix for integration and is
given in [11].
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2.3. The Delay Operational Matrix of the Hybrid
of Block-pulse and Chebyshev Polynomials

The delay function B(¢—7) is the shift of the function B(¢) defined in
Eq. (6) along the time axis by 7. The general expression is given by

B(t—7)=DB(t), t>T1 (8)

where D is the delay operational matrix of hybrid functions. To find D,
we first choose N in the following manner:

N { (1/7) if (1/7) is an integer number o)

[(1/7)] +1 otherwise,

where [ ] denotes greatest integer value.

It is noted that for the case © < t < 27, the only terms with nonzero
values are b(1,m,t—7) for m=0,1,2,...,M—1. If we expand
b(1,m, t—7) in terms of b(2, m, 1), the coefficient is an M x M identity
matrix, since b(1,m,t—7)=>b(2,m,t). In a similar manner, for 27 <
t< 37, only b(2,m,t—71) for m=0,1,2,..., M—1 has nonzero values.
If we expand b(2,m,t—7) in terms of b(3,m, ), then the coefficient
is an M x M identity matrix. Thus, if we expand B(¢—7) in terms of
B(#) we find the NM x NM matrix D as

01000 --0
007100 --0
00010 -0
D=1. . . . . . (10)
00 00O I
000O0O 0

3. TIME-VARYING LINEAR DELAY SYSTEMS

Consider a linear time-varying system with delay in both the state and
control described by
X(t) = E()X(t) + F()X(t — 7) + G(t)U(?)
+HNU(t—71), 0<t<], (11)

X(0) = Xo, (11a)
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X(H) =¢(r), -1<t<0, (11b)

Uu(t)=¢(), -1<t<0, (11c)

where X(¢)€ R, U(t)e R, E(1), F(f), G(t) and H(f) are matrices of

appropriate dimensions, Xj is a constant specified vector, and ¢(f) and
1(¢) are arbitrary known functions. Let

E(t) =[e;(?)] i=1,2,...,1,j=1,2,...,1, (12)
FO) =0 i=1,2,...,5, j=1,2,...,1, (13)
G(t) =[ga(d)] i=1,2,...,], k=1,2,...,q, (14)
H) =[] i=1,2,...,], k=1,2,...,q, (15)
X(2) = [x1(), x2(8), . .., x1(0)]", (16)
U(t) = [m(t), ua(t), . .., ug(2)]" (17)

Assume that each e (), fi{t) and x(?), i=1,2,...,[,j=1,2,...,/, can
be written in terms of hybrid functions as

e;(t) = E;B(t), (18)
fi(t) = FiB(2), (19)
xi(t) = BT (1)X;, (20)

where Ey;, F;; and X; can be obtained similarly to Eq. (5). Using Egs.
(12) and (18) we get

(ELBGW) ELBG) - EGB()
E}\B(t) E,LB(1) --- ELB(1)
E(r) = ) . )
\EleB(t) ELB(t) --- EjB(1)
(E{l E{z . E{I B(t) 0 A 0
E}, E, - Ej 0 B() -+ 0
= . . . . .. @y
\E,Tl E, -« EEJ\ 0 0 .. B()
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Further by using Egs. (16) and (20) we have

BT ()X, B (¢) TO e 0 X
X() = B (:t)Xz _ 0 B :(t) 0 X, 22)
BT(1)X; o o0 - B0/ \x

In a similar manner we get

BT(t)dl BT(t)rl
T d T
x0=| 70|, pu-n=| P07,

BT(1)d; B (1)r

where
d; = [x:(0),0,...,0|x,(0),0,...,0|---|x:(0),0,...,0],
i=1,2,...,. (23)

Let

B(t)=1,®B"(¢),

where I is the /-dimensional identity matrix and ® denotes Kronecker
product [12].
Thus we have

X(1) = B(1)X, (24)
X(0) = B(1)d, (25)
¢(t—7) = B()R, (26)

where X, d, and R are vectors of order IMN x 1 given by

X =[Xi,X,...,X)",
d=|[d,dy,...,d|",

R= [rl,rg,. .. ,rl]T.
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Using Egs. (21) and (22), E(¢)X(¢) can be written as

E(t)X(t)
ELB(OB(1) ELB()B™(1) --- ELB(OBT(1)) /X
E5,B(0)B"(1) ELB()B'(t) --- ELB(OBT(1) || X2
~ . . . | e
E\B(t)B"(t) ELB()BT(t) --- EIB(t)BT(¢) X;

The following property of the product of two Chebyshev polynomial
vectors will also be used. Let

T(t) = [To(t), Ta(2), . .., Tu—1 ()",

A =ap,a,... ,aM_l]T.
Then we have
T()TT()A = AT" (1), (28)

where A is an M x M matrix given in [13] by

a a a e ay-
(1/20)al a0+(ll/2)a2 (1/2)(a21 +a3) .- (1/2)a11u_2
A=| (/2a (1/2)(a1+a35) ao+(1/2)as -+ (1/2)ay-3
Daws (Dawa  Daws - ao
Let

Bn(t) = [b(n’oa t)’b(n71’t)"”ab(n$M" l,t)]T’ n= 1’27'-'aN7
Cn = [c(n,0),¢(n,1),...,c(n,M = 1))", n=1,2,...,N.
Then using Egs. (5) and (6) we get

B(f) = [Bi(1), B2(1), .., BN ()", (29)

C= [Ch (—:2a ceey CN]T' (30)
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By using Egs. (29) and (30) we obtain

B(t)B"(¢)C
By(1)B](1)Cy 0 0
) 0 By(t)BL(t)Cy - 0 (31)
6 0 : BN(t)B;T/(t)CN

Similarly to Eq. (28) we have
Bu()BT(£)Cy = CuBa(f), n=1,2,...,N. (32)
Using Egs. (31) and (32), we get
B(t)B"(¢)C = CB(), (33)

where C is an NM x NM diagonal matrix given by

i 0 0
3 0 G 0
C=
0 0 Cx

From Eq. (33) we get
ETB(1)B" (1) = B(1)E.

Using Eq. (27) we obtain

E()X(f) = B(t)E*X, (34)
where

=T =T =T
Ell E12 Ell

ST =T =T

E, Exn Ey

E* = . .
~T ~T ~T
E, E, E,
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We can also approximate X(z—7) in terms of hybrid functions as

X(t—-T)={l}(t)IS’ o<t<rt
B(t)DX, t<t<l1,
where

b=II®DT,

and D is delay operational matrix given in Eq. (10).
Moreover

/0 t B(!)d! = (I, ® BT(¢))(I; ® PT) = B(¢)P,

where P is operational matrix of integration given in Eq. (7).
Using Egs. (13) and (35) we have

F({)B()R=B(t)F*R 0<t<r,

F)x(t—) = {p(t)i;(t)bx =B(t)F*DX, T<t<1,

where
=T =T =T
o B By
= Fy Fy Fy
=T =T =T
Fy Fp Fy
From Eq. (37) we get
B(t)PF*R, o<t<m,

t
/ F()X({ - 7)dl = { N
0 VF'R + B()PF*DX, r<t<1,

where
V= / B(t)dt = B(1)Z.
0

By applying Eqgs. (38)—-(40) we have

t
/ F(!)X(¢ — 7)d’ = B(t)PF*R + B({)ZF*R + B({)PF*DX.
0

(35)

(36)

(37)

(38)

(39)

(40)

(41)
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Similarly by expanding each gu(f), hy and w(t), i=1,2,...,1,
k=1,2,...,q, in terms of hybrid functions we get

gi(t) = GiB(¢), (43)
hu(t) = HzB(1), (43a)
ur(t) = B () U (43b)
Hence we have
G(U(1) = B(G'U, (44)

where U=[Uy, Us, ..., U]" and

~T ~T ~T
e
G G ... G
c=| " H| (45)
~T ~T ~T
Gy Gp Gy

4. SOLUTION OF TIME-VARYING LINEAR
DELAY SYSTEMS
By integrating Eq. (11) from 0 to t and using Eqgs. (12)—(45) we have
B(t)X — B(t)d = B(t)PE*X + B(t)PF*R + B(t)ZF*R
+ B(t)PF*DX + B(t)PG*U + B(t)PH'L
+ B(t)zH*L + B(¢t)PH*D, U, (46)
where
W(it—7)=B(t)L, Dy=1,®D", B =1,®B"
and H* can be obtained in a similar manner to G* in Eq. (45). From
Eq. (46) we get
X = [I - PE* — PF*D|"'[d + PF*R + ZF*R + PG*U+

. . 47)
PH*L + ZH*L + PH*D,U].
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5. ILLUSTRATIVE EXAMPLES

In this section three examples are given to demonstrate the applica-
bility, efficiency and accuracy of our proposed method. First by using
Eq. (9) we determine N. Thus we have different intervals given by

[0,7),[r,27),..., [N = 1)1, 1),

when N = 1/7, to define x(¢) for ¢ in the interval [0, 1/N), we map [0, 1/
N) into [—1, 1) by mapping ¢ into 2Nz—1 and for ¢ in the interval [1/
N,2/N) we map this interval into [—1, 1) by mapping ¢ into 2Nt—3
and similarly for the other intervals. When N=[1/7]+1, to define
x(?) for t in the interval [0, 7) we map [0, 7) into [— 1, 1) by mapping ¢
into 2/rt—1, and for ¢ in the interval [r,27) we map this interval
into (—1,1) by mapping ¢ into 2/7¢—3, and similarly for the other
intervals. When selecting M, we first choose an arbitrary number
depending on the problem. If the exact solutions are polynomials, we
can increase the value of M by 1 until two consecutive results are the
same. When the exact solutions are not polynomials, we evaluate
the results for two consecutive M for different ¢ in [0, 1) until the
results are similar up to a required number of decimal places.

Example 1 Consider the following delay system with delay in both
control and state

5c(t)=—-x(t)—2x(t—%) +2u<t—%), (48)
x(t) =u(t) =0, for —% <t<0, (49)
u(t)=1, fort>0. (50)

Although the above system is time invariant, the method described
here can be used. The exact solution is [14]

(0, 0<1<(1/4)
2—2exp[—(t—(1/4))], (1/4)<t<(1/2)
—2—2exp[—(t—(1/4 l]
x() = | +@+4ryexp [ (£ - (1/2))], (1/2) <t < (3/4)
6 —2exp[— (1= (1/4))]
+(2+4r)exp [ - (1=1(1/2))]
L—((17/4) + 2t +4) exp [ - (1= (3/4))], (3/4)<t<1.
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Here, we solve this problem with hybrid functions by choosing N=4
and M=7. Let

x(t) = CTB(1), (50)
where

T
C=[(,‘1(),...,Cl6 €20, .. .4C26|C30y-.--,C36 C40,...,C46] ) (51)

and

B(t) = [b(1,0,1),...,b(1,6,1)|b(2,0,1),...,b(2,6,1)
|6(3,0,1),...,b(3,6,1)|b(4,0,1),...,b(4,6,0]". (52)

We also have

[ulr-D)a={m tmeicr,

From Eq. (53) we obtain

l%,%,o,...,O]B(t) = UTB(2). (54)

Integrating Eq. (48) from 0 to ¢ and using Eqgs. (49)—(54) we get
C"=-Cc"p-2C"DP +2U7, (55)

where P and D are operational matrices of integration and delay re-
spectively. From Eq. (55) we obtain

CT =2U"[Ig + P +2DP]"".

Where Ipg is the 28-dimensional identity matrix. In Table I a com-
parison is made between the exact solution and the approximate solu-
tion of x(¢) for 1/4 <t < 1. The approximate value of x(¢) on [0, 1/4] is
equal to zero which is the same as the exact solution.
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TABLE I Estimated and exact values of x(z)

t Hybrid Exact

0.25 0.00000000 0.00000000
0.30 0.09754115 0.09754115
0.35 0.19032516 0.19032516
0.40 0.27858404 0.27858404
0.45 0.36253849 0.36253849
0.50 0.44239843 0.44239843
0.55 0.51352714 0.51352714
0.60 0.57190846 0.57190846
0.65 0.61861659 0.61861659
0.70 0.65465130 0.65465130
0.75 0.68094260 0.68094260
0.80 0.69851567 0.69851567
0.85 0.70892964 0.70892964
0.90 0.71372360 0.71372360
0.95 0.71426052 0.71426052
1.00 0.71174280 0.71174280

Example 2 Consider a time-varying delay system described by

x(¢) = 16tx (t - %) , (56)
x(0) =1,

1
= —_< .
x(t) =0, 4_t<0

The exact solution is [15]

(1, 0<t<(1/4)
1+4(t— (1/4)) +8(¢ - (1/4))?, (1/4)<t<(1/2)
(5/2) +8(t— (1/2)) +24(: - (1/2))°

X(t) = +(128/3) (1 — (1/2))* +32(t = (1/2))*,  (1/2) <1< (3/4)

(163/24) +20(t — (3/4)) +68(¢ — (3/4))’
+(416/3)(t - (3/4))°

+224(t - (3/4))" + (640/3) (¢ - (3/4))°
[ +256/3)(t = (3/4)", B/ <i<l.
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Here, we solve this problem by choosing N=4 and M =7. Let
x(t) = C"B(#), (57)

where C and B(f) are given in Egs. (51) and (52) respectively. By
expanding ¢ and x(0) we get

11
t= [§’§a010

31
8’8’

71

0,0 §,'8"a

0, 0} TB(t) =K"B(t), (58)

51
§v§a0a0\
and

x(0) = [1,0,...,0/1,0,...,0[1,0,...,0[1,0,...,0]"B(t) = €"B(¢).
(59)

Integrating Eq. (56) from 0 to ¢ we obtain
t
CTB(1) — €'B(t) = 16 / CTDB({)B (¢)Kd, (60)
0

where D is the delay operational matrix. Also, from Eq. (33) we have
B(t)BT (1)K = KB(t). (61)
Using Egs. (60) and (61) we get
CT —¢" = 16CTDKP. (62)

From Eq. (62) we obtain the vector C and using Egs. (57) and (63)
we get

(To(8t—1), 0<t<(1/4)
(27/16)To(8t—3) + (3/4)Ti (8t —3) +(1/16)T(81 —3), (1/4) <t < (1/2)

(13225/3072) Ty (8¢ — 5)+ (271/128)T; (8t — 5)
+(87/256)T5(81—5)

x(f)={ +(11/384)T3(8t—5)+ (1/1024)T4(8:—5), (1/2) <t < (3/4)

(214757/16384)To(8¢— 7) + (30175 /4096)T; (8¢ —7)
+(38757/32768)T,(8t—7)

+(1171/8192)T; (8¢~ 7) + (569,/49152) T4 (8t —7)

| +(13/24576)Ts(8¢—7) +(1/98304)T5(8t —7), GB/4)<t<l.
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Using Eqgs. (2) and (3), for Ty(?), ..., Te(f), the same value as the exact
x(f) would be obtained.

Example 3 Consider the delay system described by
x()=x(t—03)+2f, 0<t<1, (63)
x(0) =1,
x(t)=0, -03<t<0.
The exact solution is
(142, 0<1<0.3
(691/1000) + (109/100)¢ + (7/10) + (1/3)#, 0.3<1<0.6
x(f) = { (4409/5000) + (209/500)t + (69/50)2 + (2/15)8 + (1/12)f*, 0.6 <1< 0.9

(1500917/2000000) + (35107/40000)¢ + (1617/2000)s2

| +(87/200)2 + (1/120)¢* + (1/60)#5, 09<t<1.

Since 7=0.3 and 1/7 is not an integer, using Eq. (9) we select N=4
and also choose M =6. Let

x(t) = CTB(¢), (64)

where C and B can be obtained similarly to Eqs. (51) and (52). By
expanding x(0) and #* in terms of hybrid functions, we get

x(0) = fI B(¢), (65)
and
27 9 9 171 27 9
2_ |2 2 7 e 7
- [800’200’800’0’0’ {800’200’800’0’0’0
459 45 9 891 63 9 oo,
lm_o’EGG’éo_o’o’o’o‘éo—o’E(ﬁ’@ﬁ’o’o’o =f, B(1).  (66)

where f; can be calculated similarly to Eq. (59). Let

f=h+nf. (67)
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By integrating Eq. (63) from 0 to ¢ and using Eqgs. (65) and (68) we get
C" = f"[hs — DP|”', (68)

where D and P are operational matrices of delay and integration
respectively and L4 is the 24-dimensional identity matrix. Solving Eq.
(68) gives the exact value x(t).

6. CONCLUSION

The hybrid function operational matrix P together with the delay
matrix D, are used to obtain the solution of a linear time-varying
system with delay in both the state and control. The method is based
upon reducing the system into a set of algebraic equations. It is also
shown that the hybrid of block-pulse functions and Cheybyshev
polynomials provides an exact solution for the cases when the exact
solutions are polynomials. It is noted that exact solutions obtained
in the examples (2) and (3) can not be obtained either with piecewise
constant basis functions nor with continuous basis functions.
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