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In this paper, we investigate the robust passivity analysis and synthesis problems for a
class of uncertain time-delay systems. This class of systems arises in the modelling
effort of studying water quality constituents in fresh stream. For the analysis problem,
we derive a sufficient condition for which the uncertain time-delay system is robustly
stable and strictly passive for all admissible uncertainties. The condition is given in
terms of a linear matrix inequality. Both the delay-independent and delay-dependent
cases are considered. For the synthesis problem, we propose an observer-based design
method which guarantees that the closed-loop uncertain time-delay system is stable
and strictly passive for all admissible uncertainties. Several examples are worked out
to illustrate the developed theory.
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1 INTRODUCTION

Stability analysis and control problems for dynamical systems with
delay factors in the state variables and/or control inputs have re-
ceived considerable interests for more than three decades [1,2].
Recently, output-feedback control schemes have been developed for
the stabilization of a wide-class of time-delay systems; see [3-5,10]
and the references cited therein. Different issues and approaches
related to uncertain time-delay systems are thoroughly discussed in
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[9,11] along with vast breadth of techniques. On another front of
research, positive real theory has played a major role in stability
and systems theory [6,7,17]. The primary motivation for designing
strict positive real controllers is for applications to positive real
plants. When a strict positive real system is connected to a positive
real plant in a negative-feedback configuration, the closed-loop is
guaranteed to be stable for arbitrary plant variations as long as the
plant remains to be positive real. Recently, state-space formulae for
the controller synthesis have been developed in [8] to guarantee that
the closed-loop transfer function is exteded strictly positive real.
Some related work for a class of uncertain dynamical systems are
reported in [18-20). In [16], conditions for positive realness for a
class of linear time-invariant systems with state-delay have been
developed.

In this work, we contribute to the further developement of passive
analysis and control synthesis of a class of uncertain time-delay sys-
tems. This class of systems arises in the modelling effort of studying
water quality constituents in fresh stream for which all the analytical
results and numerical simulation in the sequel are focused. We restrict
attention on linear time-invariant models and this, in turn, facilitates
the use of the fact that the notion of positive realness is closely related
to the passivity of lincar time-invariant systems thereby extending the
results of [6-8]. One main result in this work is the derivation of a
suflicient condition for which the uncertain time-delay system under
consideration is robustly stable and strictly passive for all admissible
uncertainties. The condition is given in terms of a linear matrix in-
equality the solution of which can be rcadily obtained by an efficient
software package [12]. In our work, the analysis of both the delay-
independent and delay-dependent cases are considered. For the
synthesis problem, we propose an observer-based design method
which guarantees that the closed-loop uncertain time-delay system is
stable and strictly passive for all admissible uncertainties. Several
numerical examples of water quality models are worked out to illus-
trate the theoritcal results.

Notations and Facts. In the scquel, we denote by W', W~ and \(W)
the transpose, the inverse and the eigenvalues of any square matrix
W. W >0 (W < 0) stands for a positive- (negative-) definite matrix W
and C~ represents the open left-half of the complex plane. Sometimes,
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the arguments of a function will be omitted when no confusion can
arise.

Fact 1 (Schur Complement) Given constant matrices Qy,, s
where ) = Qf and 0 < ), = Q) then Q; + Q4Q;'Q; < 0if and only if

o O - O
[93 —Qz]<0 or [Qg 0 <0

Fact 2 For any real matrices X;,Y, and X3 with appropriate di-
mensions, such that 0 < ¥3 = X, it follows that

TIT, + T4E < B3 4+ 2085 lE,

In the case when X3 reduces to a scalar o > 0, the above inequality
reduces to:

TID + T8 < aXiT + a7 'E,, a>0

2 MOTIVATING SYSTEM MODEL

In every aspect of life, it is important to keep water quality in streams
at a standard level. This can be measured by the concentrations per
unit volume of some water biochemical constituents like algae, ni-
trogen components, phosphate, biological oxygen demand and dis-
solved oxygen. In building up dynamic models of water quality
systems, it is customary to introduce some simplifying assumptions.
Thus we consider that the stream has a constant flow rate, the flow of
water is turbulence-free and the water is well mixed. We further as-
sume that there exists 7 > 0 such that the concentrations of the water
quality constituents entering at time ¢ are equal to the corresponding
concentrations 7 time units ago. The basic tools for mathematical
modeling are mass balance and some appropriate physio-chemical and
biological expressions for the growth of water quality constituents.
Recent water-quality studies on the River Nile for the purpose of
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dynamic modeling and control have shown [13--15] that a reduced
second-order aggregate model for a small representative reach would
be suflicient to give a satisfactory performance. In a typical model, the
state-variables are the concentrations of pollutants P4 (representing a
mixture of the low-levels in the bio-strata) and pollutant Pp
(representing a mixture of the other levels in the bio-strata). The
control variables are signals proportional to the water speed and the
amount of cffluent discharged into the reach at pre-selected points.
The growth model takes the form:

xX(1) = fx(0), u(t), x(t = (1)), p(0)] )
where p(f) is a vector representing various rate coeflicients and
x(t — 7(r)) stands for the level of water quality constituents 7 time

units ago. By linearizing (1) about a desired steady state point (X*, U*)
we obtain the dynamic model

OX(1) = AbX(t) + G,6U(f) + E,6X(t — (1)) + Z(1) (2)
where,

o
—Ox(1)

of

. of
2T du(r)

ox(t —7(1))

o Eo= .
The elements of A are the average rate coeflicients, those of B, are the
input signal coefficients and 7(¢) reflects the extent within the reach
that physico-chemical reactions affect the concentration at a pre-
scribed position. The matrix E, represents coeflicients of physico-
chemical interactions over time. The Z(¢) term lumps together the
effect of high-order terms and it is usually not completely known but
bounded. In the present analysis, we drop out the Z(¢) term, let x = 6X
and u = 6U and consider the model variability as uncertainties in
system parameters. That is, we let 4 = 4, + AA4 and in this case the
water quality model will be of the form:

X(t) = (Ay + AA)x(t) + Gou(t) + E,x(t — 7(1))
= Aax(t) + Gou(t) + E,x(t — 1) (3)
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where AA stands for the parameteric uncertainties. Model (3) re-
presents a class of linear uncertain systems with state-delay and it is
purpose of this paper to provide a detailed analysis and synthesis for
this class of systems based on passivity theory.

3 A CLASS OF UNCERTAIN SYSTEMS

To proceed with the stability analysis, we set u(¢) = 0 in (3) and add up
a performance input-output pair to yield:

(Xa) : X(t) = Aax(t) + B,w(t) + E,x(t — 1)
= (Ao + AA)x(t) + B,w(t) + Eox(t — 7) 4)
z(t) = Cax(t) + Dw(t) = (C, + AC) + D,w(t) (5)
where the performance pair is given by w € 7 as the exogenous input
and z € R as the output, x € R" is the state , 7 is a time delay,
B, € R"™P is a constant input matrix, E, € ®"*" is a constant delay

matrix and Ax € R™", and Ca € R*" are uncetain matrices given
by:

An| |4, H,
&)= [&]+ [f]aor ©
with
ANOA@) <T Vit (7)
Note that model (4)—(5) allows for unpredictable changes in the water
quality parameters (term AA4) as well as unknown measurement errors
(term AC). Distinct from system (4)—(5) is two systems: 1) The free
nominal system:

(3f): X(2) = Aox(t) + Eox(t — 7) (8)

z(1) = C,ox(1) 9)
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in which all uncertainties and the input w are suppressed and
2) The nominal system

(20): X(1) = Apx(1) + Bow(t) + E,x(t — 1) (10)
z(t) = Cox(t)Dyw (1) (1

Our purpose is to examine the problem of passive analysis of (X4) in
relation to (X;) and (%,).

4 CONDITIONS OF PASSIVITY

In this section, we provide some technical results on stability and
passivity for a class of linear state-delay systems of the type (3) which
will be used in the sequel.

4.1 Some Stability Conditions

ASSUMPTION | A(4,) € C™.
We have the following delay-independent stability result concerning
the system (%).

LEMMA 1 Subject to Assumption 1, the time delay system (%y) is
globally asymptotically stable independent-of-delay if one of the fol-
lowing two equivalent conditions holds:
(1) There exist matrices 0 < P =P € " and 0 < Q = Q' € "

satisfying the linear matrix inequality (LMI)

PA,+ A P+Q PE,
<0 (12)

E P -Q
(2) There exist matrices 0 < P = P' € ™" and 0 < Q = Q' € R

satisfying the algebraic Riccati inequality (ARI)

PA,+ AP+ PEQ'EP+ Q<0 (13)
Proof See the Appendix.

In some applications where the upper bound for the unknown delay is
known, delay-dependent stability results are desired. For those cases,
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another route of analysis has to be followed, which requires the fol-
lowing assumption:

ASSUMPTION 2 A(4,+ E,) € C.

Note that Assumption 2 corresponds to the stability condition when
7= 0. Hence the assumption is necessary for the system (1) to be
stable for any 7 > 0.

LEMMA 2 Consider the time-delay system (Xy) satisfying Assumption
2. Then given a scalar T* > 0, the system (Xy) is globally asymptotically
stable for any constant time-delay T satisfying 0 < 7 < 7* if one of the
following two equivalent conditions holds:

(1) Given scalars €>0 and « >0, there exists a matrix
0 < X = X" € R"™" and satisfying the LMI.

(Ao + E)X + X(4, + E,)' T XA TXE'

+7*(e + @)E,E,
(e ta) <0 (14)
T4, X —(m*e)1 0
T*E,X 0 —(m*a)l

(2) Given scalars € >0 and o > 0, there exists a matrix 0 < X =
X' € R and satisfying the ARI

(Ag + E)X + (Ao + E))' X +7*¢ 71 XA' A, X
+7*a ' XE'E,X + 7" (e + a)E,E., < 0 (15)

Proof See the Appendix.

4.2 Example 1

In order to illustrate Lemma 1, we consider a water quality model of
the form (3) with

-3 -2 0 03
A”'“[l 0]’ EO““[O.s —o.z]
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It is easy that A\(4,) = {—1, —2} which satisfies Assumption 1. Using
the LMI solver of MATLAB Control Toolbox [12], it is found that the
feasible solution of the LMI (11) is given by:

| 456697 9.1217

18.0847 78.5135 _[9.1217 36.1693

P [21.2515 18.0847]’ 0
Since 0 < P = P' and 0 < Q = @', this means that the water quality
model under consideration is globally asypmtotically stable in-
dependent-of-delay. An interpretation of this result is that no matter
how strong the interaction amongst the water quality constituents is,
the pollution level in water remains close to the acceptable standard
level.

Next, to illustrate Lemma 2 for the same system, we first compute
AA, + E,) = —=0.7225,-2.4775 which implies that Assumption 2 is
satisfied. Then we choose ¢ = 0.2 and « = 0.1 and use the LMI solver
to determine X and 7* that satisfy inequality (13). The feasible result is

00733 o041 |0 T 191214

Y= [ 0.0751  —-0.0733
Since 0 < X = X', this means that the time-delay system under con-
sideration is globally asypmtotically stable for any 7 satifying
0 <7<1.9124. For a given 7 = 0.2, the solution of LMI (15) with
7" = 7 is given by

X=1_03954 08344

li 0.3793  -0.3954
This result implies that the pollution level in the water stream remains
close to the acceptable (standard) level so long as the concentrations of
the water quality constituents beyond a length s = v x 7* of the reach
are of negligable value.

We are now in a position to deal with the concept of passivity in the
context of time-delay systems.

Definition 1 The time-delay system (X4) is called passive if
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/ W(D)2(1) > B Yw € L]0, 00) (16)
0

where (3 is some constant depending on the initial condition of the
system. It is said to be strictly passive (SP) if it is passive and
D,+ D! > 0.

In the sequel, we shall develop conditions under which systems with
time-varying parameter uncertainty and unknown state-delay like
(3a) can be guaranteed to be SP. First, we provide the following result
pertaining to system (%,):

THEOREM 1  System (X,) satisfying Assumption 1 is asymptotically
stable with SP independent-of-delay if there exist matrices
O<P=P eR™and 0 < Q= Q'€ R"™" satisfying the LMI

PA,+A'P+Q PE, (C\ —PB,)
E'P -Q 0 <0 (17)
(Co_Bf)P) 0 —(D0+D£;)

or equivalently the matrix (D,+ D!) >0 and there exist matrices
O0<P=P ecR™and 0 < Q= Q"€ R satisfying the ARI

PA,+ ALP + (C, — PB,)(D, + D")™"(C, — B.P)

(18)
+Q+PE,Q'EEP <0

Proof See the Appendix.

In this situation, the system (%,) is said to be strongly stable with
SP. Obviously, strong stability with SP implies that system (3,) is
asymptotically stable with SP.

Had we modified the stability analysis to include bounds on the
time-delay factor, we would then establish the following result:

THEOREM 2 System (X,) satisfying Assumption 2 is asymptotically
stable with SP for any T satisfying 0 < 7 < 7* if there exist matrix
0< X=X €R™ and scalars € > 0,a > 0,0 > 0 satisfying the alge-
braic inequalities:
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(D, + D, —7'¢"'B'B,) > 0
and

(Ay + EN)X + X(A,+ E) + 7' X{e'4' 4, + «'E'E,} X
+7'(e + o+ 0)EE, + (XC| - B,)
X (D"+D5)—T*O-_IBLBU)_I(C"X_B::) <0 (]9)

or equivalently there exist matrix 0 < X = X' € R"™" and scalars
e>0,a>0,0> 0 satisfying the LMI:

(Ao + E)X + X(4, + E,)  TXE, 7XA4" (XC, —B,) 0
+m (e +a+ 0)E,E|

TEX —(T*a)l 0 0 0 <0
T Ay X 0 —(r*e)l 0 0
(C,X—B") 0 0 —-(D,+ DY)  T'B]
0 0 0 B, —(t*o)l
(20)

Proof See the Appendix.

A numerical example is in order.
4.3 Example 2

In order to illustrate Theorem 1, we consider a water-quality model of
the type (10)—(11) with

-3 -2 0 03
A"“[l 0}’ E"‘{—og —0.2]

0.5
&ZBA,Q=pm,asz

From Example 1, we know that Assumption 1 is satisfied. Using the LMI
solver, it is found that the feasible solution of the LMI (17) is given by:

p— 1.2514  1.0697 0= 2.8590 0.9980
|1 10697 4.4010 |’ ~10.9980 1.3660
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Since0 < P =P, 0 < Q = Q" and (D, + D') > 0, this means that the
water-quality model under consideration is asypmtotically stable with
SP independent-of-delay.

Next, to illustrate Theorem 2 for the same water-quality model and
based on the fact that Assumption 2 is satisfied, we proceed to choose
€=0.2,0 =0.15,a = 0.1 and use the LMI solver to determine X and
7* that satisfy inequality (20). The result is

0.2813  —0.2062 .
X= [—0.2062 03308 | T = 03612

Since 0 < X = X, this means that the water-quality model under
consideration is asypmtotically stable with SP for any 7 satisfying
0<71<0.3612.

5 p-PARAMETRIZATION

In this section, we examine the application of the stability and
passivity concepts. First, motivated by the results of Theorem 1 for
stability independent of delay criteria, we pose the following defini-
tion:

Definition 2 The uncertain time-delay system (35) is said to be
strongly robustly stable with SP if there exists a matrix 0 < P =
P' € ™" such that for all admissible uncertainties:

PAx+A\P+Q PE, (C\— PB,)
E.P ) 0 <0 1)
(Ca— B,P) 0 —(D,+Dp)

Remark 1 Tt is readily evident from Definition 2 that the concept of
strong robust stability with SP implies both the robust stability and the
SP for system (X,). Note that the robust stability with SP is an ex-
tension of quadratic stability (QS) for uncertain time-delay system to
deal with the extended strict passivity problem [10]. By setting
A(t) = 0, Definition 2 reduces to (17).
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Now it is easy to realize that direct application of (21) would require
tremendous efforts over all admissible uncertainties. To bypass this
shortcoming, we introduce the following ji-parameterized linear time-
invariant system:

(3,): X(r) = Apx(t) + Bi(t) + E,x(t — 1) (22)
Z(t) = Cux(1)D,v(1) (23)
where
C,
B,=[B,0 —uH\] C,=|p'E (24)
0

D,, 0 —,U,Hp_
D,=|0 1/21 0 (25)
0 0 1/21

Remark 2 1t should be stressed that the advantages of using the
p-parameterized system in the analysis of uncertain systems have been
demonstrated in [9,16,20]. The main purpose is to deal with an ex-
panded system which does not contain uncertain parameters and as it
will be shown in the sequel, it provides a convenient way in estab-
lishing the technical results.

The next theorem shows that the robust SP of system (Xa) can be
ascertained from the strong stability with SP of (X,,).
THEOREM 3 [If there exists pn > 0 such that (%) is strongly stable with
SP then system () satisfying (4)—(5) is strongly robustly stable with
SP.

Proof By Theorem 1, system (X,,) is strongly stable with SP if there
exist matrices 0 < P = P € " and 0 < Q = Q' € R such that

PA,+A,P+Q PE, (C',—PB,)
E,P -0 0 <0 (26)

(C/t “B;,P) 0 ‘"(D/t‘i'D,fl,)
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Using (24)-(25), inequality (26) is equivalent to:

[PA,+A'P+Q PE, (C'—PB,) p'E' pPH,]
E'P -Q 0 0 0
W = (Co— B P) 0 —(D,+D) 0 uHy | <0
uw'E 0 0 -1 0
i wH{ P 0 pH 0 —I ]
(7)
By Fact 1, inequality (27) holds if and only if
2+ %' <0 (28)
with
[PA, + AP+ Q PE, (C'— PB,)
Q= E'P -0 0 ;
L (Co— B,P) 0 —(D,+Dy)
u'E' uPH,
0= 0 0 (29)
L 0 ,uH2
-1 0
=5 Y] (30)

It follows from a well-known result in [9] that inequality (28) along
with (29)—(30) holds if and only if

PH,
o+ [ 0 ]A(t)[E 0 0]+

H,

EI

0

VA:A'A LT

O}A'(t)[H’,P 0 Hjj<0 (31

(32)
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Rearranging (31) using (6) and (29)-(30), it produces

PAA + A’AP—F Q PE, (CIA — PB,)
E P —0 0 <0 (33)
(CA - B:I;P) 0 “(Do + D:;)

which in view of Definition 2 implies that system (Xa) is strongly
stable with SP.

Remark 3 One way to evaluate the robust stability of the uncertain
time-delay system (3a) with SP is to rewrite inequality (27) with
p = pu~?% in the form:

G(P)  L(P,p)

Wi = L'(P,p) U

<0 (34)

where

PA,+A'P+Q PE, C.—PB, ]
G(P) = E P 0 0 <0 (39
(Cvf) - PB:)) 0 *(DU + D:))..

t
LPp)=10 0, U=} (36)
0 H, -

Obviously, (34)-((36) is linear in P and p which can be solved by em-
ploying the LMI Toolbox [11].

5.1 Example 3

In order to illustrate Thecorem 3, we consider an uncertain water-
quality system of the type (4)-(5) with

3 -2 0 03
A"z[l 0]’ E"=[—0.3 —0.2]
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0.5
B(,:[OA], C,=[2 0], D,=2

H.=[_°(f2], E=[0.1 02], Hy=0.1

From Example 1, we know that Assumption 1 is satisfied. Using the LMI
solver, it is found that feasible solutions of the LMI (34) are given by:

_ 04 |0-8491 0.6459 0= 1.8243 0.7333
P=0% 10,6459 2.69437 <7 [0.7333 0.9264
0.8516 0.6501 1.8263 0.7342
p=09, [0.6501 2.7012]’ €= {0.7342 0.9267] (37)

Since0 < P=P', 0 < Q = Q"and (D, + D) > 0, this means that the
uncertain water-quality system under consideration is strongly ro-
bustly stable with SP independent-of-delay.

Had we adopted the delay-dependent stability criteria, we would
then adopt the following definition:

Definition 3 The uncertain time-delay system (X) is said to be
strongly robustly stable with SP for any 7 satisfying 0 < 7 < 7* if there
exist a matrix 0 < X = X" € " and scalars ¢ >0, >0, 0> 0
satisfying the LMI

i (Ar + E,)X 1
+X(Aa + E,)' T™XE! rXA) (XCy-B,) 0
+7*(e + a + a)E,E;
T*E X —(*a)l 0 0 0 <0
T*ANX 0 —(1*e)l 0 0
(CaX - BY) 0 0 —(D,+Di) 7B,
i 0 0 0 —7*B, (t*o)1 |
(38)

It should be observed that by setting A(f) = 0, Definition 3 reduces to
(16).
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The next result is a dclay-dependent counterpart of Theorem 3.

THEOREM 4  System (¥Xa) satisfying (4)-(5) is said to be strongly
robustly stable with SP for any T satisfying 0 < 7 < 7% if there exists a
i > 0 satisfying the inequality:

[:" :‘f‘} <0 (39)
=23 U
where
(A, +E,)X 1
+X(A,+E,)' TXE!, rXA}, (XC'-B,) 0
+m*(e+a+0)EE
== T E, X —(T* )l 0 0 0
T A, X 0 —(7*e)l 0 0
(C,X—B) 0 0 —(D,+D)) —r*B,
i 0 0 0 -7'B, (7o)l
[ H, XE
0 0
— . -1 0
==|7H 0 |, U:{O _1] (40)
H, 0
0 0

Proof Note that (40) together with Fact 2 implies

OH T FXE'T
0 0
S+ | 7 H |AM[EX0000]+ | 0 [A'()[H, 07 H H,0]<0
H, 0
| 0 | U

VAIA'A < T (41)
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That is, (38) holds. By Definition 3, the system (Xa) is strongly ro-
bustly stable with SP. Note that Theorem 4 is basically an LMI fea-
sibility result.

6 OBSERVER-BASED CONTROL SYNTHESIS

The analysis of robust stability with SP can be naturally extended to
the corresponding synthesis problem. That is, we are concerned with
the design of a feedback controller that not only internally stabilizes
the uncertain time-delay system but also achieves SP for all admissible
uncertainties and unknown delays. A controller which achieves the
property of robust stability with SP is termed as a robust SP con-
troller. To this end, we consider the class of uncertain systems of the
form:

(Beo) X(2) = Aax(t) + Bow(t) + Biau(t) + Epx(t — ) (42)
2(t) = Cax(t) + Dow(t) + Dyaau(t) (43)
y(t) = ClAX(t) + D2|w(t) + DzzAll(t) (44)

where y € R" is the measured output and u € R” is the control input.
The uncertain matrices are given by:

An  Bia A4, B H,
Crn Dpa|=1|Co Din|+ |Hy|A()] E E3 ] (45)
Cia Dna C, Dxn H;

Al()A(r) <1 Ve

In the sequel, we focus attention on the controller synthesis for system
(Xc0) by using an observer-based controller of the form

(Zop) : 7(1) = Gon(t) + Loly(2) — Cin(1)] (46)

u(t) = K,n(1) (47)
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where (G,, L,, K,) are constant matrices to be selected. Define the
augmented statc-vector by:

{0 - 00| (48)

Applying the observer-based controller (46)-(47) to system (X.,) and
using (42), we obtain the closed-loop system:

—~

(Zee) &) = A n&(t) + Bw(t) + E (1 —7) (49)
2(1) = Ca&(r) + Dow(d) (50)
where
—~ AA BIAK(I
Ap =
LUC|A Go - LUCI + LUDZZAKII
A, B\K, ~ -
- + AA(DE
L()Cl Gu - LnCl + LnDZZKu
=A+ HA(E (51)
d Bo
B = 52
!iLoDZI ] ( )
Ca = [Ca DiaaK.)
R -~ [E o (53)
=C+ H,ANE, E =
0 0
and

~ H . N
H= [L;h] E=[E EK,], C=][C, D;2K,] (54)

On the other hand, we introduce the {ollowing p-parameterized linear
time-invariant system:
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(Xpp) X(1) = Aox(t) + B,w(t) + Biu(t) + E,x(t — ) (55)

2(t) = Cux(t) + D(t) + Dyu(t) (56)
y(t) = Cix(t) + Dou(t) + Daou(t) (57)
where
Dy,
Dy, = [H-'Es] v Dy =1[D2 0 — pH;) (58)
0

and B, C,,, D, are given by (24)—(25). Now by combining systems (2,,,)
and (X,,), we obtain the closed-loop p-parameterized system (3,,):

(Seu) © E(t) = A €(t) + Biv(e) + E€(t — 7) (59)
2(1) = CE(1) + D, (1) (60)
where
BH
B= (61)
L()DZH
C =[C, Di.K,) (62)

The next theorem provides an interconnection between the ob-
server-based passive real control of system (3..) and the passive real
control of system (X.,).

THEOREM 5 If for some i > 0 an observer-based controller of the form
(46)—(47) achieves strong stability with SP for system (3.,), then this
observer-based controller achieves strong robust stability with SP for
system (X) for all admissible uncertainties satisfying (6)—(7).

Proof By Theorem 1, system (X,) is strongly stable with SP if there
exist matrices 0 < X = X" and 0 < Q = Q' such that

XYA+A'X+0 XE (C'—XB)

E'X ~0 0 <0 (63)
(C - BX) 0 —(D.+D.)
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Expansion of (63) using (24)-(25) and (53)-(56) yields:

XA+ AX+0 XE (C'—XB) u~'E uXi)

(C~Bx) 0 —(D,+D) 0 pH | <0 (64

p'E 0 0 —1I 0

| uHX 0 pH, 0 —1I
Applying Fact 1, inequality (64) holds if and only if
O+ 25050, <0 (65)

with

Q= By ) 0 (66)

p'E' puXH
-1 0
Q=1 0 0 |, = (67)
0 -7
L 0 pH>

Then by Fact 2 inequality (65) along with (66)—(67) holds if and only if

XH E
0+ [ 0 :|A(t)[E 0 0] + {io}A’(t)[ﬁ’ X0 H))<0 VA(r)<I
H, 0

(68)

or equivalently
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[ Xd+Ad'x+0+  XE (C'—XB)- |
XHA(tE+ E'A'(HH' X +ETA' (1) HY
E'tX ~0 0 <0 (69)
(C-BX)+ 0 —(D,+ D))
L HA(N)E |

for all admissible uncertainties. The substitution of (53)—(56) into
inequality (69) produces:

XAp +A'sX+0 XE (C'a—XB)
E'X _0 0 <0 (70)
(Ca-BYX) 0 —(D,+Dy)

which in view of Theorem 3 implies that system (Z..) is strongly ro-
bustly stable with SP.

Remark 4 1In general, the gain matrices of the observer-based con-
troller (46)—(47) can be determined by appropriately modifying the
results of [8, Theorem 4.1] to include the additional quadratic terms
due to the state-delay.

7 CONCLUSIONS

This paper has provided techniques of passivity analysis and control
synthesis of a class of linear dynamical systems with norm-bounded
uncertainties and state-delay. For the analysis problem, we have de-
rived a sufficient condition for which the uncertain time-delay system
is robustly stable and strictly passive for all admissible uncertainties.
This condition is expressed in terms of a linear matrix inequality. Both
the cases of delay-independent and delay-dependent have been con-
sidered. For the synthesis problem, an observer-based design method
has been proposed which guarantees that the closed-loop uncertain
time-delay system is stable and strictly passive for all admissible un-
certainties.
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8 APPENDIX

Proof of Lemma 1
(1) Introduce a Lyapunov-Krasovskii functional V;(x) of the form:

t

Vi(x) = ¥ (6)Px(d) + / X(6)0x(6) db (71)

-7

where 0 < P = P' € " and 0 < Q = Q' € R"™" are weighting ma-
trices. By differentiating ¥ (x) along the solutions of (1) and arranging
terms, we get:

t—7)

AORECRIE LY IO 7)

where

PA,+A'P+Q PE,
Y= [ . ] (73)

E.P ~Q
If V,(x) < 0, when x # 0 then x(f) — 0 as ¢ — oo and the time-delay
system (X) is globally asymptotically stable independent of delay. From

(68)—(69), this stability condition is guaranteed if inequality (9) holds.
(2) By the Schur complement formula, (10) is equivalent to (9).

Proof of Lemma 2

(1) Introduce a Lyapunov-Krasovskii functional V> (x) of the form:

Va(x) = x'(¢) Px(t) + /{/rl[x’(s)Af,on(s)]ds

t—1 t+6

+ / rzx[s’(s)Eﬁ,EoX(s)]ds}de (74)

t—740

where 0 < P=P' € R™" and r| >0, r, > 0 are weighting factors.
First from (1) we have
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0
= x(t) — / Ay x(t 4 6)do — / E,x(t — 1+ 6)d§ (75)

Substituting (71) back into (1) we get:

0

(1) = [y + E,)x(1) - E{ / A,x(t + 0)do

-7

0
+ / Ex(t—7+ 0)(/9}

-7

Now by differentiating V»(x) along the solutions of (72) and arranging
terms, we obtain:

Valx) =X (O1P(A, + Eo) + (4, + E)' Plx(1)

0
— 2x'()PE, / Apx(t+ 6)do

—2xX"()PE, | E,x(t— 7+ 0)d0 + 7r1x' (1) AL A,x(1)

*I‘\o

0
+ 7rX" (1) E! E,x (1) — / ri(x'(r + 0) AL A,x(1 + 6)]do

0
- / ra[¥(t =7 + 0)E\E,x(t — 7+ 6)]d6 (77)

Note that
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0 0
—2x'(t)PE, / Aox(t+6)do < ri! / [x(f)PE,E! Px(t))do

0
+r / (1 + 0) A" Ao (1 + 0)]dB

0
= 717 X' (t)PE,E. Px(t) + ry / [x'(t + 6) AL A,x(t + 0))dO

Similarly

0
— 2x'(t)PE, / E,x(t— 71+ 6)do
0
<! / [x'(t) PE,E' Px(t)|d0

0
+ / [x'(t — 7+ 0)E E,x(t — T + 6)]d6
= 715 x'({) PE,E! Px(1)
0
+ry / (1 — 7+ O)E E,x(t — 7 + 6))dB

Hence, it follows from (73) that

Va(x) = x'()[P(Ao + E,) + (Ao + Eo)'P + 111 A' A, + T E'E,
+ 717\ PE,E' P 4 15 ' PE,E" P|x(t)

479

(78)

(79)

(80)

If V5(x) < 0 when x # 0, then x(¢) — 0 as ¢t — oo and the time-delay
system (%) is globally asymptotically stable. By defining r| = ¢! and
ry = o~ !, then it follows from (76) for any 7 € [0,7*] that the stability

condition is satisfied if
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P(A,+E,) + (A4, + E,)'P +7"(c + &) PE,E' P
+re Al A, + T ' EE, < 0 (81)

Premultiplying (77) by P~!, postmultiplying the result by P~' and
letting X = P~' one can arrange the result into the block form (11) as
desired.

(2) By the Schur complement formula, (11) is equivalent to (10).
Proof of Theorem 1

(1) By evaluatinging V| (x) along the solutions of (1)-(2) with some
manipulations, we obtain the associated Hamilatonian H(x, ¢):

H(x,t) = =Vi(x) + 2y (1)u(r)
= =x'(t)[PA, + AP+ Q)x(1) + u' (1) (D, + D!)u(r)
+ x'(t = 7)Qx(t — 7) — X'(t = 7)E! Px(t) — X' () PE,x(t — T)

+u'(t)(C, — BLP)x(t) + x'(1)(C!, — PB,)u(t) (82)

o

In terms of the augmented state vector Z(f) = [x'(t) x'(t — 7) u'(1)]',
we express H(x,t) as

H(x,1) = —Z'(1) QP) (1) (83)

where

PA, + A(’)P+ Q PE, (Cf) - PB,)
QP) = E'P ) 0 (84)
(C,~BP) 0 —(D,+ D)
If Q(P) < 0, then —V,(x) + 2y (t)u(z) > 0, and from which it follows
that
n
/ W (u(O]de > 1/2[V(x(0)) — V(x(t,)] (85)

to

Since V(x) >0 for x#0 and V(x) =0 for x =0, it follows that
as t; — oo that system (3,) is extended strictly passive. This proves
inequality (15).
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Proof of Theorem 2 Introduce the following Lyapunov-Krasvoskii
functional V3(x):

V3(x) = x'(t) Px(t) + /{/rl[x’(s)Af,A,,x(s)]ds

-7 t+6

t

+ / ra[xX'(s) ELE,x(s)]ds

t—7+6

+ / r3[u’(s)B:,B,,u(s)]ds}d9 (86)

t+0
where 0 < P=P ¢ R"™" and r; >0, ro >0, r3 >0 are weighting
factors. Now from (1) we get

0

Mt—7) = x(t) - / (1 +0)do

-7

0 0
= x(t) - / Aox(t+0)df — / E,x(t — 1+ 6)do
. -7 —-T
- / B,u(t + 6)dé (87)

-7

Hence, the state dynamics (1) becomes:
x(t) = [Ao + Eo)x(t) + B,u(r)

0 0
- E, [/ Aox(t + 6)do + / E,x(t — 7+ 0)do
—r -0

0
+ / Bou(t + 6)do (88)

By differentiating ¥3(x) along the solutions of (73) and arranging
terms, we obtain:
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Vi(x) = x'()[P(A, + E,) + (4, + E,)' P)x(t) + u'(¢) B! Px(t)
0
+ x'(t)PB,u(t) — 2x'(t) PE, / A,x(t + 6)do

0 0
— 23'(1)PE, / E,x(t + 0)do — 2x' (1) PE, / Bou(t + 6)do

-7 -7

+ 7rix'(6) AL Ao x(t) + Trox () EL Eyx(t) + Tr3u' (1) B Bou(t)

0
- / ri[X'(t + 0)ALA,x (1 + 0)]d6

-7

0
- / raX'(t =7+ 0)E E,x(t — T + 6)]d0

-7

0
- / r3fu'(t + 0) B! Bu(t + 0))do (89)
By considering
0
— 2¥(1)PE, / Bl + 0)d9 < 715X (1) PE, E! Px(1)
0
i / (¢ + 6) B! Byu(1 + 0)]xd6 (90)

and substituting inequality (74) into (74), there holds
Vi(x) = xX'()[P(4y + E,) + (4, + E,)' P+ 711 A" A, + T, E' E,
+ 717 PE,E' P 4 1r;' PE,E' P + 715" PE,E! P]x(1)

+ u' (1) B, Px(t) + x'(t) PB,u(t) + Tr3u' (1) B, B,u(t) 91)

Using (76), the associated Hamiltonian H(x, ) can be written as:



UNCERTAIN TIME-DELAY SYSTEMS 483

H(x,t) = —x'(t)[P(4, + E,) + (4, + E,)'P + 111 A' 4,
+ 1 ELE, + 717 PE,E.P
+ 75 PE,E' P + 1r;' PE,E' P|x(t) — r3u'(t) B B,u(t)
+u'(£)(Dy + D!)u(r) + x'(¢)[CL, — PB,]u(t)

+u'(1)[C, — BLP|x(1) (92)

A little algebra puts H(x,t) in the compact form:

H(t) = -Y'(¢) II(P) Y(¢) (93)
where
Y(1) = [x'(1) W' (1)) (94)
S(P) (CY — PB,)
= | " os o eemay) <0 O

S(P) = P(A, + E,) + (Ao + E,)' P+ 7(r1 A, 4, + rE'E,)
+7(r;' + 15" +r;")PE,E. P (96)

If TI(P) < 0, then —V3 +2y'(f)u(f) > 0 and from which it follows
that

/LV’(I) u(O)lde > 1/2[V(x(t1)) = V(x(2,))] ©7)

Since V(x) > 0 for x #0 and V(x) =0 for x =0, it follows that as
t; — oo that system (X,) is extended strictly passive. From the
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Schur complement formula, it is casy to know that (80)-(81) is
equivalent to:

P(A() + Eu) + (Ao + Eu)tP + T(I‘IA:)A(; + "2E{,En)
+ 707" + 3" + 17" PE,E,P
+(C" — PB,)(D+ D' —r3B,B,)"(C, — BLP) <0 (98)

Setting ry =¢e~!, 1, =a"', r; =0"!, premultiplying (83) by P!,
postmultiplying the result by P~! and letting X = P~', it shows that

(16) implies (83) for any 0 < 7 < 7%,



