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Abstract

Let S,T be subsets of Z/pZ with min{|S|,|T|} > 1. The Cauchy-Davenport theorem states
that |S + T'| > min{p, |S|+ |T'| — 1}. A theorem by Vosper characterizes the critical pair in
the above inequality. We prove the following generalization of Vosper’s theorem. If |[S + T'| <
min{p — 2,|S| + [T +m}, 2 < |S|,|T], and |S] < p— ("F*), then S is a union of at most m + 2
arithmetic progressions with the same difference. The term (m; 4)
be replaced by a smaller number.

is best possible, i.e. cannot

1. Introduction

One of the subjects of additive number theory is the study of inverse problems, i.e. the study
of the structure of subsets S and T of a group such that the cardinality |[S + 7| is “small”.
The oldest result in this vein is the Cauchy-Davenport theorem which states that |S + T'| >
min{p, |S| + |T'| — 1} for any subsets S,T" of a group of prime order p. Vosper’s theorem [6]
characterizes the sets for which equality holds. It states :

Theorem 1 (Vosper) Let S and T be subsets of a group of prime order p such that |S| > 2,
|T| > 2, and |S+T| < p—1. Then either |S+T| > |S|+ |T|, or S and T are in arithmetic
progression with the same difference.

Freiman [1] gave the following improvement of Vosper’s Theorem in the case when S = T.

Theorem 2 (Freiman) Let S be a subset of a group of prime order p such that |S| < p/35.
Suppose that |S + S| < 2|S| 4+ m with m < 2|S| — 3. Then S is contained in an arithmetic
progression of length at most |S|+m + 1.
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As far as we know, the first improvement of Vosper’s result for different sets S and T is the
recent result of Hamidoune and Rgdseth [5] who proved :

Theorem 3 (Hamidoune-Rgdseth) Let S and T be subsets of a group of prime order p,
such that |S| > 3, |T| >3, 7 < |S+T| <p—4. Then either |S+T| > |S|+|T|+1, or S
and T are contained in arithmetic progressions with the same difference and |S|+1 and |T|+1
elements respectively.

In another direction, the Cauchy-Davenport theorem was generalized to arbitrary Abelian
groups by Mann [2, p. 2] :

Theorem 4 (Mann) Let S be a subset of an arbitrary Abelian group G. Then one of the
following holds:

(i) for every subset T such that S +T # G we have |S+T| > |S|+ |T| — 1.

(ii) there exists a proper subgroup H of G such that |S + H| < |S|+ |H| — 1.

The following theorem of Hamidoune [4] is both a generalization of Mann’s theorem and of
Vosper’s theorem.

Theorem 5 (Hamidoune) Let G be a (not necessarily Abelian) group generated by a finite
subset S containing 0. Suppose that every nonzero element of G has order > |S|. Then one of
the following holds:

(i) for every subset T' such that 2 < |T| < oo, we have |S + T'| > min(|G| — 1, |S| + |T1).

(ii) S is an arithmetic progression.

Notice the similarity between Mann’s and Hamidoune’s theorems 4 and 5. Together they
state, broadly speaking, that subsets S of a group for which S + 7" is “small” for some T tend
either to cluster around subgroups or to be an arithmetic progression.

A very interesting feature of Hamidoune’s proof of his result is that it unites Theorems 1
and 4 under a short, elegant, and insightful explanation. This involves defining k—isoperimetric
numbers and k-atoms associated to S. It turns out that the 1-atoms lead naturally to the sub-
group H in Theorem 4 and that the 2—atoms lead to the difference of the arithmetic progression
in Theorem 5.

In this paper, we study the 2—atoms of an arbitrary subset S of a group of prime order
and give a sufficient condition on |S| for them to be of cardinality two. We shall see that this
condition is necessary in very many situations. This leads to a further generalization of Vosper’s
theorem in the prime order case. Our main result is :
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Theorem 6 Let m be a non-negative integer and let S be a subset of a group of prime order p
such that 2 < |S| <p— (m;4). Then either

|S+T| > |S|+|T|+m,

for any subset T such that 2 < |T| and |S +T| < p—2, or S is the union of at most m + 2
arithmetic progressions with the same difference.

Our proof leads to the condition |S| < p — (m; 4) in a natural way, and we shall see that

this bound is best possible. More precisely, there exist subsets S of Z/pZ with cardinality
p— (m;r 4) that are not the union of at most m + 2 arithmetic progressions and for which
|S+T| <|S|+|T|+m < p—2 for some subset |T| > 2. Note that this situation is unlike that
of Z, but these sets S have to be “large”, i.e. |S| > p— (m;r4).

2. Atoms

Let S be a fixed subset of Z/pZ with 0 € S. For a subset X C G we write
Ng(X)=(X+95)\ X.

We omit the subscript S when the reference to it is clear from the context. If 0 € X, we write
X*=X\{0}.

Following the terminology of Hamidoune [4], we say that S is k—separable if there is X C
Z/pZ such that | X| > k and | X +S5| < p—k. If S is k—separable, the k—isoperimetric connectivity
of §'is

kE(S) = min{|N(X)|, X C Z/pZ,k < |X| and | X + S| < p—k},

and the k—isoperimetric number of S is
d () = min{|N(X)|, X € Z/pZ,|X| = k}.

We say that a subset F' C G is a k—fragment of S'if [N (F)| = kx(S5), |F| > k and |[F+ S| < p—k.
A k—fragment of minimum cardinality is said to be a k—atom of S. We denote by ax(S) the
cardinality of a k—-atom of S. Note that a;(S) > k if and only if k;(S) < di(S). Note also
that, when |S| = 2 and S is k-separable, then ay(S) = k and k;(S) = 1. To avoid trivial cases
we always assume that |S| > 2.

The following basic property of k—atoms is proved in [4].

Theorem 7 Let A be a k—atom and let F be a k—fragment of a subset S C Z/pZ with 0 € S.
Then, either AC F or |[ANF| <k —1.

This theorem has a number of consequences. We use it here to derive some intermediate
results that we shall need. For the rest of this section it is always assumed that S is a 2-separable
subset of Z/pZ, 0 € S, and |S| > 3.
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Proposition 8 Let A be a 2-atom of S. Then, |A|(|A] — 1) < 2k2(95).

Proof. We may assume |A| > 2. Let S = {0 = sg,s1,...,8}, 7 > 2. We have

T

ra(S) = [A+ 8] = |A] = [[JIA + 50) \ Uogjci(A + 57)]| - (1)
i=1

If A is a 2-atom then so is A + z for any z. Therefore equation (1) and Theorem 7 imply
ko(S) > (JA| = 1) 4+ (JA| — 2) + max{|A| — 3,0} + ... + max{|A| — r,0}.

If |A] > |S| then |[A+ S| —|A] > (|A| — 1) + (|A] —2) > 2]A| —3 > 2|S| — 1 > da(S), which
implies a(S) = 2. Hence |A| < |S|. Therefore,

ka(S) > (JA| = 1) +...+2+1=|A|(A] - 1)/2,

as claimed. 1

Recall that X C G is a Sidon set if [2X| = (‘X|2+1), that is, there are no two unordered pairs
of (possibly equal) elements in X with the same sum. The following is an easy consequence of
Theorem 7.

Proposition 9 Let A be a 2—atom of S. If |A| > 2 then A is a Sidon set.

Proof. Suppose that z +y =2’ + 4/ for z,y,2’,y' in A. Then {z,y'} € (A+x —2’) N A. Since
A+ z is a 2—atom for each z € Z/pZ, Theorem 7 implies either = ¢’ or z = 2/. Hence, all
twofold sums of elements of A are different and A is a Sidon set. 1

Proposition 10 Suppose S is a Sidon set in Z/pZ. Then, as(S) = 2.

Proof.

For each x € Z/pZ, x # 0, we have [SN (S +z)| < 1. For k < |S|let X = {z1,...,2} C
Z./pZ. Then,

k
INCOI = 15+ X] = 1X] = || IS + 2\ | JS +2)]| - 1X]

i=1 7<i
> IS+ S =D+ (S =2) + -+ (S - X[+ D] - [X]| = %\X\@\S\ — X =1).

In particular,

di(S) > ~k(2|S| — & — 1). 2)

| =
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Let A be a 2-atom of S and suppose that |A| > 2, so that |[N(A4)| < d2(S). We have, for
any s € S*, |S + {0,s}| = 2|S| — 1 so that |[N({0,s})| = 2|S| — 3 : we conclude therefore that
|IN(A)| < 2|S| — 3. But according to the lower bound (2), which is a quadratic function of k
with negative leading term and zeros at k = 0 and k = 2|S| — 1, this implies |A| > 2|S| — 3. By
Proposition 8 we then have (2|S| —3)(2|S| —4) < 2(2|S| —4), which implies |S| < 3 against our
assumption. Hence, as(S) =2. 1

Finally we have :

Proposition 11 Let A be a 2—atom of S. Then, as(A) = 2. Moreover, |A| < m + 3, where
m = kao(S) — |5].

Proof. If aa(S) = |A| = 2 there is nothing to prove. Suppose that |A| > 2. We may assume
that 0 € A. By Proposition 9, A is a Sidon set. By Proposition 10 we have ag(A) = 2.

On the other hand, we have |S + A| — |A| = |S| + m, which implies
|A| +m =[S+ A| — |S]| > k2(A) = da(A) = 2|A| — 3.

Hence |[A] <m+3. 1

3. Surjective pairs of subsets

To prove that a set S is the union of sufficiently few arithmetic progressions, say of difference
a, our basic strategy is to show that {0,a} is a 2-atom of S. This is why, in this section, we
study 2—atoms A of sets S such that |A| > 2. We shall prove that these 2—atoms have very
special structure, namely that they define, together with S, surjective pairs. Before defining
this concept we need some notation.

Let Y be a fixed subset of Z/pZ. For each subset X C Z/pZ and each integer i > 2 we
denote
Ni(X) = Ny (X + (i = 1)Y),

where iY =Y + ... +Y. We write No(X) = X and N;(X) = Ny (X). Note that
—_———

(2

Nipi(X) = (N(X) + )\ Ni(X).

0<j<i
For a subset U of Y and i > 1, we denote by NY(X) the set of elements z € N;(X) such
that z — U C N;—1(X) and U is a maximal subset of Y with this property. We also write

NEUx) = | N ().
VcU
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Lemma 12 For each U CY and i > 1, if N5 (X) # 0 then
NYL(X) — U € NEU().

7

Proof. Let 2 € NY,(z), u € U and 2/ = z —u € N;(X). Then 2’ € N} (X) for some subset
V of Y. But, for any v € V, we have z —v = 2/ —v 4+ u € N;(X) for some j < i+ 1. Since
z € Ni41(X) we must have j = i : this implies V' C U. In particular, if NI ,(X) # 0, then
NYL(X) = U C UycuNY (X) = N=Y(X). n

7

Definition A pair (X,Y") of subsets of Z/pZ is said to be h-surjective if X,Y # Z/pZ and
|(z—=Y)NX| > h for each z € Ny (X). (3)

The following two lemmas are the key steps in our proof of Theorem 6.

Lemma 13 Let S be a 2-separable subset of Z/pZ and let A be a 2—atom of S such that
|A*| > 2. Then

(1) (S,A) is a 2-surjective pair, and

(i) (S+ A, A) is a |A*|-surjective pair.

Proof. We may assume that 0 € A. Let z € N4(5) and suppose that there is only a single
element 2’ € A such that z — 2’ € S. Let A’ = A\ {2'}. Then |[A+ S| =[(A+S)U{z}| =
|A" 4+ S| 4+ 1. Therefore, |[Ng(A)| = |[Ng(4')| and |A’| > 2, contradicting the minimality of A.
Hence, (S, A) is 2-surjective.

Let U be a subset of A* with at most |A| — 2 elements.

By Lemma 12 and the Cauchy-Davenport theorem, if NY(S) # 0 for some i > 2, then we
have

INEL(S) = INF(8) = Ul = NP ($)] + U] = 1. (4)
If |U| < [NSY(S)], then
S+ (A\NU)| = [A\U| 2 |S + A| = INFY ()| + U] = |A] < |5 + 4] - |A],
thus contradicting the hypothesis that A is a 2-atom. Hence,
INFY(S)| < |UI-1, Uc A% |U| < |A] -2
Therefore, if NY(S) # (), then (4) implies
NS ()] < INFY(S)| = (U] - 1) <0,

a contradiction. Hence NY(S) = () for each proper subset of A* and therefore (S + A, A) is an
| A*|-surjective pair. 1
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Lemma 14 Let (X,Y) be an h-surjective pair in Z/pZ and i > 1. If X +iY # Z/pZ then
(X 4+4Y,Y) is also an h-surjective pair. In particular, if |Ni§U(X)\ < h for some U C Y and
i >1 then NZ,(X) = 0.

Proof. Assume that (X+(i—1)Y,Y) is h-surjective for some i > 1. We have N1 (X +(:—1)Y) =
N;(X). For each subset U of Y with strictly less than h elements, we have NFU(X) =0. If
NZ,(X) #0, i > 1 then Lemma 12 implies N2 (X) — U C N=Y(X) = 0, a contradiction.
Therefore, (X 4 iY,Y) is also h-surjective. The first part of the result follows by induction.

Suppose now that ]NZ.SU(X)\ < hfor some U C Y. Then, if NI, (X) # 0, Lemma 12 implies

h > |NZY(X)| > NS, (X) — U] > |U|, this contradicts the h-surjectivity of (X +4Y,Y).

Theorem 15 Let S C Z/pZ be a 2-separable subset. If aa(S) > 2 then

siz0- ("5 1),

where m = ka(S) — |5

Proof. We may assume |S| > 2. Let A be a 2-atom of S containing 0 and suppose that |A| > 2.

We use the above notation with Y = S, namely, N;(S) = Na(S + (i — 1)A). By definition
of ko(S) and m we have |S + A| = |A| + |S| + m, so that |N1(S)| = |A| + m.

1. Suppose first |A| = 3, so that N1(S) = |A] + 3.

By Lemma 13 and Lemma 14, if S +4A # Z/pZ, i > 1, then (S +1iA, A) is a 2-surjective
pair. Therefore N;(S) = NA(S) for i > 2. If N;(S) # 0, then Lemma 12 implies
N;(S)—A* C N;_1(S). By the Cauchy-Davenport theorem this implies, for all 7 > 2 such
that NZ<S) 7é @,

INK(S)| < [Ni-1(S)] — 1.

Therefore, |N;(S)| < (m+3) — (1 — 1) = m+4 — i and N;(S) = 0 for i > m + 4. Hence,
Z/pZ = UEP Ny (X) which implies

m—+3
>p— S INi(S)| > p— :
S| >p ;‘ S)=>p 5

as claimed.

2. Suppose now that h + 1 = |A| > 3. Let us write Z/pZ = UF_,N;(X), so that we have

k
S| =p= >IN
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By Lemma 13 and Lemma 14, if S 4+ iA # Z/pZ, i > 1, then (S + iA, A) is an h-
surjective pair. Therefore N;(S) = NA™(S) for i > 2. If N;(S) # 0, then Lemma 12
implies N;(S) — A* C N;_1(S). Since A* is a Sidon set with more than 2 elements, it is
not an arithmetic progression. By Vosper’s theorem this implies, for all ¢ > 2 such that
INi(S)| > 1,

INi(S)| < [Ni—1(S)] — h.

Therefore, |[No(S)| < m+ |A| —h=m+ 1, and if k > 3,

(i) |N:(S)| < (m+1) — (i — 2)h for all i such that 3 <i <k —1, and

(ii) either |[Ni(S)| =1 and |Ni_1(S)| = h or |[Nk(S)| < (m+1) — (k — 2)h.
In every case we get k <2+ (m+1)/h.
By Proposition 11, |N1(S)| = m + |A| < 2m + 3; therefore, if £k = 2 we get

IN1(S)| + [N2(S)] < 3m + 4

and it is routinely checked that this is always smaller than (m; 4).

If £ > 3 we get

k
S OIN(S) < 2m+3)+ (m+1)(k—1) =
=1

(k—2)(k—1)

1
9 +

which gives, since we have supposed h > 2,
k
SN < @m+4) + (k- 1D[(m+1)— (k—2)] < (2m+4)+ (k- L)m,
i=1

and, since k — 1 <1+ (m+1)/h, we get

k
D O INI(S)| < (3m+4) +m(m +1)/2
=1

which is less than (m; 4).

This concludes the proof. 1

4. A Proof of Theorem 6: Discussion

Suppose S is a subset of Z/pZ satisfying the conditions of Theorem 6 and suppose there exists
T C Z/pZ such that 2 < |T|, |S+T| <p—2,and |S+T| < |S|+|T| +m. Then, without loss
of generality we may suppose 0 € S, and S is a 2-separable set for which x2(S) < |S|+ m. Let
A be a 2-atom of S containing 0. By Theorem 15 we have |A| = 2 and therefore

IS+ Al < [S|+ |A|+m = |S|+m+2.
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Let A = {0,a}. Let S = S;U...US} be a partition of S into arithmetic progressions of
difference a such that (S; +a) N.S; = 0 for each pair of different subscripts 4, j. Then,

h
S+ Al =18 +{0,a}| = [S] + I,
=1

which implies h < m + 2 and Theorem 6 is proved.

We now show that the term (m; 4) in Theorem 6 cannot be reduced. First consider the
following example. Let p be a prime number of the form p = 3b + 1 for some positive integer b
and let S =[0,b—1]U[b+1,20—2]U[2b+1,3b—3] and A = {0,1,b}. Then |S+ A| = |S|+|A],
ie. [Ng(A)| = |S|. Note that |[S| =p—6 = (4450)' Note also that |[Ng({0,x})| > |S|+ 1 for
any x # 0, since otherwise Vosper’s theorem would imply that S is an arithmetic progression
of difference x, which can be easily checked not to be the case. This shows that 2-atoms of size
more than 2 do exist. Furthermore, by Proposition 11, the size of a 2-atom is at most 3 in this
example, so that A is actually a 2-atom of S.

This example can be generalized to sets S with k2(S5) = |S| + m for m > 0 and for which
as(S) = 3. They are built with a similar pattern. Let b be a positive integer such that
p=(m+3)b+1is a prime number. Let

S=[0,b—1Ub+1,20—2]U[2b+1,3b—3]U...U[(m+2)b+1,(m+ 3)b— (m + 3)].

Again set A = {0,1,b}. We have |S+ A| = |S|+]|A|+m. Note that |S| =p— (m;4), i.e. exactly
the bound of Theorem 6. It is not quite clear to us how to formally prove that d2(S) > |S|+m,
or, equivalently, that S is not the union of k arithmetic progressions for £ < m 4+ 2, but this
can be checked by exhaustive search for many values of m as long as p is not too large. In
these cases we actually have k2(S) = |S| + m. This is because the second part of the proof of
Theorem 15 shows us that atoms of size > 3 are incompatible with |S| achieving the bound

p— (m; 4): therefore A actually is a 2—atom.

The above examples are sets .S
(i) that satisfy |S+ T| = |S|+ |T| + m < p — 2 for some set T" containing more than one
element,

(ii) that are the union of m + 3 arithmetic progressions with the same difference but not less.

Additional examples of sets S of cardinality larger than p — (m; 4) can be found

(i) that are the union of m + k arithmetic progressions but not less, for k& > 3,

(ii) for which we also have |S +T'| = |S| + |T| + m < p — 2 for some set 1" containing more
than one element.

As a simple example, take A = {0,1,3,13,41} C Z/91Z. Then translates S of Z/917Z \
(A+ A) have k2(S) = |S| + 5, a2(S) = 5, and S is not the union of less than 9 arithmetic
progressions.
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