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Abstract

In this paper we show that sumsets A + B of finite sets A and B of integers, must contain
long arithmetic progressions. The methods we use are completely elementary, in contrast to
other works, which often rely on harmonic analysis.

–Dedicated to Ron Graham on the occasion of his 70th birthday

1. Introduction

Given a set C of an additive group G, we let L(C) denote the length of the longest arithmetic
progression in C, where given the arithmetic progression a, a + d, a + 2d, ..., a + (k − 1)d of
distinct elements in G, we define the length of this progression to be k.

One of the main focuses in combinatorial (and additive) number theory is that of un-
derstanding the structure of the sumset 2A := A + A = {a + b : a, b ∈ A}, given certain
information about the set A. For example, one such problem is to determine L(2A), given

1Supported by an NSF grant
2Supported by Hungarian National Foundation for Scientific Research (OTKA) Grants T38396, T42750,

and T43623
3Partially supported by grant 1 P03A 029 30



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A10 2

that A ⊆ [N ] := {1, 2, ..., N} and |A| > δN , for some 0 < δ ≤ 1. The first major progress
on this problem was due to J. Bourgain [1], who proved the beautiful result:

Theorem 1 If A,B ⊆ [N ] and |A| = γN and |B| = δN , then for N large enough,

L(A + B) > exp[c(γδ log N)1/3 − log log N ],

for some constant c.

Then, I. Ruzsa [7] gave a construction, which is the following theorem:

Theorem 2 For every ε > 0 and every sufficiently large prime p, there exists a symmetric
set A of residues modulo p (i.e. A = −A) with |A| ≥ p(1/2− ε), such that

L(2A) < exp((log p)2/3+ε).

A simple consequence of this theorem is that for N sufficiently large, there exists a set
A ⊂ [N ] with |A| > (1/2− ε)N , such that

L(2A) < exp((log N)2/3+ε),

which shows that the 1/3 in Bourgain’s result cannot be improved to any number beyond
2/3.

In a recent paper, B. Green [4] proved the following beautiful result, which improves
upon Bourgain’s result above, and is currently the best that is known on this problem:

Theorem 3 Suppose A,B are subsets of Z/NZ having cardinalities γN and δN , respec-
tively. Then there is an absolute constant c > 0 such that

L(A + B) > exp(c((γδ log N)1/2 − log log N)).

There are also several other papers which treat the question of long arithmetic progres-
sions in sumsets A + A + · · · + A, such as [3], [5], [6], [9], [10], [11], and [12].

In this paper we give a proof of a result, which shows that sumsets 2A have long arithmetic
progressions when A ⊆ [N ] has only N1−θ elements (the length of the longest progression
will depend on θ). This result is stronger than those given in the above theorems of Bourgain
and Green when |A|, |B| ' N(log N)−1/2; however, when |A|, |B| > N(log N)−1/2+ε, their
results give a much stronger conclusion.

First, we need some notation: We define odd(n) to be the smallest odd integer that is
≥ n; so, n ≤ odd(n) < n + 2. Our first theorem is as follows.
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Theorem 4 Suppose that A ⊂ Z, and that

|A−A| = C|A|, and |A− 2A| = K|A|. (1)

Then,

L(A−A) ≥ odd

(
2
log |A|
log K

+ 1

)
. (2)

L(2A) ≥ odd

(
2
log(C−1|A|)

log(CK)
+ 1

)
. (3)

L(2A) ≥ odd

(
log(C−1|A|)

2 log C
+ 1

)
. (4)

A corollary of this theorem is as follows:

Corollary 1 For every odd k ≥ 1 and N sufficiently large, if

A ⊆ [N ], and |A| ≥ (3N)1−1/(k−1),

then L(2A) ≥ k.

Also, if
A,B ⊆ [N ], and |A||B| ≥ 6N2−2/(k−1),

then L(A + B) ≥ k.

To compare this result with those of Bourgain and Green, we note that when |A|, |B|(
N , then Green’s result gives that A+B contains a progression of length exp(c(log N)1/2), for
some constant c, whereas the authors’ result above gives only Ω(log N). So, in this range,
both Green’s and Bourgain’s results are much stronger than Theorem 4 and its corollary;
however, when |A|, |B|' N/

√
log N , then Green’s result does not give a non-trivial bound

on the length of the longest arithmetic progression in A + B, whereas the result above gives
that A + B contains a progression of length Ω((log N)/τ log log N) when

|A|, |B| ( N

logτ N
,

for any τ > 0. Another point is that in Theorem 4 and its corollary, the arithmetic progres-
sions produced contain 0, whereas the arithmetic progressions in Green’s result do not.

We also have a construction of sets A such that 2A has no long arithmetic progressions.
This construction is the following theorem:
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Theorem 5 For every ε > 0, there exists 0 < θ0 ≤ 1 so that if 0 < θ < θ0 ≤ 1, then there
exist infinitely many integers N and sets A ⊆ [N ] with |A| ≥ N1−θ, such that

L(2A) < exp(cθ−2/3−ε),

where c > 0 is some absolute constant.

The rest of the paper is organized as follows: In the next section we will present some
open problems on arithmetic progressions in sumsets; and, in the last section, we will give
proofs of all the theorems listed above.

2. Open Questions

From Theorem 5 and Corollary 1 we deduce that for every ε > 0 and 0 < θ < 1 sufficiently
small,

2

θ
+ O(1) < min

A⊆[N]

|A|≥N1−θ

L(2A) < exp(cθ−2/3−ε). (5)

This brings us to the following, difficult problem:

Problem 1. What is the true size of minA⊆[N ],|A|=N1−θ L(2A) ?

Another way to look at problems concerning arithmetic progressions is to fix the length
k of the progression, and to determine the parameter θ guaranteeing a k-term arithmetic
progression. This problem (which is just a restatement of Problem 1) is as follows:

Problem 2. Fix k ≥ 1. Given N , determine the largest θ ∈ (0, 1) such that if A ⊆ [N ]
satisfies |A| ≥ N1−θ, then L(2A) ≥ k.

One can interpret (5) as saying that this largest θ = θ(N) satisfies

2

k
' θ 'ε

1

(log k)3/2−ε
.

for all N sufficiently large.

In the case k = 3 we have from Corollary 1 that if |A| > N1−θ, A ⊆ [N ], and θ >
1/2 + O(1/ log N), then 2A contains a three-term arithmetic progression. On the other
hand, if A is a B4 set, which is a set containing no non-trivial solutions to

x1 + x2 + x3 + x4 = x5 + x6 + x7 + x8, x1, ..., x8 ∈ A,

then 2A contains no three-term progressions, since in particular it contains no solutions to

(x1 + x2) + (x3 + x4) = 2(x5 + x6).
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Now, it is known from [2] that B4 sets with more than N1/4 elements exist for N suffi-
ciently large. Thus, we have in the special case k = 3, in partial answer to Problem 2, the
largest θ for which |A| ≥ N1−θ implies L(2A) ≥ 3 satisfies

1

2
+ O

(
1

log N

)
< θ ≤ 3

4
,

for N sufficiently large.

3. Proofs of Theorems and Corollaries

Proof of Theorem 4.

Define m to be the largest integer satisfying

m <
log |A|
log K

+ 1, (6)

and assume that (1) holds. Since A−A is symmetric and contains 0, we have that (2) holds
if

d, 2d, ...,md ∈ A−A, (7)

since this would imply that

−md,−(m− 1)d, ..., 0, d, ...,md ∈ A−A,

which has length 2m + 1.

Now, (7) holds if and only if d = a1 − b1 ∈ A−A and

aj+1 − bj+1 = aj − bj + a1 − b1, for j = 1, ...,m− 1, (8)

(Here, all aj − bj ∈ A−A) if and only if d = a1 − b1 and

aj+1 − aj − a1 = bj+1 − bj − b1, for j = 1, ...,m− 1.

If we had two sequences a1, ..., am such that the derived sequences aj+1−aj−a1 coincide,
we have a solution to (8). Now, let V denote the set of all vectors of length m− 1 given by

(a2 − 2a1, a3 − a2 − a1, a4 − a3 − a1, ..., am − am−1 − a1).

We note that since each coordinate here lies in A− 2A, we have from (1) that

|V | ≤ Km−1|A|m−1.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A10 6

Thus, since there are |A|m choices for a1, ..., am, we have that (8) has a solution if

|A|m > |V | = Km−1|A|m−1;

in other words,
|A| > Km−1.

This inequality holds because m satisfies (6), and so we have proved (2).

To prove (3), we observe from the Cauchy-Schwarz inequality that

∑

a,b∈A

|(a−A) ∩ (A− b)| =
∑

n∈A−A

w(n)2 ≥ |A|4|A−A|−1.

where w(n) is the number of ways of writing n = a − b, a, b ∈ A. Thus, from (1) we have
that for some a, b ∈ A if we let B = A ∩ (a + b−A), then

|B| ≥ C−1|A|,

and
B −B ⊆ 2A− a− b.

It follows that
|B − 2B| ≤ |A− 2A| = K|A| ≤ CK|B|,

and so

L(2A) ≥ L(B −B) ≥ odd

(
2

log |B|
log CK

+ 1

)

≥ odd

(
2
log(C−1|A|)

log CK
+ 1

)
.

Thus, we have proved (3).

Finally, to prove (4) we apply the following result due to Ruzsa [8, Lemma 3.3].

Lemma 1 Suppose that A is a subset of an additive group G, and that

|A−A| ≤ H|A|.

Then,
|A ± A ± A · · · ± A| ≤ Ht|A|,

where t is the number of terms here.

From this lemma, we deduce that if

|A−A| ≤ C|A|,



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A10 7

then
|A− 2A| ≤ C3|A|,

and so, K ≤ C3 and it follows from (3) that

L(2A) ≥ odd

(
log(C−1|A|)

2 log C
+ 1

)
.

Proof of the Corollary 1.

Since A−A is a subset of {−N + 1, ..., N − 1}, which has size 2N − 1, we have that

C =
|A−A|

|A| <
2

3
(3N)1/(k−1). (9)

Also, since
|2A−A| ≤ |{−N + 2, ..., 2N − 1}| < 3N,

we deduce
K < (3N)1/(k−1). (10)

From (3) we deduce that

L(2A) ≥ odd

(
2
log(C−1|A|)

log(CK)
+ 1

)

≥ odd

(
2
log(3(3N)1−2/(k−1)/2)

log(2(3N)2/(k−1)/3)
+ 1 + ε

)

= odd(k − 2 + ε1)

≥ k,

where ε1 > 0 is some constant, and comes from the fact that (9) and (10) are strict inequal-
ities.

For every pair (a, b) ∈ A×B there exists a unique t ∈ [2, 2N ] such that a = t− b. Thus,
∑

2≤t≤2N

|A ∩ (t−B)| = |A||B|,

and it follows that there exists an integer t such that if we set D = A ∩ (t−B), then

|D| ≥ |A||B|
2N − 1

> 3N1−2/(k−1).

Since
D −D + t ⊆ A + B,

and since
|D − 2D| ≤ |[1− 2N,N − 1]| = 3N − 1 < N2/(k−1)|D|,
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we have from (2) (applied with the set D) that

L(A + B) ≥ L(D −D) ≥ odd

(
2 log |D|

log(N2/(k−1))
+ 1 + ε2(k,N)

)

≥ odd(k − 2 + ε2)

≥ k, (11)

where ε2 > 0 is some constant depending on N and k.

Proof of Theorem 5.

From Theorem 2 we have that for every ε > 0, there exists 0 < θ < 1 so that if we let

K =
⌊
10θ−1

⌋
+ 1, (12)

then there exists a set S ⊆ {0, ...,K − 1} satisfying |S| ≥ (K − 1)(1/2− ε) > K/5, and

L(S + S) < exp((log K)2/3+ε).

Given such a set S, define A to be the set of all integers of the form

a0 + a1(2K) + a2(2K)2 + · · · + at−1(2K)t−1, where ai ∈ S,

where t ≥ 1 is arbitrary. Let N = (2K)t, and note that A, 2A ⊂ {0, ..., N}.

Now, we have that, regardless of what value we choose for t ≥ 1,

|A| ≥
(

K

5

)t

> (2K)t(1−θ) = N1−θ.

The last inequality here follows from (12).

We also have that

L(2A) = L(S + S) < exp((log K)2/3+ε)

< exp(cθ−2/3−ε),

for some constant c > 0.

References

[1] J. Bourgain, On Arithmetic Progressions in Sums of Sets of Integers, A tribute to Paul Erdős, 105-109,
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