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Abstract

Let C), be the cyclic group of n elements, and let S = (aq,---,ax) be a sequence of elements in
C,. We say that S is a zero sequence if Zle a; = 0 and that S is a minimal zero-sequence if S
is a zero sequence and S contains no proper zero subsequence. In this paper we prove, among
other results, that if S is a minimal zero sequence of elements in C,, and |S| > n — [2] 41,
then there exists an integer m coprime to n such that |maj|+- - -+ |mag| = n, where |z| denotes
the least positive inverse image under the natural homomorphism from the additive group of
integers Z onto C,. On the other hand, we give some explicit minimal zero sequences of length
[241] + 1 not having this property above.

1. Introduction

Let G be a finite abelian group. Let S = (aq,-- -, ax) be a sequence of elements in G. By o(5)
we denote the sum Zle a;. We say that S is a zero sequence if o(S) = 0, that S is a zero-free
sequence if S contains no nonempty zero subsequence, and that S is a minimal zero sequence if
S is a zero sequence and S contains no proper zero subsequence. By >(S) we denote the set
consisting of all elements which can be expressed as a sum over a nonempty subsequence of .S,
i.e.

Z(S ) ={o(T")|T is a nonempty subsequence of S}

Sometimes we also write S = Hi-“:l a;. If T is a subsequence of S, by ST~! we denote the
subsequence W such that WT = S. We say subsequences 51, - - -, .S, of S are disjoint if 57 - - - .S,
is a subsequence of S. For every g € G, we use v4(S) to denote the number of the times that g
occurs in S.

Let C),, be the cyclic group of order n. For every z € C,, we define |z| to be the least
positive inverse image under the natural homomorphism from the additive group of integers Z
onto Cy,. For example, [0| = n. Let S = (a1, --,ar) be a sequence of elements in Cy,, by |S|,
we denote the sum Y%, |a;|. Define

Index(S) = min {|mS|,}

m,n)=1
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Index(Cy,) was first introduced by Chapman, Freeze, and Smith in [2]. It is well known that if
S is a minimal zero sequence of n elements in C,,, then S = (a, - - -, a) for some a generating C,,.
—

n
Hence, Index(S) = n. From a result of ([3], Lemma 2 ) we can easily derive that every minimal

zero sequence S of elements in C,, with |S| > n — [n/4] satisfies Index(S) = n. In Section 2 of
this paper, we prove that the last conclusion holds for the restriction of |S| > n — [n/4] replaced
by |S| > n — [n/3] + 1; In Sectoin 3 we study the sums of divisors of a positive integer n; the
final section 4 contains some conculding remarks.

2. On Index(S)

Definition. Let [(C},) be the minimal integer ¢ such that every minimal sequence S of at least
t elements in C), satisfies Index(S) = n.

Theorem 2.1 (1). [2]+1<(C,) < n—[2] + 1 holds for all n > 8.
(2). I(Cp) =1 forn=1,2,3,4,5,7 and [(Cg) = 5.

Lemma 2.2 ([1]) Let n — 2k > 1, and let S = (a1, -+, an—k) be a zero-free sequence of n — k
elements in Cy,. Then there is an element g € Cy, such that vy(S) > n — 2k + 1.

Lemma 2.3 ([{]) Let S be a zero-free sequence of elements in Cy, and let g € C, with
order(g) = n/m. Suppose that |S| > n/2. Then vy(S) < n—|5]

m—1

Lemma 2.4 ([}]) Let S be a zero-free sequence of elements in an abelian group, and let
Si,---, Sk be disjoint subsequences of S. Then, | Y(S)] > 32K, [ 32(S)].

Let S = (a1, --,ar) and T = (b1, - -, bg) be two sequences of elements in C), with the same
length. We say S is similiar to T if there exists an integer m coprime to n and a permutation
§ of {1,---,k} such that a; = mbs(;) for i = 1,---, k. Denote it by S ~ T.

Lemma 2.5 Let 1 < k < [”T“], and let S be a zero-free sequence of n — k elements in Cy,.
Then
S~ (L"'?laxlv"'axk—l)
———
n—2k+1

with Y812 < 2k — 2. Therefore, Index(S) < n.

Proof. By Lemma 2.2, there is an element g € C), such that v,(S) >n—2k+1>k=n—|S|.
It follows from Lemma 2.3 that order(g) = n. Without loss of generality, we may assume that
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g =1. Set I = v,(S). Suppose S = 1'T[}_; a;, where [+t = |S| . Since S is zero-free, we clearly
have
1<laj|<n—-Il—-1fori=1,--- t. (1)

If |a;| > 1+ 1, then | > (1'a;)| = 20 + 1. By Lemma 2.4, n — 1 > | ()| > | S (1lay)| +t — 1 >
204t=n—k+1>n—k+n—2k+1>n, a contradiction. Hence,

1<|aj| <lfori=1,---,t (2)

Since S is zero-free, 1 < |a1 + a2| <n —1—1. By (1) and (2), |ai| + |az| < n — 1. Therefore,

la1| + |az| = |a1 + a2| < n —1— 1. Similarly, one can get |a1| + |az| + |as| = |a1 + a2| + |ag| =
lap + ag 4+ az] < n —1 — 1. Finally, we must get S>'_; |a;| = | >2¢_; a;] < n — 1 — 1. Therefore,
Index(S) <n-—1. O

Proof of Theorem 2.1. (1). We first prove the upper bounds. Let S be a minimal zero sequence
of elements in C,, with |S| > n — [®$1] 4+ 1. Take an arbitrary element z from S. Then Sz~!
is zero-free. By Lemma 2.5, Index(S) < Index(Sz~')+n—-1<n—1+n—1 < 2n. Hence,
Index(S) = n.

To prove the lower bounds we distinguish four cases.

Case 1. nis odd. Set S = (1,---,1, "TH, ”T*S, "Tfl) Note that for n > 9, clearly Indexz(S) =
nT—5

2n. Therefore, 28 +1 < 1(Cy).
Case 2. n is even and n > 12. Set

S=(1,---,1,284 18 n=2) Clearly Index(S) = 2n. Therefore, [%2] +1 < 1(Cy,).

Case 3. n =8 ,set S =(1,4,5,6). It is easy to check that S is a minimal zero sequence and
that Index(S) = 16. Therefore [9/2] +1 =441 <[(Cs).

Case 4. n = 10, set S = (1,5,8,3,3). It is easy to check that S is a minimal zero sequence
and that Index(S) = 20. Therefore [11/2] +1 =5+ 1 <I(Co).

(2). It is proved in [2] that I(C,) = 1 for n = 1,2,3,5,7. For n = 4, it is easy to see that
1(Cy) = 1. For n = 6, by Lemma 2.5, we clearly have I(Cg) < 5. For S = (1,3,4,4) it is clear
that Index(S) = 12. Therefore I(Cg) = 5. O

Let S be a zero-free (resp. minimal zero) sequence of elements in an abelian group G. We
say S is splitable if there exists an element a € S and two elements x,y € G such that x+y =«
and such that Sa~lzy is zero-free (resp. minimal zero) sequence as well.

Proposition 2.6 Let S be a minimal zero subsequence with |S| = [(Cy) — 1. Suppose that
Index(S) > n. Then S is not splitable.
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Proof.  Assume to the contrary that S is splitable. Then there exist a € S and z,y € C,, such

that Sa~!zy is also a minimal zero squenece. Since, |Sa~'zy| = I(C,), by the definition of
1(Cyp), Index(Sa~tzy) = n. Therefore, Index(S) < Index(Sa~'wy) = n, a contradiction. This
proves the proposition. O

Conjecture 2.7 Let S be a minimal zero subsequence with |S| = 1(Cy) — 1. Suppose that S is
not splitable. Then Index(S) = 2n.

This conjecture, if true, would be useful for determining ((C,,).

Theorem 2.8 Let G be a finite abelian group and let G = Cy, @ --- @ Cp, be a decomposition
of G into direct summands, where allmn; > 1. Let Cy,, = (e;) fori=1,--- k. Then the sequence
S =(e; 4 +ex) [T, e is not splitable.

Proof. Clear. a

Conjecture 2.9 Let G = Cy, @---®Cy, be a finite non-cyclic abelian group with 1 < ny|-- - |ng,
and let S be a minimal zero sequence of elements in G. Suppose that (S) = G and suppose that
S is not splitable. Then S contains at least k + 1 distinct elements.

Definition. Let sp(G) be the largest integer ¢ such that every minimal zero sequence of
elements in G with |S| <t is splitable.

Problem. Determine sp(G).

We clearly have, logQ(l—(g‘) <sp(G) <I(GQ) — 1.
Conjecture 2.10 sp(G) < cln |G| for some absolute constant c.
Define
I(Cp) = mgx{[ndeaz(S)},
where S runs over all minimal zero sequences of elements in C),.

Proposition 2.11 I(Cy) > 2 (1 + [logs(%)]) + 1.

Lemma 2.12 If a is an element in Cy, then |mal + |m(n — 2a)| > n/2 holds for every integer
m coprime to n.
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Proof. If |{ma| > n/2 then we are done. Otherwise, |ma| < n/2, then
|mal + [m(n — 2a)| = |ma| +n — 2|na| = n — |mal > n/2. 0

Proof of Proposition 2.11. Let t = [logs(%)], set T' = (1, 3, 32,3 n—2,n—6,n—18,- -, n—2x
31) = Ti=(3",n—2x3"). Since 3" > 237" _ 3 fori =0,---,t—land2);_; 3" =31 -1 < n,
T is zero-free. Let m be the positive integer coprime to n such that Index(T) = |mT|. By
Lemma 2.12, Index(T) = |mT| = St (|m3!|+|m(n—2x3%)| > 2 (t+1). Set S = T-(—0o(T)).
Then S is a minimal zero sequence with Index(S) > Index(T) +1 > L (t + 1) + 1. O

3. Sums of Divisors of n

In [5], Lemke and Kleitman proved, among other results, that if S = (a1,---,a,) is a sequence
of positive integer and a;|n holds for every i = 1,---,n then there is a subsequence T of S with
o(T) = n. Here we shall show a generaliztion of this result.

Theorem 3.1 Let S = (a1, ,ak,b1, -, bu_r) be a sequence of n positive integers. Suppose
that a;|n fori=1,---,k, and suppose that all of b; are distinct and b; <n fori=1,---,n—k.
Then, there is a subsequence T of S with o(T') = n.

Lemma 3.2 Let A be a subset of [0,n], and B\ {0} a set of positive divisors of n. Suppose
that 0 € AN B and suppose that n ¢ A+ B. Then, |(A+ B)N[0,n]| > |A| + |B| — 1, where
0,n] ={0,1,2,---,n—1,n}.

Proof. We proceed by induction on |B|. |B| = 1 implies B = {0} and the lemma is trivial.
Assume that the lemma is true for |B| < k (k > 2), we want to prove it is true also for |B| = k.
Take an arbitrary b € B\ {0}. Then bln. Since n ¢ A+ B, (5 —1)b ¢ A. Let r be the
least nonnegative integer such that rb ¢ A. Then 1 < 7 < 7. Therefore (r — 1)b € A but
b+ (r—1)b¢g A. Set a= (r—1)b. Set By ={b' € Bla+V ¢ A and a+ b <n}. Then By # (.
Now set A} = AU(a+ Byp) and set By = B\ By. Clearly, (A1+B1)N[0,n] C (A+B)N[0,n]. Note
that |B;| < k. By the inductive assumption we have |(A + B) N [0,n]| > |(A1 + B1) N[0, n]| >
|A1| 4+ |B1| — 1 = |A| + |B| — 1. O

Proof of Theorem 3.1. Set Ag ={0,b1,---,b,—} and set A; = {0,a;} fori=1,--- k. Assume
to the contrary that n ¢ > (S). By Lemma 3.2 we have, [(Ag + A1) N [L,n]| = [(Ao + 41) N
[0,n]| =1 > |Ag|+|A1|—2. Similiarly, one can get [(Ao+ A1+ A2)N[1,n] > |(Ao+ A1)N[0,n]|+
|Aa] — 1 > |Ag| + |A1| + |A2| — 3, and finally, we must get |(Ag + A1 + As+---+ Ax) N [1,n]| >
|Ao| + |A1] + -+ + |Ak| — kK — 1 =|S| = n, a contradiction on n & >>(.59). 0

Kleitman and Lemke [5] suggested that
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Conjecture 3.3 FEvery sequence of n elements in C, contains a nonempty subsequence T’ such
that Index(T) = n.

They pointed out that this conjecture is open even for n prime.

Conjecture 3.4 Let S = (a,---,ax) be a sequence of elements in C,. Suppose that S contains
no subsequence T with Index(T) = n. Then, |[{o(T)|A # T C S and Index(T) < n}| > k,

where \ denotes the empty sequence.

This conjecture, if true, would clearly imply Conjecture 2.4.

4. Concluding Remarks

Let S = (ay,---,ax) be a sequence of elements in C,,. For a positive integer I, we say S is a
partition of 1 if >-% | |a;] = I. By the definition of Index(S) we have that every sequence S
of elements in (), is similiar to a partition of Index(S). By the definition of I(C,) we have
that every minimal zero sequence of elements in C), is similiar to a partition of In for some
I < I(Cp)/n. Hence, if Index(S) > I(C,,), then S contains a proper zero subsequence. From
Theorem 1.1 we see that every minimal zero sequence of at least n — [”T'H] + 1 elements in C),

is similiar to a partition of n. For every positive integer k < n — 1, we define
I;(Cy) = maxp|—,{Index(T)},

where T runs over all zero-free sequences of k elements in C,,.

Proposition 4.1 (1). If p is the smallest positive divisor of n then I1;(Cy) = n/p.
(2). If n >3 is a prime then I,(Cy) = “£1.

Proof. (1). Clear.

(2). By Lemma 1.12, I7(C,) > ”T‘H To prove the upper bound, let z,y be two nonzero
elements (not necessarily distinct) with  +y # 0. Set z = —x — y. Then (z,y, z) is a minimal
zero sequence. Let t be the positive intger such that tz = &21 and 1 <t < p—1. Then
(p—t)z = 5L, Since |ta] + |ty| +[t2] + [(p—t)o] +|(p — )] + |(p— 12| = 3p, [tal + |ty| +|t2] = p
or [(p—t)z|+|(p—t)y|+|(p—t)z| = p. Therefore, [ty|+|tz] = E5* or [(p—t)z|+|(p—t)y| = Z5+.
O

Conjecture 4.2 I(C,) < clnn for some absolute constant c.
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