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Abstract

Let Cn be the cyclic group of n elements, and let S = (a1, · · · , ak) be a sequence of elements in
Cn. We say that S is a zero sequence if

∑k
i=1 ai = 0 and that S is a minimal zero-sequence if S

is a zero sequence and S contains no proper zero subsequence. In this paper we prove, among
other results, that if S is a minimal zero sequence of elements in Cn and |S| ≥ n − [n+1

3 ] + 1,
then there exists an integer m coprime to n such that |ma1|+ · · ·+ |mak| = n, where |x| denotes
the least positive inverse image under the natural homomorphism from the additive group of
integers Z onto Cn. On the other hand, we give some explicit minimal zero sequences of length
[n+1

2 ] + 1 not having this property above.

1. Introduction

Let G be a finite abelian group. Let S = (a1, · · · , ak) be a sequence of elements in G. By σ(S)
we denote the sum

∑k
i=1 ai. We say that S is a zero sequence if σ(S) = 0, that S is a zero-free

sequence if S contains no nonempty zero subsequence, and that S is a minimal zero sequence if
S is a zero sequence and S contains no proper zero subsequence. By

∑
(S) we denote the set

consisting of all elements which can be expressed as a sum over a nonempty subsequence of S,
i.e. ∑

(S) = {σ(T )|T is a nonempty subsequence of S}
Sometimes we also write S =

∏k
i=1 ai. If T is a subsequence of S, by ST−1 we denote the

subsequence W such that WT = S. We say subsequences S1, · · · , Sr of S are disjoint if S1 · · ·Sr
is a subsequence of S. For every g ∈ G, we use vg(S) to denote the number of the times that g
occurs in S.

Let Cn be the cyclic group of order n. For every x ∈ Cn, we define |x| to be the least
positive inverse image under the natural homomorphism from the additive group of integers Z
onto Cn. For example, |0| = n. Let S = (a1, · · · , ak) be a sequence of elements in Cn, by |S|n
we denote the sum

∑k
i=1 |ai|. Define

Index(S) = min
(m,n)=1

{|mS|n}
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Index(Cn) was first introduced by Chapman, Freeze, and Smith in [2]. It is well known that if
S is a minimal zero sequence of n elements in Cn, then S = (a, · · · , a︸ ︷︷ ︸

n

) for some a generating Cn.

Hence, Index(S) = n. From a result of ([3], Lemma 2 ) we can easily derive that every minimal
zero sequence S of elements in Cn with |S| ≥ n− [n/4] satisfies Index(S) = n. In Section 2 of
this paper, we prove that the last conclusion holds for the restriction of |S| ≥ n− [n/4] replaced
by |S| ≥ n − [n/3] + 1; In Sectoin 3 we study the sums of divisors of a positive integer n; the
final section 4 contains some conculding remarks.

2. On Index(S)

Definition. Let l(Cn) be the minimal integer t such that every minimal sequence S of at least
t elements in Cn satisfies Index(S) = n.

Theorem 2.1 (1). [n+1
2 ] + 1 ≤ l(Cn) ≤ n− [n+1

3 ] + 1 holds for all n ≥ 8.

(2). l(Cn) = 1 for n = 1, 2, 3, 4, 5, 7 and l(C6) = 5.

Lemma 2.2 ([1]) Let n − 2k ≥ 1, and let S = (a1, · · · , an−k) be a zero-free sequence of n − k
elements in Cn. Then there is an element g ∈ Cn such that vg(S) ≥ n− 2k + 1.

Lemma 2.3 ([4]) Let S be a zero-free sequence of elements in Cn, and let g ∈ Cn with
order(g) = n/m. Suppose that |S| > n/2. Then vg(S) < n−|S|

m−1 .

Lemma 2.4 ([4]) Let S be a zero-free sequence of elements in an abelian group, and let
S1, · · · , Sk be disjoint subsequences of S. Then, |∑(S)| ≥∑k

i=1 |
∑

(Si)|.

Let S = (a1, · · · , ak) and T = (b1, · · · , bk) be two sequences of elements in Cn with the same
length. We say S is similiar to T if there exists an integer m coprime to n and a permutation
δ of {1, · · · , k} such that ai = mbδ(i) for i = 1, · · · , k. Denote it by S ∼ T .

Lemma 2.5 Let 1 ≤ k ≤ [n+1
3 ], and let S be a zero-free sequence of n − k elements in Cn.

Then
S ∼ (1, · · · , 1︸ ︷︷ ︸

n−2k+1

, x1, · · · , xk−1)

with
∑k−1
i=1 |xi| ≤ 2k − 2. Therefore, Index(S) < n.

Proof. By Lemma 2.2, there is an element g ∈ Cn such that vg(S) ≥ n− 2k+1 ≥ k = n− |S|.
It follows from Lemma 2.3 that order(g) = n. Without loss of generality, we may assume that
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g = 1. Set l = vg(S). Suppose S = 1l
∏t
i=1 ai, where l+ t = |S| . Since S is zero-free, we clearly

have
1 ≤ |ai| ≤ n− l − 1 for i = 1, · · · , t. (1)

If |at| ≥ l + 1, then |∑(1lat)| = 2l + 1. By Lemma 2.4, n− 1 ≥ |∑(S)| ≥ |∑(1lat)|+ t− 1 ≥
2l + t = n− k + l ≥ n− k + n− 2k + 1 ≥ n, a contradiction. Hence,

1 ≤ |ai| ≤ l for i = 1, · · · , t (2)

Since S is zero-free, 1 ≤ |a1 + a2| ≤ n − l − 1. By (1) and (2), |a1| + |a2| ≤ n − 1. Therefore,
|a1|+ |a2| = |a1 + a2| ≤ n− l − 1. Similarly, one can get |a1|+ |a2|+ |a3| = |a1 + a2|+ |a3| =
|a1 + a2 + a3| ≤ n − l − 1. Finally, we must get

∑t
i=1 |ai| = |

∑t
i=1 ai| ≤ n − l − 1. Therefore,

Index(S) ≤ n− 1. 2

Proof of Theorem 2.1. (1). We first prove the upper bounds. Let S be a minimal zero sequence
of elements in Cn with |S| ≥ n − [n+1

3 ] + 1. Take an arbitrary element x from S. Then Sx−1

is zero-free. By Lemma 2.5, Index(S) ≤ Index(Sx−1) + n − 1 ≤ n − 1 + n − 1 < 2n. Hence,
Index(S) = n.

To prove the lower bounds we distinguish four cases.

Case 1. n is odd. Set S = (1, · · · , 1︸ ︷︷ ︸
n−5

2

, n+3
2 , n+3

2 , n−1
2 ). Note that for n ≥ 9, clearly Index(S) =

2n. Therefore, n+1
2 + 1 ≤ l(Cn).

Case 2. n is even and n ≥ 12. Set

S = (1, · · · , 1︸ ︷︷ ︸
n−6

2

, n+4
2 , n+4

2 , n−2
2 ). Clearly Index(S) = 2n. Therefore, [n+1

2 ] + 1 ≤ l(Cn).

Case 3. n = 8 , set S = (1, 4, 5, 6). It is easy to check that S is a minimal zero sequence and
that Index(S) = 16. Therefore [9/2] + 1 = 4 + 1 ≤ l(C8).

Case 4. n = 10, set S = (1, 5, 8, 3, 3). It is easy to check that S is a minimal zero sequence
and that Index(S) = 20. Therefore [11/2] + 1 = 5 + 1 ≤ l(C10).

(2). It is proved in [2] that l(Cn) = 1 for n = 1, 2, 3, 5, 7. For n = 4, it is easy to see that
l(C4) = 1. For n = 6, by Lemma 2.5, we clearly have l(C6) ≤ 5. For S = (1, 3, 4, 4) it is clear
that Index(S) = 12. Therefore l(C6) = 5. 2

Let S be a zero-free (resp. minimal zero) sequence of elements in an abelian group G. We
say S is splitable if there exists an element a ∈ S and two elements x, y ∈ G such that x+y = a

and such that Sa−1xy is zero-free (resp. minimal zero) sequence as well.

Proposition 2.6 Let S be a minimal zero subsequence with |S| = l(Cn) − 1. Suppose that
Index(S) > n. Then S is not splitable.
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Proof. Assume to the contrary that S is splitable. Then there exist a ∈ S and x, y ∈ Cn such
that Sa−1xy is also a minimal zero squenece. Since, |Sa−1xy| = l(Cn), by the definition of
l(Cn), Index(Sa−1xy) = n. Therefore, Index(S) ≤ Index(Sa−1xy) = n, a contradiction. This
proves the proposition. 2

Conjecture 2.7 Let S be a minimal zero subsequence with |S| = l(Cn)− 1. Suppose that S is
not splitable. Then Index(S) = 2n.

This conjecture, if true, would be useful for determining l(Cn).

Theorem 2.8 Let G be a finite abelian group and let G = Cn1 ⊕ · · · ⊕Cnk be a decomposition
of G into direct summands, where all ni > 1. Let Cni = 〈ei〉 for i = 1, · · · , k. Then the sequence
S = (e1 + · · ·+ ek)

∏k
i=1 e

ni−1
i is not splitable.

Proof. Clear. 2

Conjecture 2.9 Let G = Cn1⊕· · ·⊕Cnk be a finite non-cyclic abelian group with 1 < n1| · · · |nk,
and let S be a minimal zero sequence of elements in G. Suppose that 〈S〉 = G and suppose that
S is not splitable. Then S contains at least k + 1 distinct elements.

Definition. Let sp(G) be the largest integer t such that every minimal zero sequence of
elements in G with |S| ≤ t is splitable.

Problem. Determine sp(G).

We clearly have, log2(
|G|
2 ) ≤ sp(G) ≤ l(G)− 1.

Conjecture 2.10 sp(G) ≤ c ln |G| for some absolute constant c.

Define
I(Cn) = max

S
{Index(S)},

where S runs over all minimal zero sequences of elements in Cn.

Proposition 2.11 I(Cn) ≥ n+1
2 (1 + [log3(

n
3 )]) + 1.

Lemma 2.12 If a is an element in Cn, then |ma|+ |m(n− 2a)| > n/2 holds for every integer
m coprime to n.
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Proof. If |ma| > n/2 then we are done. Otherwise, |ma| < n/2, then

|ma|+ |m(n− 2a)| = |ma|+ n− 2|na| = n− |ma| > n/2. 2

Proof of Proposition 2.11. Let t = [log3(
n
3 )], set T = (1, 3, 32, · · · , 3t, n−2, n−6, n−18, · · · , n−2×

3t) =
∏t
i=0(3

i, n−2×3i). Since 3i+1 > 2
∑i
j=1 3i for i = 0, · · · , t−1 and 2

∑t
i=1 3i = 3t+1−1 < n,

T is zero-free. Let m be the positive integer coprime to n such that Index(T ) = |mT |. By
Lemma 2.12, Index(T ) = |mT | = ∑t

i=0(|m3i|+|m(n−2×3i)| ≥ n+1
2 (t+1). Set S = T ·(−σ(T )).

Then S is a minimal zero sequence with Index(S) ≥ Index(T ) + 1 ≥ n+1
2 (t+ 1) + 1. 2

3. Sums of Divisors of n

In [5], Lemke and Kleitman proved, among other results, that if S = (a1, · · · , an) is a sequence
of positive integer and ai|n holds for every i = 1, · · · , n then there is a subsequence T of S with
σ(T ) = n. Here we shall show a generaliztion of this result.

Theorem 3.1 Let S = (a1, · · · , ak, b1, · · · , bn−k) be a sequence of n positive integers. Suppose
that ai|n for i = 1, · · · , k, and suppose that all of bi are distinct and bi ≤ n for i = 1, · · · , n− k.
Then, there is a subsequence T of S with σ(T ) = n.

Lemma 3.2 Let A be a subset of [0, n], and B \ {0} a set of positive divisors of n. Suppose
that 0 ∈ A ∩ B and suppose that n 6∈ A + B. Then, |(A + B) ∩ [0, n]| ≥ |A| + |B| − 1, where
[0, n] = {0, 1, 2, · · · , n− 1, n}.

Proof. We proceed by induction on |B|. |B| = 1 implies B = {0} and the lemma is trivial.
Assume that the lemma is true for |B| < k (k ≥ 2), we want to prove it is true also for |B| = k.
Take an arbitrary b ∈ B \ {0}. Then b|n. Since n 6∈ A + B, (nb − 1)b 6∈ A. Let r be the
least nonnegative integer such that rb 6∈ A. Then 1 ≤ r < n

b . Therefore (r − 1)b ∈ A but
b+ (r − 1)b 6∈ A. Set a = (r − 1)b. Set B0 = {b′ ∈ B|a+ b′ 6∈ A and a+ b′ < n}. Then B0 6= ∅.
Now set A1 = A∪(a+B0) and set B1 = B\B0. Clearly, (A1+B1)∩[0, n] ⊂ (A+B)∩[0, n]. Note
that |B1| < k. By the inductive assumption we have |(A+B) ∩ [0, n]| ≥ |(A1 +B1) ∩ [0, n]| ≥
|A1|+ |B1| − 1 = |A|+ |B| − 1. 2

Proof of Theorem 3.1. Set A0 = {0, b1, · · · , bn−k} and set Ai = {0, ai} for i = 1, · · · , k. Assume
to the contrary that n 6∈ ∑(S). By Lemma 3.2 we have, |(A0 + A1) ∩ [1, n]| = |(A0 + A1) ∩
[0, n]|−1 ≥ |A0|+ |A1|−2. Similiarly, one can get |(A0 +A1 +A2)∩ [1, n] ≥ |(A0 +A1)∩ [0, n]|+
|A2| − 1 ≥ |A0|+ |A1|+ |A2| − 3, and finally, we must get |(A0 +A1 +A2 + · · ·+Ak)∩ [1, n]| ≥
|A0|+ |A1|+ · · ·+ |Ak| − k − 1 = |S| = n, a contradiction on n 6∈∑(S). 2

Kleitman and Lemke [5] suggested that
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Conjecture 3.3 Every sequence of n elements in Cn contains a nonempty subsequence T such
that Index(T ) = n.

They pointed out that this conjecture is open even for n prime.

Conjecture 3.4 Let S = (a1, · · · , ak) be a sequence of elements in Cn. Suppose that S contains
no subsequence T with Index(T ) = n. Then, |{σ(T )|λ 6= T ⊂ S and Index(T ) < n}| ≥ k,
where λ denotes the empty sequence.

This conjecture, if true, would clearly imply Conjecture 2.4.

4. Concluding Remarks

Let S = (a1, · · · , ak) be a sequence of elements in Cn. For a positive integer l, we say S is a
partition of l if

∑k
i=1 |ai| = l. By the definition of Index(S) we have that every sequence S

of elements in Cn is similiar to a partition of Index(S). By the definition of I(Cn) we have
that every minimal zero sequence of elements in Cn is similiar to a partition of ln for some
l ≤ I(Cn)/n. Hence, if Index(S) > I(Cn), then S contains a proper zero subsequence. From
Theorem 1.1 we see that every minimal zero sequence of at least n− [n+1

3 ] + 1 elements in Cn
is similiar to a partition of n. For every positive integer k ≤ n− 1, we define

Ik(Cn) = max|T |=k{Index(T )},

where T runs over all zero-free sequences of k elements in Cn.

Proposition 4.1 (1). If p is the smallest positive divisor of n then I1(Cn) = n/p.

(2). If n ≥ 3 is a prime then I2(Cn) = n+1
2 .

Proof. (1). Clear.

(2). By Lemma 1.12, I2(Cn) ≥ n+1
2 . To prove the upper bound, let x, y be two nonzero

elements (not necessarily distinct) with x+ y 6= 0. Set z = −x− y. Then (x, y, z) is a minimal
zero sequence. Let t be the positive intger such that tz = p+1

2 and 1 ≤ t ≤ p − 1. Then
(p− t)z = p−1

2 . Since |tx|+ |ty|+ |tz|+ |(p− t)x|+ |(p− t)y|+ |(p− t)z| = 3p, |tx|+ |ty|+ |tz| = p

or |(p−t)x|+ |(p−t)y|+ |(p−t)z| = p. Therefore, |ty|+ |tz| = p−1
2 or |(p−t)x|+ |(p−t)y| = p+1

2 .
2

Conjecture 4.2 I(Cn) ≤ c lnn for some absolute constant c.
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