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Abstract

We present a game on 3 piles of tokens, which is neither a generalization of Nim, nor of
Wythoff’s game. Three winning strategies are given and validated. They are, respectively,
recursive, algebraic and arithmetic in nature, and differ in their time and space requirements.
The game is a birthday present for Ron Graham, but the margins of this abstract are too
narrow to explain why.

–Dedicated to Ron Graham on his 70th birthday

1. Prologue

Let ∆n := !!(n + 1)ϕ"ϕ" − !!nϕ"ϕ", where ϕ = (1 +
√

5)/2 is the golden section. Prove
that for every n ∈ Z≥1,

(i) ∆n ∈ {2, 3},

(ii) !!(n + 1)ϕ2"ϕ" − !!nϕ2"ϕ" = 2∆n − 1,

(iii) !nϕ"+ !nϕ2" = !!nϕ2"ϕ",

(iv) !!nϕ2"ϕ" = !!nϕ"ϕ2"+ 1.

1http://www.wisdom.weizmann.ac.il/∼fraenkel
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2. Introduction

We consider 2-player take-away games on finitely many piles with finitely many tokens,
without splitting piles into subpiles. Throughout this paper, we adopt the convention
that the player first unable to move loses; the opponent wins. Nim is played on any
finite number of piles; a move consists of selecting a pile, and removing from it any positive
number of tokens [1]. The game ends when there are no more tokens. Wythoff’s game is
played on 2 piles of tokens and has 2 move rules: either make a Nim-move, or take the same
(positive) number from both piles [13], [5], [6].

Most take-away games (without splitting piles) are variations of Nim. Very few are varia-
tions of Wythoff’s game. In fact, if there are precisely 2 piles and a Nim-move is permitted,
then the game does not have the Nim-strategy if and only if the move-rules permit taking
the same positive number of tokens from both piles [2]. The strategy of games on more than
2 piles not possessing the Nim-strategy is rarely known.

The Raleigh game created here is played on 3 piles. Its winning strategy is neither that
of Nim nor that of Wythoff’s game. It’s a variation of Wythoff’s game, not a generalization
thereof.

3. Game Description

As stated above, Wythoff’s game is played on 2 piles of tokens and has 2 move rules. Raleigh
is played on 3 piles of tokens and has 3 move rules. We denote positions of Raleigh by
(a1, a2, a3), with 0 ≤ a1 ≤ a2 ≤ a3.

Rules of move:

I. Any positive number of tokens from up to 2 piles can be removed.

II. From a nonzero position in which 2 piles have the same size, one can move to (0, 0, 0).

III. If 0 < a1 < a2 < a3, one can remove the same positive number t from a2 and a3 and
an arbitrary positive number from a1, except that if a2 − t is the smallest component in the
triple moved to, then t (= 3.

Note that rule I implies that Raleigh’s game is not a generalization of Wythoff’s game.

What does Raleigh’s game have to do with Ron Graham?
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4. Recursive Characterization of the P -positions

Let S0 = (0, 0, 0), S1 = (1, 2, 3). If Sm := (Am, Bm, Cm) has already been defined for all
m < n, then let

An = mex{Ai, Bi, Ci : 0 ≤ i < n} (n ≥ 0), (1)

Bn = An + 1 (n ≥ 1),

Cn =

{
Cn−1 + 3 if An −An−1 = 2
Cn−1 + 5 otherwise (n ≥ 2).

(2)

These definitions clearly imply that each of An, Bn, Cn is a strictly increasing sequence.
Let S = ∪∞n=0Sn. A prefix of S of size 16 is shown in Table 1.

Table 1: P -positions of Raleigh.
n An Bn Cn

0 0 0 0
1 1 2 3
2 4 5 8
3 6 7 11
4 9 10 16
5 12 13 21
6 14 15 24
7 17 18 29
8 19 20 32
9 22 23 37
10 25 26 42
11 27 28 45
12 30 31 50
13 33 34 55
14 35 36 58
15 38 39 63

The set of positions from which the second (P revious) player can force a win are the
P -positions of a game.

Theorem 1 The collection S constitutes the set of P -positions of Raleigh.

We begin by collecting a few properties of the set S.
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Lemma 1 An+1 −An = Bn+1 −Bn ∈ {2, 3} for all n ∈ Z≥1.

Proof. The equality follows from Bn = An + 1. Put An = a. Then Bn = a + 1. Now a + 2
was not assumed as Am or Bm for m < n since the sequences are increasing. If it also was
not assumed as Cm, then An+1 = a + 2 by (1). If Cm = a + 2, then An+1 = a + 3 by (1).

Let A = ∪∞i=1Ai, B = ∪∞i=1Bi, C = ∪∞i=1Ci.

Lemma 2 The sets A, B, C, partition Z≥1.

Proof. (1) implies that A∪B∪C = Z≥1. Suppose that Am = Bn for some m,n ∈ Z≥1. Then
m > n is impossible by (1). If m < n, then Bn > An > Am since A is a strictly increasing
sequence, a contradiction.

Suppose that Am = Cn for some m,n ∈ Z≥1. Then m > n is impossible by (1), as above.
If m < n, then Am < Bm = Am + 1 < An, where the last inequality follows from (1).
By comparing Lemma 1 with (2), we see that An < Cn, so Am < Bm < An < Cn. Thus
Am (= Cn and Bm (= Cn. It remains only to show that Bm (= Cn for m > n.

Table 1 shows that Bm (= C1 for all m ≥ 1. Suppose that Bm = Cn for some m,n ∈ Z≥2,
m > n. Put Am = a. Then (Am, Bm) = (a, a + 1 = Cn). We consider 2 cases.

(i) Am − Am−1 = 2. Then (Am−1, Bm−1) = (a − 2, a − 1). Now Am−1 (= Cn−1 as we have
just seen. Thus either Cn − Cn−1 < a + 1 − (a − 2) = 3 contradicting (2), or Cn − Cn−1 >
a + 1− (a− 2) = 3, so Cn −Cn−1 = 5 by (2). This implies Am −Am−1 = 3, a contradiction.

By Lemma 1, the only other case is:

(ii) Am − Am−1 = 3. Then (Am−1, Bm−1) = (a − 3, a − 2), so Cn−1 = a − 1 by (1), since
otherwise a− 1 would not be attained in S. Thus Cn − Cn−1 = 2, contradicting (2).

Lemma 3 (i) Cn −Bn and Cn −An are increasing functions of n.

(ii) Every positive integer appears in the multiset {Cn −Bn, Cn −An : n ∈ Z≥1}.

Proof. By (2) and Lemma 1,

(Cn+1 − Cn)− (An+1 −An) =

{
1 if An+1 −An = 2
2 if An+1 −An = 3.

Since Bn = An + 1, we have

(Cn+1 −An+1)− (Cn −An) = (Cn+1 −Bn+1)− (Cn −Bn) ∈ {1, 2}. (3)
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This already proves (i). Now if Cn−Bn = t for some positive integer t, then Cn+1−Bn+1 =
t + 1 or t + 2. But Cn −An = t + 1, so also in the latter case t + 1 is assumed, establishing
(ii).

Proof of Theorem 1. We show two things:

(A) Every move from any position in S results in a position outside S.

(B) For every position outside S there is a move into a position in S.

(A) Clearly there is no legal move S1 → S0. Suppose there are positions Sn and Sm

with m < n, n ≥ 2, such that there is a legal move Sn → Sm. By Lemma 2, this move
is necessarily of the form III. Since Bi = Ai + 1, there exists t ∈ Z≥1 such that either
(Am, Bm, Cm) = (An − t, Bn − t, Cn − t), or (Am, Bm, Cm) = (Bn − t, An − t + 2, Cn − t),
t (= 3.

(i) (An, Bn, Cn) = (Am + t, Bm + t, Cm + t). Comparing the last components of the triples,
we have t ≥ 3 by (2). Comparing the first components, Lemma 1 implies t ≤ 3. Hence
t = 3, so n = m + 1. But a comparison of the first components then implies t = 5 by (2), a
contradiction.

(ii) (An, Bn, Cn) = (Bm + t − 2, Am + t, Cm + t), t (= 3. Comparing the last components
and the proviso t (= 3 imply t ≥ 5. Comparing the middle components then shows that
n−m ≥ 2 (Lemma 1). Now the last equality implies (Cn −Bn)− (Cm −Bm) = 1. But (3)
implies that (Cn−Bn)− (Cm−Bm) > 1 for n−m ≥ 2, a contradiction. Thus (A) has been
established.

(B) Let (a1, a2, a3) (∈ S, 0 ≤ a1 ≤ a2 ≤ a3. If there is equality in any of these, a move of the
form I or II leads to S0. So we may assume that 0 < a1 < a2 < a3. By the complementarity
of A, B, C, a1 appears in precisely one component of precisely one Sn, n ≥ 1. If a1 = Cn,
move a2 → An, a3 → Bn.

So suppose that a1 = Bn. If a3 ≥ Cn, move a2 → An, a3 → Cn. So assume a3 < Cn. Let
a3 − a2 = t. By Lemma 3(ii), there exist m ∈ Z≥1 such that either (i) Cm − Bm = t, or
(ii) Cm −Am = t. In case (i) move (a1, a2, a3) → (Am, Bm, Cm). This is a legal move:

• m < n. Follows from Lemma 3(i) and a2 > a1 = Bn, since Cm − Bm = a3 − a2 <
a3 − a1 < Cn −Bn.

• a1 = Bn > An > Am, so this move (as well as all others in the remainder of this proof)
is of the form III.

In case (ii) move (a2, a1, a3) → (Am, Bm, Cm). This is also a legal move:

• m < n. We now have Cm −Am = a3 − a2 < a3 − a1 < Cn −Bn < Cn −An.
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• a1 = Bn > Bm, since n > m.

• Suppose that t = 3. Then Cm − Bm = 2. But the first few entries of Table 1 and
Lemma 3(i) show that Cm −Bm never attains the value 2.

Now suppose that a1 = An. If a3 > Cn, move a2 → Bn, a3 → Cn. If a3 = Cn, then
a2 > Bn, so move a2 → Bn. We may thus assume that a3 < Cn. Let a3 − a2 = t. As above,
there exist m ∈ Z≥1 such that either (i) Cm−Bm = t, or (ii) Cm−Am = t. In case (i) move
(a1, a2, a3) → (Am, Bm, Cm). It is a legal move:

• m < n. Follows from Lemma 3(i) and a2 > a1 = An, since Cm − Bm = a3 − a2 <
a3 − a1 ≤ Cn −An − 1 = Cn −Bn.

• a1 = An > Am, since n > m.

In case (ii) move (a2, a1, a3) → (Am, Bm, Cm). This is also a legal move:

• m < n. We now have Cm −Am = a3 − a2 < a3 − a1 < Cn −An.

• By Lemma 1, a1 = An ≥ An−1 + 2 = Bn−1 + 1 > Bm.

• The above argument that t (= 3 applies also here.

5. Algebraic Characterization of the P -positions

The recursive characterization enunciated in Theorem 1, provides an easy method to compute
the P -positions.

How easy is it? If the initial position of the game is (a1, a2, a3), the input size is log a1 +
log a2 + log a3. The time needed to compute whether the position is a P -position or not,
however, is proportional to a1 + a2 + a3. So the algorithm isn’t all that easy; in fact, it
requires exponential space (and hence exponential time)!

Is there a polynomial-time strategy? In this and the next section we provide an answer to
this question.

Theorem 2 Let ϕ = (1 +
√

5)/2 (golden section). For all n ∈ Z≥0,

An = !!nϕ"ϕ", Bn = !nϕ2", Cn = !!nϕ2"ϕ".
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For proving Theorem 2, put, for all n ∈ Z≥0,

A′
n = !!nϕ"ϕ", B′

n = !nϕ2", C ′
n = !!nϕ2"ϕ",

A′ = ∪∞n=1A
′
n, B′ = ∪∞n=1B

′
n, C ′ = ∪∞n=1C

′
n.

Since ϕ2 = ϕ + 1 > ϕ > 1, each of the sequences A′
n, B′

n, C ′
n is strictly increasing. We

begin by proving a few auxiliary results.

Lemma 4 The sets A′, B′, C ′ partition Z≥1.

Proof. Since ϕ−1 + (ϕ2)−1 = 1, the sets ∪∞n=1!nϕ" and B′ split Z≥1 (see e.g., [6], §3). The
result now follows, since then A′ and C ′ split ∪∞n=1!nϕ".

Lemma 5 For all n ∈ Z≥1, B′
n −A′

n = 1.

Proof. Clearly B′
n − A′

n ≥ !nϕ2" − !nϕ2" = 0. But the sequences !mϕ", !nϕ2" are disjoint
(m,n ∈ Z≥1) by Lemma 4. Hence the inequality is strict, so B′

n −A′
n ≥ 1.

Conversely, we multiply the inequality nϕ < !nϕ"+ 1 by ϕ, getting nϕ2 < (!nϕ"+ 1)ϕ.
Therefore !nϕ2" ≤ !(!nϕ"+1)ϕ". Again by complementarity, this inequality is strict. Hence
!nϕ2" − !!nϕ"ϕ" < !(!nϕ"+ 1)ϕ" − !!nϕ"ϕ" ≤ 2, since ϕ < 2. Thus B′

n −A′
n ≤ 1.

Lemma 6 For all n ∈ Z≥1, A′
n < B′

n < C ′
n, and A′

n = mex{A′
i, B

′
i, C

′
i : 0 ≤ i < n}.

Proof. In the first paragraph of the proof of Lemma 5 we proved A′
n < B′

n. Clearly B′
n ≤ C ′

n.
Since B′ ∩ C ′ = ∅ (Lemma 4), we actually have B′

n < C ′
n, establishing the first part of the

lemma.

For n ∈ Z≥1, put En := mex{A′
i, B

′
i, C

′
i : 0 ≤ i < n}. Suppose that we have already shown

that A′
n = En for all n < m. Then also A′

m = Em, because A′
m < Em would imply that

either the sequence A′
i is not strictly increasing, or that A′ ∩ (B′ ∪ C ′) (= ∅, contradicting

Lemma 4. Also A′
m > Em would imply that the value Em is never assumed in A′ ∪ B′ ∪ C ′

because the sequences A′
n, B′

n, C ′
n are strictly increasing, contradicting Lemma 4.

Lemma 7 Let n ∈ Z≥1. Then A′
n+1 −A′

n = B′
n+1 −B′

n ∈ {2, 3} and

C ′
n+1 − C ′

n = 2(A′
n+1 −A′

n)− 1. (4)
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Proof. By Lemma 5, A′
n+1−A′

n = B′
n+1−B′

n. A direct computation shows that B′
n+1−B′

n ∈
{2, 3}.

By a simple computation and the first part of the present lemma, C ′
n+1 − C ′

n < (B′
n+1 −

B′
n)ϕ+1 ≤ 3ϕ+1. Thus C ′

n+1−C ′
n ≤ !3ϕ+1" = 5. Similarly, C ′

n+1−C ′
n > (B′

n+1−B′
n)ϕ−1 ≥

2ϕ − 1, so C ′
n+1 − C ′

n ≥ .2ϕ − 1/ = 3. We now show that C ′
n+1 − C ′

n = 4 for no n ∈ Z≥1.
Note that C ′

n + 1 is necessarily in the sequence A′: it cannot be in C ′ by the bounds we
have just established for C ′

n+1−C ′
n, and it cannot be in B′ because B′

n = A′
n + 1. Therefore

C ′
n + 2 ∈ B′, so C ′

n + 3 ∈ A′ ∪C ′. If C ′
n + 3 ∈ A′, then C ′

n + 4 ∈ B′; and if C ′
n + 3 ∈ C ′, then

C ′
n + 4 ∈ A′. In any case C ′

n + 4 /∈ C ′. Thus C ′
n+1 − C ′

n ∈ {3, 5}.

Suppose now that A′
n+1−A′

n = 2 for some n ∈ Z≥1. Then C ′
n+1−C ′

n < (B′
n+1−B′

n)ϕ+1 =
2ϕ + 1. Therefore C ′

n+1 − C ′
n ≤ !2ϕ + 1" = 4. Since C ′

n+1 − C ′
n (= 4, we see that necessarily

C ′
n+1−C ′

n = 3. Similarly, if A′
n+1−A′

n = 3 for some n ∈ Z≥1, then necessarily C ′
n+1−C ′

n = 5.
We have shown:

C ′
n+1 =

{
C ′

n + 3 if A′
n+1 −A′

n = 2
C ′

n + 5 if A′
n+1 −A′

n = 3.

This can be encapsulated neatly in the form (4).

Proof of Theorem 2. We see that (A′
0, B

′
0, C

′
0) = (0, 0, 0) = (A0, B0, C0), (A′

1, B
′
1, C

′
1) =

(1, 2, 3) = (A1, B1, C1). Also both A,B,C and A′, B′, C ′ partition Z≥1. Moreover, the
recursive definition of A′, B′, C ′ is identical to that of A,B,C (Lemmas 5, 6, 7). Hence
A′

n = An, B′
n = Bn, C ′

n = Cn for all n ∈ Z≥1.

It is easy to derive a constructive polynomial-time (hence polynomial-space) strategy from
Theorem 2. The number ϕ has to be computed only to O(log a1) bits. We leave the details
to the reader. See also [6], §3.

6. Arithmetic Characterization of the P -positions

The Fibonacci numbers are given by F0 = 1, F1 = 2, and Fn+1 = Fn + Fn−1 for all n ∈ Z≥1.
The Fibonacci numeration system is a binary numeration system in which every positive
integer N has a unique representation of the form N =

∑
i≥0 diFi, such that di ∈ {0, 1},

di = 1 =⇒ di−1 = 0, i ≥ 1 [7].

For any a ∈ Z≥1 denote by R(a) the representation of a in the Fibonacci numeration
system. Thus R(a) = (dm, . . . , d0), if a =

∑
i≥0 diFi. Then the representation whose digits

are (dm, . . . , d0, 0) is the left shift of R(a).

Theorem 3 R(A) is the set of all numbers that end with a 1-bit in the Fibonacci numeration
system, R(B) is the set of all numbers that end with an odd number of 0-bits in the Fibonacci
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numeration system, and R(C) is the set of all numbers that end in a nonzero even number
of 0-bits in that system. Moreover, for every n ∈ Z≥1, R(Cn) is the left shift of R(Bn) in the
Fibonacci numeration system.

See Table 2 for an example.

Table 2: The P -positions and the Fibonacci numeration system.
n An Bn Cn 13 8 5 3 2 1 21 13 8 5 3 2 1 n
1 1 2 3 1 1 0 0 1 0 0 16
2 4 5 8 1 0 1 0 0 1 0 1 17
3 6 7 11 1 0 0 1 0 1 0 0 0 18
4 9 10 16 1 0 1 1 0 1 0 0 1 19
5 12 13 21 1 0 0 0 1 0 1 0 1 0 20
6 14 15 24 1 0 0 1 1 0 0 0 0 0 0 21
7 17 18 29 1 0 1 0 1 0 0 0 0 0 1 22
8 19 20 32 1 0 0 0 0 1 0 0 0 0 1 0 23
9 22 23 37 1 0 0 0 1 1 0 0 0 1 0 0 24
10 25 26 42 1 0 0 1 0 1 0 0 0 1 0 1 25
11 27 28 45 1 0 1 0 0 1 0 0 1 0 0 0 26
12 30 31 50 1 0 1 0 1 1 0 0 1 0 0 1 27
13 33 34 55 1 0 0 0 0 0 1 0 0 1 0 1 0 28
14 35 36 58 1 0 0 0 0 1 1 0 1 0 0 0 0 29
15 38 39 63 1 0 0 0 1 0 1 0 1 0 0 0 1 30

Proof. Every term in the sequences R(An), R(Cn) must end in an even number of 1-bits
in the Fibonacci numeration system since all of them have the form !mϕ", (m ∈ Z≥1), see
[6], §4. In fact, every representation N ∈ R(A) must end in 1, since N + 1 ∈ R(B) must
end in an odd number of 1-bits. Suppose that there is a representation N ∈ R(Cn) that
ends in 1. Then N + 1 can be in neither R(An) nor in R(Cn), so it is in R(Bn). But then
N = (N + 1)− 1 is in R(An), since Bn −An = 1, a contradiction.

Now R(Bn) is the set of all representations ending in an odd number of 1-bits, so R(Cn) is
the set of all left shifts of the set of all representations R(Bn). For any fixed n ∈ Z≥1, if R(Cn)
would not be the left shift of R(Bn), then it would be assumed later on (by complementarity
of A,B,C), contradicting the fact that the sequence Cn is increasing.

It is straightforward to derive another constructive polynomial-time strategy from the
arithmetic characterization of the P -positions.
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7. Epilogue

Although Raleigh’s game is not a generalization of Wythoff’s game, both games share the
common underlying ϕ for the polynomial strategies, though in different manifestations. Also,
for both games 3 different strategies were given, one recursive and exponential; and two
polynomial ones.

At the end of §3 we enquired about a connection between Ron Graham and Raleigh’s
game. We can now observe at least 4 independent connections:

• Historical. Sir Walter Raleigh (1552 - 1618) was, for some time, Governor of Jersey.
Before moving to San Diego — which, he says, is a very apt place for retirees and their
parents — Ron Graham had lived and worked in New Jersey, where he governed the
Math Department at Bell Labs for many years.

• Geographic. Raleigh is just south-west of Graham, NC.

• Etymological. RonAld LEwIs GraHam.

• Mathematical. The main connection — to the game, not just to its name — is via
the algebraic characterization of the P -positions given in §5, which leans heavily on
the floor function. It enabled us to replace the recursive exponential strategy given in
§4 by a polynomial one. Ron’s fascination with the floor, ceiling and fractional part
functions is evidenced in many of his papers. The entire ch. 3 of [10] is devoted to
these functions, and I suspect that Ron is to blame for most of that beautiful chapter.
The following is but a small sample of his works in this area: [8], [9], [10], [11], [12].

The identities (i) and (ii) of the Prologue have already been proved in the preceding
sections. We now show how to prove (iii) and (iv), based on the identities established above.

Lemma 8 Let n ∈ Z≥0. Then !nϕ"+ !nϕ2" = !!nϕ2"ϕ".

Proof. Put Dn = !nϕ". For n ∈ Z≥1, the following identity holds:

Cn+1 − Cn =

{
3 if Dn+1 −Dn = 1 if An+1 −An = Bn+1 −Bn = 2
5 if Dn+1 −Dn = 2 if An+1 −An = Bn+1 −Bn = 3.

This follows from (2), Lemma 1 and from Bn+1−Bn = !(n+1)ϕ2"−!nϕ2" = Dn+1−Dn +1
(since ϕ2 = ϕ + 1).

We now proceed by induction on n. The statement holds trivially for n = 0. Suppose we
proved it for all n ≤ m (m ≥ 0). We have to show Cm+1 − Dm+1 = Bm+1. Now either
(Cm+1 −Cm)− (Dm+1 −Dm) = 2, or (Cm+1 −Cm)− (Dm+1 −Dm) = 3. In the former case,
(Cm+1 − Dm+1) − (Cm − Dm) = 2. By the induction hypothesis, Cm − Dm = Bm. Hence
Cm+1 −Dm+1 = Bm + 2 = Bm+1. The latter case is established similarly.
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Lemma 9 Let n ∈ Z≥1. Then !!nϕ2"ϕ" = !!nϕ"ϕ2"+ 1.

Proof. Put Gn = !!nϕ"ϕ2". Now

Cn = !!nϕ + n"ϕ" = !!nϕ"ϕ + nϕ",
Gn = !!nϕ"(ϕ + 1)" = !!nϕ"ϕ + !nϕ"".

Thus, Cn −Gn ≥ 0. But Cm ∩Gn = ∅ for all m,n ∈ Z≥1. Hence Cn −Gn ≥ 1. Conversely,
Cn − Gn ≤ !nϕ2"ϕ − !nϕ"ϕ2 + 1 = !nϕ"(ϕ − ϕ2) + nϕ + 1 = nϕ − !nϕ" + 1 < 2. Thus,
Cn −Gn ≤ 1, so Cn −Gn = 1.

We note, incidentally, that the Graham family is also connected to the other polynomial
strategy, the one based on a numeration system (§6). Fan Chung (= Ron Graham’s wife) and
Ron used an exotic ternary numeration system to investigate irregularities of distribution of
sequences [3], [4] (a generalization of this numeration system is given in [7], §4). Therefore
it is natural to devote this game to Ron. May he and his wife Fan Chung play it for an
exponentially long time to come, always winning against their opponents in polynomial time!
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