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Abstract

Consider the sequence (3k)k≥0 written in base two representation and reduce the sum of
digits s2(3k) mod 2. A well-known result of Newman [10] says that the resulting sequence
shows an overplus of 0’s with respect to 1’s. It is also known [3] that, asymptotically
speaking, s2(7k)k≥0 is more often 0 than 1 or 2. We investigate similar phenomena for the
sequence (7k + i)k≥0 with 0 < i ≤ 6 as well as give a two-parametric family of arithmetic
progressions where overplus phenomena can be observed. This paper sharpens and extends
results obtained by Drmota and Ska�lba [3], continuing work presented by Drmota and the
author in [4].

1. Introduction

Consider the sequence of numbers (3k)0≤k≤K written in the digital base g = 2,

0, 11, 110, 1001, 1100, 1111, 10010, 10101, . . .

Newman [10] showed that, up to any K ≥ 0, the numbers which contain an even number of
1’s (written in boldface) prevail over those which have an odd number. Recently, Drmota

and the author [4] proved that for the numbers (3k+1)k≥0 there holds the opposite. Consider

1, 100, 111, 1010, 1101, 10000, 10011, 10110, . . . ,

then there is an overplus of members with odd sum of digits over those with even sum. Again
this overplus holds true up to any K ≥ 0. This sharpens an earlier asymptotical result due

to Dumont [5]. A different phenomenon can be observed for the sequence (3k + 2)k≥0,

10, 101, 1000, 1011, 1110, 10001, 10100, 10111, . . .
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In the latter case, the ’even’-instances and the ’odd’-instances (corresponding to taking the
sum of the digits mod 2) are balanced for an infinite number of choices of K (see [4]).

More generally, consider arithmetic progressions of type (qk + i)k≥0 and the sum of g-ary
digits of its members mod a. It is a conjecture that for

q ≡ q(a, g) = κ(ga − 1)/(g − 1), κ ≥ 1, (1)

similar overplus phenomena occur. Note, that the original sequence (3k + i)k≥0 fits (1)
with a = g = 2 and κ = 1. Recently, Newman-like phenomena have been verified in the

special case g = 2 and 2 ≤ a ≤ 6 (see [3]), as well as in the case a = 2 and g ≥ 3
with g odd (see [4]). The main purpose of this paper is to investigate the case (1) with

(a, g, q) ≡ (3, g, κ(g2 + g + 1)) where g ≥ 2. Motivated by the above-mentioned example we
are also interested in the following questions:

Q1: Regarding the modulus a, do we obtain all possible overplus phenomena by varying i
in (qk + i)k≥0?

Q2: Is there an overplus phenomenon for each 0 ≤ i < q (up to balance)?

Theorem 3.1 answers Q1 and Q2 in the case (a, g, q) ≡ (3, 2, 7); so, in particular, Conjecture 1

of [4] is disproved. Next we consider the setting for arbitrary bases g. Again, Newman-like
phenomena for i = 0 and i = 1 can be shown, thus, Theorem 3.2 settles two thirds of

Conjecture 2 of [4].

2. Preliminaries

To start with, we recall some notation and basic facts from [3] and [4]. Let a, g ≥ 2 and

t
(a,g)
k = ω

sg(k)
a for k ≥ 0 be the generalized Thue-Morse sequence, where ωa = exp(2πi/a) and

sg(k) denotes the sum of the digits in the g-ary expansion of k. Furthermore, let

S
(a,g)
q,i (n) =

∑
0≤j<n,

j≡i (mod q)

t
(a,g)
j (2)

denote the summation function in arithmetic progressions. The quantity

A
(a,g)
q,i;m(n) = |{0 ≤ j < n : j ≡ i (mod q), sg(j) ≡ m (mod a)}|

counts, how often ωm
a is realized by going through the members of the generalized Thue-Morse

sequence with indices (qk + i)k≥0. Newman-like phenomena (for short: NLP), generalizing

the setting of Section 1, can be described by comparing these numbers A
(a,g)
q,i;m(n).
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Definition 2.1: The triple (a, g, q) is called to satisfy an (i, M)-NLP if

A
(a,g)
q,i;M(n) > max

0≤m<a
m�=M

A
(a,g)
q,i;m(n) (3)

for all but finitely many n > i. In particular, if inequality (3) holds for all n > i then (a, g, q)
is called to satisfy a strong (i, M)-NLP.

For example, the triple (2, 2, 3) satisfies a strong (0, 0)-NLP [10] as well as a strong (1, 1)-
NLP [4]. On the other hand, there is no (2, M)-NLP for this triple. In general, it is rather

difficult to exhibit strong NLP’s (see [1, 2, 7, 8]). In any case, establishing (i, M)-NLP’s

makes use of two fancy properties of the discrete function S
(a,g)
q,i (n).

We introduce some notation. Set ζq = exp(2πi/q) and s = ordq(g), that is gs ≡ 1 (mod q).

Furthermore, let

ηε
l (k) =

1 − ωε
aζ

εlgk

q

1 − ωaζ
lgk

q

and λl(k) =
k−1∏
j=0

1 − ωg
aζ

lgj+1

q

1 − ωaζ
lgj

q

, (4)

where 1 ≤ l ≤ q−1. For any 1 ≤ ε ≤ g−1 let l(1)(ε), l(2)(ε), . . . be an ordering of the indices
l such that

|ηε
l(j)(ε)(0)λl(j)(ε)(s)| ≥ |ηε

l(j+1)(ε)(0)λl(j+1)(ε)(s)| for 1 ≤ j ≤ q − 2.

Further put

Lmax(ε) = {l(1)(ε), l(2)(ε), . . . , l(m)(ε)} (5)

where m = a/ gcd(a, g − 1). Note that this is only a formal definition for Lmax(ε), which we

are going to use later for the special instance a = 3, g ≡ 0 or 2 (mod 3) and q = κ(g2 +g+1),
in particular m = 3. The motivation of setting m = a/ gcd(a, g−1) in the general case comes

from our conjecture expressed in the concluding remarks of the paper.

The recursive structure of S
(a,g)
q,i (n) is described by

S
(a,g)
q,i (εgk + n′) = S

(a,g)
q,i (εgk) + ωε

aS
(a,g)

q,i−εgk(n′) for n′ < εgk. (6)

Furthermore, S
(a,g)
q,i (n) can be evaluated at multiples of g-powers. Let k = k1s + k2 and

S̄
(a,g)
q,i (n) be the asymptotically leading term of S

(a,g)
q,i (n). Then

S
(a,g)
q,i (εgk) =

1

q

q−1∑
l=0

ζ−li
q (ηε

l (0)λl(s))k1 ηε
l (k2)λl(k2). (7)

The asymptotic leading term is given by

S̄
(a,g)
q,i (εgk) =

1

q

∑
l∈Lmax(ε)

ζ−li
q ηε

l (k)λl(k). (8)
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The main ingredient of the proofs relies on repeated combination of (6) and (7) resp. (8). Let
n = ε1g

k+ε2g
k−1+. . . , where εi ∈ {0, . . . , g−1}, ε1 �= 0. We first may split off ε1g

k according

to the recursive rule (6) and calculate S
(a,g)
q,i (ε1g

k) with help of (7) (resp. (8)). In the proof

of Theorem 3.1 we will use the exact representation (7) and derive strong NLP’s. For the
general case, which involves more parameters (Theorem 3.2), we will use the leading term

according to (8). In both cases we estimate the non-expanded tail by means of geometric
series.

Apart from the technical part, the main difficulty in proving multi-parameter families of
NLP’s consists in finding closed-form expressions for the set Lmax(ε), which will be the

subject matter of Lemma 5.1.

3. Main Theorems

Theorem 3.1: The triple (3, 2, 7) satisfies a strong (0, 0)-NLP, a strong (1, 1)-NLP and a
strong (3, 2)-NLP. There does not hold any (4, M)-, (5, M)- and (6, M)-NLP.

Although numerical simulation suggests that (3, 2, 7) also satisfies a (2, 1)-NLP (see Figure 1),
we were not able to prove it in a managable amount of work. The expansions emerging

from (6) are huge, we could not find any uniform bound (independent of the digits εi) for
the length of the exact expanded part leading to success. This, of course, is directly related

to the particularly large deviations of the line i = 2 from the direction indicated by ω3

(compare with the line i = 1).

Theorem 3.2: Let (g − 1, 3) = (κ, 3) = 1. Then the triple (3, g, κ(g2 + g + 1) satisfies a

(0, 0)-NLP and a (1, 1)-NLP.

Note that the condition (g − 1, 3) = 1 is necessary since otherwise there are no NLP’s

(compare with Theorem 1.4 in [4]).

4. Proof of Theorem 3.1

The plan of the proof is as follows. We first notice, that the condition (3) for an (i, M)-NLP

directly translates into a condition on the argument of S
(3,2)
7,i (n) (see (9)). This allows to

derive the statement of Theorem 3.1 for i ∈ {4, 5, 6} by suitably choosing n. For the cases

i ∈ {0, 1, 3} we use (6) and (7) to split S
(3,2)
7,i (n) into a ’head’ series and a ’tail’ series. The

tail of the expansion is estimated in terms of a geometric series. The contribution of this

geometric series, however, is negligible in respect to the numerically explicit head of S
(3,2)
7,i (n),

thus finally giving the rest of the statement in Theorem 3.1.
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Figure 1: S
(3,2)
7,i (n) for i = 0, 1, 2, 3

The proof basically follows the lines of Drmota and Skalba [3], proof of Proposition 6.

However, two modifications have to be noted. First, the value 3/7 given on the second

line of p.635 is not correct. As a consequence, the head series of S
(3,2)
7,i (n) has to assemble

more terms in respect to [3]. In the case i = 0, for instance, we have to consider all

n = 2k + ε12k−1 + ε22
k−2 + ε32

k−3 + n′ with k = 3k1 + k2; each quadruple (ε1, ε2, ε3, k2)
corresponds to a separate computational case.

Secondly and more important, our approach is explicit to obtain strong NLP’s. To begin

with, set

α0 = −1,

α1 =
1

2
(5 −

√
21) = 0.20871 . . . ,

α2 =
1

2
(5 +

√
21) = 4.79128 . . . ,

which are the eigenvalues obtained in [3], p.634. Moreover, for convenience put

κ1(i, k2) = ζ−i
7 λ1(k2) + ζ−2i

7 λ2(k2) + ζ−4i
7 λ4(k2),

κ2(i, k2) = ζ−3i
7 λ3(k2) + ζ−5i

7 λ5(k2) + ζ−6i
7 λ6(k2).
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Then by (7),

S
(3,2)
7,i (2k) =

1

7

6∑
l=0

ζ−il
7

k−1∏
j=0

(
1 + ω3ζ

l2j

7

)

=
1

7

(
αk1

0 λ0(k2) + αk1
1 κ1(i, k2) + αk1

2 κ2(i, k2)
)

=
1

7
αk1

2 κ2(i, k2) + δ(k1, k2, i)

with |δ(k1, k2, i)| ≤ |δ(4, 0, 0)| < 0.143671 =: C1 if k1 > 3. Now, since

S
(3,2)
7,i (n) = A

(3,2)
7,i;0 (n) + A

(3,2)
7,i;1 (n) ω3 + A

(3,2)
7,i;2 (n)ω2

3

and a0 + a1ω3 + a2ω
2
3 = 0 if and only if a0 = a1 = a2 (for a0, a1, a2 ∈ Z), condition (3)

can plainly be checked by considering arg S
(3,2)
7,i (n). Therefore, the triple (3, 2, 7) satisfies an

(i, M)-NLP if and only if

arg S
(3,2)
7,i (n) ∈

(
(2M − 1)

π

3
, (2M + 1)

π

3

)
. (9)

Since

π/2 < arg κ2(4, 0) < 2π/3 and 0 < arg κ2(4, 2) < π/15,

as well as

17π/10 < arg κ2(6, 1) < 7π/4 and π < arg κ2(6, 2) < 4π/3,

and (9), no NLP exists in the cases i = 4 and i = 6. If i = 5 then for n = 23k1+2 we have

arg S
(3,2)
7,i (n) = −π/3. In other words,

A
(3,2)
7,5;0(2

3k1+2) = A
(3,2)
7,5;2(2

3k1+2). (10)

Actually, these ’balancing’ points n aren’t rare at all. Relation (10) also remains true for

numbers n = 23k1+1 + 23k1+0 + 23k1−1 (apply (6) twice). Consequently, for all n, whose
binary expansion is realized by the automaton given in Figure 2, relation (10) holds true,

too. The automaton constructs numbers n in the following way. To begin with, a ’head’ is
constructed which is made up of alternating 1 . . . 1- and 0 . . . 0-blocks, each having length 0

mod 3. Finally, an obligatory ’tail’ consisting of 00 is appended.

For the cases i ∈ {0, 1, 3} we first estimate the tail in the expansion of S
(3,2)
7,i (n) with help

of (6). Let

C2 =
1

7
max
0≤i<7,
0≤j<3

|κ2(i, j)| =
1

14

√
106 + 22

√
21 = 1.0267045 . . . (11)

and β = α
1/3
2 . Then, as long as k − µ ≥ 1,

|
k−µ∑
ν=0

ηνS
(3,2)
7,iν

(2ν)| ≤ C2

k−µ∑
ν=0

α
�ν/3�
2 + C1(k − µ + 1)

≤ C2

k−µ∑
ν=0

α
ν/3
2 ≤ C2β

k−µ

1 − β−1
≤ 2.524973 βk−µ.
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Figure 2: Balancing points for S
(3,2)
7,5 (n)

In the sequel we only give indications how to prove that (3, 2, 7) satisfies a strong (0, 0)-
NLP. The exact calculations are rather involved and we omit the details here2. Obviously, it

suffices to show that for all m ≡ m(k) = 2k + ε12
k−1 + ε22

k−2 + ε32k−3 with εi ∈ {0, 1} and

γ(m) = arg S
(3,2)
7,0 (m), c(m) = |S(3,2)

7,0 (m)| (12)

we have

γ(m) ∈
(
−π

3
,
π

3

)
, (13)

c(m) > 2.524973 · βk−4/ sin(π/3 − |γ(m)|). (14)

In total there are 23 · 3 = 24 cases to deal with, we only give an illustration of the algorithm
for k = 3k1 and m = 1 · 2k + 0 · 2k−1 + 1 · 2k−2 + 1 · 2k−3. By (6),

S
(3,2)
7,0 (m) = S

(3,2)
7,0 (23k1) + ω3S

(3,2)
7,6 (23(k1−1)+1) + ω2

3S
(3,2)
7,4 (23(k1−1))

=
1

7
αk1

2

(
κ2(0, 0) +

ω3

α2
κ2(6, 1) +

ω2
3

α2
κ2(4, 0)

)
+ δ(k1, 0, 0) + δ(k1 − 1, 1, 6) + δ(k1 − 1, 0, 4)

= C3α
k1
2 + δ(k1, 0, 0) + δ(k1 − 1, 1, 6) + δ(k1 − 1, 0, 4),

where C3 = 0.4850919 . . . + i · 0.03263216 . . . This gives

|γ(m)| ≤ arcsin
3C1

αk1
2 |C2|

+ arg C3 and

c(m) > αk1
2 |C3| − 3C1.

It is immediate to verify that (13) and (14) are true for k1 ≥ 2. The cases k1 = 0, 1 can be
checked by hand.

In the same spirit one proves the statement of Theorem 3.1 for i = 1 and i = 3, but in
contrast, expansions of six leading digits are needed (96 cases).

2A simple MAPLE-worksheet has been implemented to do the calculations automatically.
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5. Proof of Theorem 3.2

We first may give an outline of the proof. To start with, the set Lmax is determined by

thoroughly inspecting the factors of λl(k) (Lemma 5.1). These factors are cyclic since lg3 ≡ l

(mod q) for l ∈ Lmax. The calculation of ηε
l (k), λl(k) and S̄

(3,g)
q,i (εgk) according to (4) and (8)

is straightforward (Lemma 5.2–5.4). We finally conclude by expanding S̄
(3,g)
q,i (εgk) into head

and tail series, thus getting the asymptotic result of Theorem 3.2.

In the case a = 2 (see [4]) we have Lmax(ε) = {l(1)(ε), l(2)(ε)} with l(1)(ε) = l1 = κg/2 and

l(2)(ε) = l2 = κ(g/2 + 1), where

|ηε
l1

(0)λl1(s)| = |ηε
l2

(0)λl2(s)|
for all 1 ≤ ε ≤ g − 1.

If a = 3 we are also able to explicitly calculate l(1)(ε) = l1, l(2)(ε) = l2, l(3)(ε) = l3, which
are not depending on ε. If g ≡ 2 (mod 3) set

l1 =
κ

3
(2g2 + 3g + 1),

l2 =
κ

3
(2g2 + 3g + 4),

l3 =
κ

3
(2g2 + 1).

Note that g = 2 implies (l3, l1, l2) = (3κ, 5κ, 6κ), which has been obtained in Lemma 10
of [3]. On the other hand, if g ≡ 0 (mod 3) we denote

l1 =
κ

3
(2g2 + g),

l2 =
κ

3
(2g2 + g + 3),

l3 =
κ

3
(2g2 + 4g + 3).

The crucial point in the proof of Theorem 3.2 consists in showing that Lmax(ε) = {l1, l2, l3}.

To begin with, observe that the indices (l1, l2, l3) are permuted to (l3, l1, l2) by multiplication
with g and reduction mod q. The following Lemma extends Lemma 5.2 of [4].

Lemma 5.1: Let z = exp(iϕ) and δε(ϕ) = |(1 − ωε
3z

ε)/(1 − ω3z)|. Further set

fj(ϕ) =

∣∣∣∣∣ 1 − ωg
3z

gj

1 − ω3zgj−1

∣∣∣∣∣ and ϕ̂j = 2πlj/q for j = 1, 2, 3.

Moreover let f(ϕ) = f1(ϕ)f2(ϕ)f3(ϕ). Then for all 1 ≤ ε ≤ g − 1, all 1 ≤ l ≤ q − 1 with

l �= l1, l2, l3 and ϕ̂ = 2πl/q it holds

δε(ϕ̂1)f(ϕ̂1) ≥ δε(ϕ̂2)f(ϕ̂2) ≥ δε(ϕ̂3)f(ϕ̂3) > δε(ϕ̂)f(ϕ̂).
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Furthermore,
Lmax(ε) = {l1, l2, l3}.

Proof. The proof exactly follows the lines of the proof of Lemma 10 in [3], we therefore only

give the modifications induced by the introduction of the general parameter g. First put
J = [ϕ̂1, ϕ̂2] and for the rest of the work

ϕ1 = − π(2g + 1)

3(g2 + g + 1)
, ϕ2 =

π(g − 1)

3(g2 + g + 1)
, ϕ3 =

π(g + 2)

3(g2 + g + 1)
.

Easy calculations yield

ϕ̂1 =

{
4π/3 − 2ϕ3, if g ≡ 0 (mod 3),
4π/3 + 2ϕ2, if g ≡ 2 (mod 3)

and

ϕ̂2 =

{
4π/3 − 2ϕ2, if g ≡ 0 (mod 3),
4π/3 + 2ϕ3, if g ≡ 2 (mod 3).

Let J1 = [ξ1, ξ2] where ξ1 resp. ξ2 denotes the smallest resp. largest zero of f(ϕ) in J . Then

there are g − 2 inner local maxima of f(ϕ) on J and

max
ϕ∈J1

f(ϕ) <
g

sin(π/g)
· max

ϕ∈J1

f1(ϕ).

Observe that f1(ϕ) is increasing on J1 in case of g ≡ 0 (mod 3) and decreasing on J1 if g ≡ 2

(mod 3). Hence

max
ϕ∈J1

f1(ϕ) < max
ϕ∈J

∣∣∣∣sin(πg/3 + ϕg/2)

sin(π/3 + ϕ/2)

∣∣∣∣ =
3
√

3

2π2
g +

3
√

3

π
− 1 + O(g−1)

and max
ϕ∈J1

f(ϕ) = 3
√

3
2π3 g3 + O(g2). If g ≡ 0 (mod 3) we have

f(ϕ̂1) =
81
√

3

16π3
g3 +

(
27

4π2
+

243
√

3

32π3

)
g2 +

(
1701

√
3

64π3
− 3

√
3

16π
+

27

4π2

)
g

+
1539

√
3

128π3
− 3

√
3

32π
+

27

π2
− 3

4
+ O(g−1).

On the other hand, if g ≡ 2 (mod 3) the same growth can be observed,

f(ϕ̂1) =
81
√

3

16π3
g3 +

243
√

3

32π3
g2 +

(
1701

√
3

64π3
− 27

√
3

16π

)
g

+
1539

√
3

128π3
− 27

√
3

32π
+

1

2
+ O(g−1).

Since 3
√

3
2π3 < 81

√
3

16π3 and by estimating the tail-terms we therefore see that maxϕ∈J f(ϕ) = f(ϕ̂1)

for all g ≥ 3. It is also simple to see, that the factor δε(ϕ) does not change this behaviour. The
inequality chain now follows directly from monotonicity considerations of δε(ϕ) on [0, 2π].
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In order to conclude with Lmax(ε) = {l1, l2, l3}, we adopt a set-splitting argument similar
to [3, Lemma10]. Partition {0, 1, . . . , s − 1} into the sets M1, M2 = M1 + 1, M3 = M1 + 2,

M4, M5 = M4 + 1, M6 = M4 − 1, M7 where M1 consists of all j with arg ζ l2j

q ∈ (ϕ̂1, ϕ̂2) and

M4 of all those j �∈ M2 with arg ζ l2j

q ∈ (ϕ̂3, ϕ̂1). Then

|ηε
l (0)λl(s)| = δε(2πl/q) ·

s−1∏
j=0

fj+1(2πl/q)

= δε(2πl/q) ·
∏

j∈M1∪M2∪M3

δ1(2πl/q)fj+1(2πl/q)·
∏

j∈M4∪M5∪M6

δ1(2πl/q)fj+1(2πl/q)·
∏

j∈M7

δ1(2πl/q)fj+1(2πl/q),

where we used the fact that δ1(ϕ) = 1. Now, replace exactly one of the δ1(2πl/q) terms by
the leading δε(2πl/q). Then the first part of Lemma 5.1 implies∣∣ηε

l1
(0)λl1(s)

∣∣ ≥ ∣∣ηε
l2

(0)λl2(s)
∣∣ ≥ ∣∣ηε

l3
(0)λl3(s)

∣∣ ≥ |ηε
l (0)λl(s)|

for all l �= l1, l2, l3 and all 1 ≤ ε ≤ g − 1. In other words, Lmax(ε) = {l1, l2, l3}.

It is now a direct calculation from (4) to obtain expressions for λl(k) with l ∈ Lmax. We

restrict our proof to the case g ≡ 2 (mod 3), the line of proof similarly applies when g ≡ 0

(mod 3). For sake of shortness put

Λ =
1

2

(
−(

√
3 cot ϕ1 + 1)(

√
3 cot ϕ2 + 1)(

√
3 cot ϕ3 + 1)

)1/3

and

�j,m =
sin(2π/3 + πlj/q)

sin(π/3 + πlm/q)
, for j, m ∈ {1, 2, 3}.

Remember that all quantities are only depending on g.

Lemma 5.2:

1. Let k ≡ 0 (mod 3). Then

λl1(k) = λl2(k) = λl3(k) = Λk.

2. Let k ≡ 1 (mod 3). Then

λl1(k) = ω
1/2
3 Λk−1ρ3,1 exp

(
iπ(g + 1)/(g2 + g + 1)

)
,

λl2(k) = ω
1/2
3 Λk−1ρ1,2 exp

(−iπg/(g2 + g + 1)
)
,

λl3(k) = ω
1/2
3 Λk−1ρ2,3 exp

(−iπ/(g2 + g + 1)
)
.
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3. Let k ≡ 2 (mod 3). Then

λl1(k) =
ω3

2
Λk−2ρ2,1

(√
3 cot ϕ3 + 1

)
exp

(
iπg/(g2 + g + 1)

)
,

λl2(k) =
ω3

2
Λk−2ρ3,2

(√
3 cot ϕ1 + 1

)
exp

(
iπ/(g2 + g + 1)

)
,

λl3(k) =
ω3

2
Λk−2ρ1,3

(√
3 cot ϕ2 + 1

)
exp

(−iπ(g + 1)/(g2 + g + 1)
)
.

Moreover,

ηε
l (k) =

(
ω3ζ

lgk

q

)ε/2−1/2

Uε−1

(
cos

(
1

2
arg ω3ζ

lgk

q

))
,

where Uε−1(cos ϕ) = sin εϕ/ sin ϕ denotes the ε-th Chebyshev polynomial of the second kind.

Again a straightforward calculation gives

Lemma 5.3:

1. If l = l1, k ≡ 0 (mod 3) or l = l2, k ≡ 1 (mod 3) or l = l3, k ≡ 2 (mod 3), then

ηε
l (k) = exp(iπ(ε − 1)ϕ1) · Uε−1(cos ϕ1).

2. If l = l1, k ≡ 1 (mod 3) or l = l2, k ≡ 2 (mod 3) or l = l3, k ≡ 0 (mod 3), then

ηε
l (k) = exp(iπ(ε − 1)ϕ3) · Uε−1(cos ϕ3).

3. If l = l1, k ≡ 2 (mod 3) or l = l2, k ≡ 0 (mod 3) or l = l3, k ≡ 1 (mod 3), then

ηε
l (k) = exp(iπ(ε − 1)ϕ2) · Uε−1(cos ϕ2).

We now use (8) in order to calculate the leading term of the expansion.

Lemma 5.4: If k ≡ 0 (mod 3) then

S̄
(3,g)
q,i (εgk) =

Λk

q
ωi

3

(
exp (iϕ1(ε − 2i − 1))

sin εϕ1

sinϕ1

+ exp (iϕ2(ε − 2i − 1))
sin εϕ2

sinϕ2

+ exp (iϕ3(ε − 2i − 1))
sin εϕ3

sinϕ3

)
.

If k ≡ 1 (mod 3) then

S̄
(3,g)
q,i (εgk) =

Λk−1

q
ω

i+1/2
3

(
exp (i(εϕ3 − (2i + 1)ϕ1))

sin εϕ3

sin ϕ3
· sin(ϕ3 + π/3)

sinϕ1

+ exp (i(εϕ1 − (2i + 1)ϕ2))
sin εϕ1

sin ϕ1
· sin(ϕ1 + π/3)

sinϕ2

+ exp (i(εϕ2 − (2i + 1)ϕ3))
sin εϕ2

sin ϕ2
· sin(ϕ2 + π/3)

sinϕ3

)
.
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If k ≡ 2 (mod 3) then

S̄
(3,g)
q,i (εgk) =

=
Λk−2

2q
ωi+1

3

(
exp (i(εϕ2 − (2i + 1)ϕ1))

sin εϕ2

sin ϕ2
· sin(ϕ2 + π/3)

sinϕ1
(
√

3 cot ϕ3 + 1)

+ exp (i(εϕ3 − (2i + 1)ϕ2))
sin εϕ3

sin ϕ3
· sin(ϕ3 + π/3)

sinϕ2
(
√

3 cot ϕ1 + 1)

+ exp (i(εϕ1 − (2i + 1)ϕ3))
sin εϕ1

sin ϕ1
· sin(ϕ1 + π/3)

sinϕ3
(
√

3 cot ϕ2 + 1)
)

.

Similar to (11) we note the immediate

Corollary 5.5:

|
k−µ∑
ν=0

S̄
(3,g)
q,i (ενg

ν)| <
7g

2q
· Λ

Λ − 1
Λk−µ.

Proof. Since

Λ =
3
√

3

8π
3
√

4(2g + 1) + O(g−1)

and the absolute values of the right hand sides in Lemma 5.4 are all monotone increasing in
ε, we have |qS̄(3,g)

q,i (εgk)/Λk| < 7g/2. This upper bound is obtained when we take absolute
values of the summands in Lemma 5.4 and expand into a series in g.

For reasons of simplicity we now restrict us to one special case in order to see which sort of
calculations have to be carried out in general. Let i = 0, k ≡ 0 (mod 3), g ≡ 2 (mod 3) and
m = ε1g

k + ε2g
k−1. We have

S̄
(3,g)
q,0 (m) = S̄

(3,g)
q,0 (ε1g

k) + ωε1
3 S̄

(3,g)

q,−ε1gk(ε2g
k−1) =

Λk

q
(P1 + P2),

where

P1 = exp (iϕ1(ε1 − 1))
sin ε1ϕ1

sin ϕ1
+ exp (iϕ2(ε1 − 1))

sin ε1ϕ2

sinϕ2
+ exp (iϕ3(ε1 − 1))

sin ε1ϕ3

sin ϕ3
,

P2 =
ωε1+1

3

2Λ3

(
exp

(
i(ε2ϕ2 + (2ε1g

k − 1)ϕ1)
) sin ε2ϕ2

sinϕ2
· sin(ϕ2 + π/3)

sin ϕ1
(
√

3 cot ϕ3 + 1)

+ exp
(
i(ε2ϕ3 + (2ε1g

k − 1)ϕ2)
) sin ε2ϕ3

sin ϕ3
· sin(ϕ3 + π/3)

sin ϕ2
(
√

3 cot ϕ1 + 1)

+ exp
(
i(ε2ϕ1 + (2ε1g

k − 1)ϕ3)
) sin ε2ϕ1

sin ϕ1
· sin(ϕ1 + π/3)

sin ϕ3
(
√

3 cot ϕ2 + 1)
)

.

We are first concerned with bounding the absolute value of P2. As before, we take absolute
values of the summands and observe that the maximum is attained for ε2 = g − 1. This
gives

|P2| ≤ 4
√

3π

9g
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and shows that the behavior of S̄
(3,g)
q,0 (m) is determined by P1, because of

|P1| =
15
√

3

4π
g +

15
√

3

8π
− 3

4
+ O(g−1).

For the geometric tail we have by Corollary 5.5,

q

Λk

∣∣∣∣∣
k−2∑
ν=0

S̄
(3,g)
q,i (ενg

ν)

∣∣∣∣∣ =
7
√

3π

9
3
√

2 + O(g−1).

Instead of arg S̄
(3,g)
q,0 (m) it suffices to consider arg P1. Again, it is an easy observation, that

arg P1 ∈ (0, π/3) and arg P1 is maximal for ε1 = g − 1. Thus, for sufficiently large g we have

arg S̄
(3,g)
q,i (n) ∈ (−π/3, π/3) for all n = ε1g

3k1 +ε2g
3k1−1 +n′. The exact calculations for small

g involve case distinctions on the digits ε1 and ε2 which can be done with a computer.

The same approach succeeds in case of i = 1. Analogously, we write

S̄
(3,g)
q,1 (m) = S̄

(3,g)
q,1 (ε1g

k) + ωε1
3 S̄

(3,g)

q,1−ε1gk(ε2g
k−1) =

Λk

q
(T1 + T2),

where m = ε1g
k + ε2g

k−1 and estimate T1 and T2 with help of Lemma 5.4. This finishes the
proof of Theorem 3.2.

6. Final remarks

The factor δε(ϕ) in Lemma 5.1 does affect the behavior of the Lmax(ε) if a ≥ 4. As a

consequence, S̄
(a,g)
q,i (n) cannot be ’uniformly’ expanded, as there is no closed-form expression

for Lmax(ε) for all 1 ≤ ε ≤ g − 1; much more work has to be done in order to handle all
possible digital expansions. However, in the case ε = 1 and g ≡ r (mod a) we conjecture
that Lmax(1) = {l̂gj mod q}, where

l̂ =
κ

a

a−1∑
j=0

b
(a)
r,j gj with b

(a)
r,j = g(a − 1 − j) + j (mod a).
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