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Abstract
We discuss a relative of the perfect numbers for which it is possible to prove that
there are infinitely many examples. Call a natural number n prime-perfect if n and
σ(n) share the same set of distinct prime divisors. For example, all even perfect
numbers are prime-perfect. We show that the count Nσ(x) of prime-perfect numbers
in [1, x] satisfies estimates of the form

exp((log x)c/ log log log x) ≤ Nσ(x) ≤ x
1
3+o(1),

as x → ∞. We also discuss the analogous problem for the Euler function. Letting
Nϕ(x) denote the number of n ≤ x for which n and ϕ(n) share the same set of
prime factors, we show that as x →∞,

x7/20 ≤ Nϕ(x) ≤ x1/2

L(x)1/4+o(1)
, where L(x) = xlog log log x/ log log x.

We conclude by discussing some related problems posed by Harborth and Cohen.

–In memory of John Lewis Selfridge

1. Introduction

Let σ(n) :=
�

d|n d be the sum of the proper divisors of n. A natural number n is
called perfect if σ(n) = 2n and, more generally, multiply perfect if n | σ(n). The
study of such numbers has an ancient pedigree (surveyed, e.g., in [5, Chapter 1] and
[28, Chapter 1]), but many of the most interesting problems remain unsolved. Chief
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among them is the question of whether or not there are infinitely many multiply
perfect numbers.

In this note we introduce a class of numbers whose definition is inspired by the
perfect numbers but for which we can prove that there are infinitely many examples.
Call n prime-perfect if σ(n) and n have the same set of distinct prime factors. Every
even perfect number n is prime-perfect, but there are many other examples, the first
being the multiply-perfect number n = 120. Prime-perfect numbers appear to have
been first considered by the second author, who proved [24] that every such number
with two distinct prime factors is an even perfect number.

Our central objective is to establish both lower and upper bounds for Nσ(x), the
number of prime-perfect n ≤ x. We begin with the lower bound. In what follows,
we write log1 x = max{1, log x}, and we let logk denote the kth iterate of log1.

Theorem 1. As x →∞,

Nσ(x) ≥ exp((log x)(
1
2 log 2+o(1))/ log3 x).

We note that this lower bound, though of the shape xo(1), exceeds any fixed
power of log x for x sufficiently large.

Our upper-bound proof covers a class of numbers somewhat wider than that of
the prime-perfects. Let rad(n) denote the largest squarefree divisor of n, so that n
is prime-perfect if and only if rad(n) = rad(σ(n)). Call n prime-abundant if every
prime dividing n divides σ(n), i.e., if rad(n) | rad(σ(n)). For example, if n = 23 · 3,
then σ(n) = 22 · 3 · 5, so n is prime-abundant but not prime-perfect.

Theorem 2. The number of prime-abundant n ≤ x is at most x1/3+o(1)
, as x →∞.

The second author conjectured (ca. 1973, unpublished) that a much stronger
upper bound should hold for prime-perfect numbers:

Conjecture 3. For each � > 0, we have Nσ(x) = o(x�), as x →∞.

For some numerical perspective, up to 109, there are 198 prime-perfect numbers
and 5328 prime-abundant numbers.

For perfect and multiply perfect numbers, the analogues of Conjecture 3 are
known; these are due to Hornfeck and Wirsing [16] (see also [29], whose main result
is quoted as Theorem C below). It seems that the prime-perfect setting is genuinely
more difficult. One hint as to why is discussed in §4.

Call the natural number n ϕ-perfect if n and ϕ(n) share the same set of prime
factors, and let Nϕ(x) be the corresponding counting function. While analogues
of the the Hornfeck–Wirsing results are easily proved if σ is replaced by Euler’s
ϕ-function, we show in §4 that Nϕ(x) does not satisfy the bound of Conjecture 3.
In fact, we have the following estimates:
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Figure 1: A picture of T (+)(83621).

Theorem 4. As x →∞,

x7/20 ≤ Nϕ(x) ≤ x1/2

L(x)1/4+o(1)
, where L(x) := xlog3 x/ log2 x.

In §5, we adapt our methods to study certain problems of Harborth and Cohen.
Some questions related to ours are also considered in the papers [18], [19] of Luca.

1.1. Notation

Throughout, p and q always denote prime numbers. We let d(n) :=
�

d|n 1 denote
the number of positive divisors of n, while ω(n) :=

�
p|n 1 denotes the corresponding

count of distinct prime divisors. Let P (n) denote the largest prime divisor of n,
with the understanding that P (1) = 1. We say that n is y-smooth if P (n) ≤ y, and
we write Ψ(x, y) for the count of n ≤ x with P (n) ≤ y. For each n, its y-smooth

part is defined as the largest y-smooth divisor of n. A number n is called k-full,
where k is a natural number, if pk divides n whenever p divides n. We write d � n
to indicate that d is a unitary divisor of n, i.e., that d | n and gcd(d, n/d) = 1.

The Landau–Bachmann o and O-symbols, as well as Vinogradov’s � notation,
are employed with their usual meanings. Implied constants are absolute unless

otherwise specified.

2. The Lower Bound: Proof of Theorem 1

If p is an odd prime, define the prime tree T (+)(p) associated to p as follows: The
root node is p, and for each node q, its child nodes are labeled with the odd prime
divisors of q + 1. The case of p = 83621 is illustrated in Figure 1.

With q − 1 replacing q + 1, such trees were introduced by Pratt [26] (see also
§4). A comprehensive study of such objects has recently been undertaken by Ford,
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Konyagin, and Luca [11]. For our purposes, the following modest result suffices
(cf. [26, p. 217]). Let f (+)(p) denote the total number of nodes in T (+)(p) (e.g.,
f (+)(83621) = 9).

Lemma 5. For each odd prime p, we have f (+)(p) ≤ 2 log p.

Proof. We have f (+)(3) = 1, so the lemma holds when p = 3. Now suppose q ≥ 5
is prime and that the upper-bound of the lemma holds for all odd primes p < q.
Then

f (+)(q) = 1 +
�

p|q+1
p>2

f (+)(p) ≤ 1 + 2
�

p|q+1
p>2

log p

≤ 1 + 2 log
q + 1

2
= 2 log

e1/2(q + 1)
2

≤ 2 log q.

We now introduce an algorithm for constructing prime-perfect numbers, given
an even, prime-abundant input (cf. the proof of [4, Theorem 4]).

Algorithm A:
Input: An even prime-abundant number n0

Output: A prime-perfect n for which n0 � n and n/n0 is squarefree
n ←− n0 // Initialize
while rad(σ(n)) � n // Loop until prime-perfect
do

Q ←−
�

q|σ(n)
q�n

q

n ←− nQ
end
return n

Proof of correctness of Algorithm A. We are given that n = n0 satisfies rad(n) |
σ(n). By the choice of Q, this property is preserved by execution of the while
loop. So it is enough to show that the algorithm terminates, for then the output n
satisfies both rad(n) | σ(n) and rad(σ(n)) | n. Hence, n is prime-perfect. Clearly
also n0 � n and n/n0 is squarefree.

If n is not already prime-perfect, let Q0 be the product of the primes dividing σ(n)
and not n. (So Q0 is the value of Q when the while loop is first executed.) Then
at each future execution of the while loop, the new primes introduced in Q belong
to ∪q|Q0T (+)(q). (Here we identify T (+)(q) with the set of primes used to label its
nodes.) Since each of the trees T (+)(q) is finite, the algorithm terminates.

Proof of Theorem 1. Let y be a large real number, and let m = 2 · 3 · 5 · · · · be
the largest product of an initial segment of primes for which m ≤ y. By the prime
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number theorem, ω(m) ∼ log y/ log2 y as y →∞, and so

d(m) = 2ω(m) = y(log 2+o(1))/ log2 y (y →∞).

Let � range over all numbers of the form

� =
�

p|2m−1

pep , where each ep ∈ {3, 5}.

For each such �, consider n0 := 2m−1�. Then 2 | σ(�) and rad(�) | σ(2m−1), so that
n0 is prime-abundant. The number of n0 that arise in this way is

2ω(2m−1) ≥ 2d(m)−2 = exp(y(log 2+o(1))/ log2 y),

as y → ∞. Here the inequality follows from a theorem of Bang [3] that implies
that for each d | m with d �∈ {1, 6} there is a prime pd | 2m − 1 with 2 belonging
to the exponent d in the integers modulo pd. Moreover, each n0 appearing in this
construction satisfies

n0 ≤ 2m−1(2m − 1)5 < 26m. (1)

We feed each n0 into Algorithm A and receive as output a prime-perfect number
n for which n0 � n and n/n0 is squarefree. Since n0 is the squarefull part of n,
distinct values of n0 correspond to distinct prime-perfect numbers n.

If Q0 denotes the product of the primes dividing σ(n0) but not n0, then, by the
proof of correctness of Algorithm A, the output n satisfies

n | n0Q0




�

p|Q0

�

q∈T (+)(p)

q



 . (2)

Crudely, with f = f (+),
�

p|Q0

�

q∈T (+)(p)

q ≤
�

p|Q0

pf(p) ≤ Q
�

p|Q0
f(p)

0 ≤ Q2 log Q0
0 , (3)

by Lemma 5. But Q0 ≤ σ(n0) ≤ n2
0, and so from (2) and (3),

n ≤ n0 · n2
0 · exp(2(log Q0)2) ≤ n3

0 exp(8(log n0)2).

Using (1), we see that

n ≤ 218m exp(139m2) ≤ exp(140m2),

say, once y (and hence m) is large enough.
Setting X := exp(140y2), so that y =

�
(log X)/140, we have shown that the

number of prime-perfect numbers contained in [1,X] is at least

exp(y(log 2+o(1))/ log2 y) = exp((log X)(
1
2 log 2+o(1))/ log3 X),

as y →∞. For large X, we can simply define y =
�

(log X)/140; then y = y(X) →
∞ as X →∞, and Theorem 1 follows.
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The attentive reader will have noticed that all the prime-perfect numbers con-
structed here are even. In fact, the second author has made the following conjecture
(see [13, B19]):

Conjecture 6. Each prime-perfect number n > 1 is even.

3. The Upper Bound: Proof of Theorem 2

For each natural number n, write σ(n)/n = N/D, where N = N(n) and D = D(n)
are coprime positive integers. The following theorem appears as [22, Theorem 4.1].
Loosely, it says that n is nearly determined by D, the lowest-terms denominator of
σ(n)/n.

Theorem A. For each x ≥ 1 and each positive integer d, the number of n ≤ x for

which D(n) = d is at most xO(1/

√
log2 x)

.

The next lemma is inspired by Erdős’s proof of [7, Theorem 2].

Lemma 7. Given a natural number m, the following algorithm outputs a unitary

divisor a of m with gcd(a,σ(a)) = 1. Moreover, at most xo(1)
inputs m ≤ x

correspond to the same output a, as x →∞.

Algorithm B:
Input: A natural number m
Output: A divisor a of m for which a � m and gcd(a,σ(a)) = 1
Factor n = pe1

1 pe2
2 · · · pek

k
, where p1 > p2 > · · · > pk.

a ← 1 // Initialize
for i = 1 to k do // Loop over prime power divisors of m
if gcd(σ(pei

i
a), pei

i
a) = 1 then

a ← pei
i

a
end
return a

Remark. Fix a natural number K. We will see from the proof of Lemma 7 that
if we restrict the input m to K-free numbers, the term xo(1) in the conclusion of
Lemma 7 can be improved to xOK(1/ log2 x).

Proof. It is trivial that the output a of the algorithm is a unitary divisor of m for
which gcd(a,σ(a)) = 1. So we concentrate on the last half of the lemma. Fix � > 0.
We will show that for large x, the number of inputs m ≤ x corresponding to a given
output a is bounded by x�, uniformly in a. Fix a natural number K with 1

K
< �.

Suppose that a is the output corresponding to the input m ≤ x. Write m = abc,
where c is the K-full part of m/a. If p | bc, then one of the following two possibilities
holds:
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(1) p | σ(qe), where qe � a, or

(2) there is a prime q dividing a with q > p for which q | σ(pe), where pe � m.

In case (1) above, p | σ(a). If p | b and is described by case (2), then there is some
prime q dividing a for which x = p is a solution in the interval [0, q) to one of the
K − 1 congruences

xe + xe−1 + · · · + x + 1 ≡ 0 (mod q), where 1 ≤ e < K.

Let S be the set of all primes p which either divide σ(a) or appear as a solution to
such a congruence. Then S depends only on a and contains every prime divisor of
b. Since a polynomial of degree e has at most e roots over Z/qZ, we find that for
large x,

#S ≤ ω(σ(a)) +
�

q|a

�

1≤e<K

e ≤ ω(σ(a)) + K2ω(a).

Since σ(a) ≤ a2 and ω(h) � log h

log2 h
for all h ≥ 1, we find that for large x,

#S ≤ C
log x

log log x
,

where C is a constant depending only on K.
For i ≥ 1, let pi denote the ith prime in the natural order. We have just seen

that given a, the prime factors of b belong to a prescribed set of size at most
R := �C log x/ log log x�. The number of such b ≤ x is bounded above by the
number of b ≤ x supported on the primes p1, . . . , pR, i.e., by Ψ(x, pR). By the
prime number theorem, pR ≤ 2C log x for large x, and now by standard results
on smooth numbers (see, e.g., [12, eq. (1.19)]), Ψ(x, pR) ≤ xOK(1/ log2 x). Since
the number of possibilities for c is � x1/K (see [10]) and 1/K < �, the number of
possibilities for n = abc, given a, is smaller than x� for large x.

The next lemma, which is implicit in the proof of [8, Theorem 4], appears ex-
plicitly as [22, Lemma 4.2].

Lemma 8. Let m ≤ y be a natural number. The number of n ≤ y for which

rad(n) | m is at most yO(1/ log2 y)
.

Remark. We often apply Lemma 8 to estimate the number of n ≤ y with rad(n) =
m.

We are now in a position to prove Theorem 2. Below, we write o(1) for a quantity
that tends to 0 as x →∞, uniformly in all other parameters.
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Proof of Theorem 2. Suppose n ≤ x is prime-abundant. Write n = AB, where A
is squarefree, B is squarefull, and gcd(A,B) = 1. Write B = CD, where C is
the output of Algorithm B when m = B. Let L = �log x�. Then we may choose
a, b, c ∈ { 1

L
, 2

L
, . . . , L−1

L
, 1} for which

A ∈ [e−1xa, xa], B ∈ [e−1xb, xb], and C ∈ [e−1xc, xc]. (4)

Since the number of possible triples (a, b, c) is at most L3 = xo(1), it is enough to
prove that the number of prime-abundant n ∈ (x/2, x] corresponding to a given
triple is at most

x1/3+o(1), (5)
as x →∞.

First we show that given B, the number of possible values of A is at most xo(1).
Since n = AB is prime-abundant, A | σ(A)σ(B). Hence, the lowest-terms denom-
inator of the fraction σ(A)/A divides σ(B), and so is restricted to xo(1) possible
values. (We use here an estimate for the maximal order of the divisor function,
such as [15, Theorem 317].) Theorem A now shows that A itself is restricted to a
set of size xo(1). Thus, the number of possible values of n = AB is at most

xb/2+o(1), (6)

since the number of squarefull values of B ≤ xb is � xb/2.
We can easily sharpen this; the number of n in question is bounded above by

xc/2+o(1). (7)

To see this, notice that C is squarefull, since C � B. Thus, there are � xc/2 choices
for C. By Lemma 7, C determines B up to xo(1) possibilities. Since B determines
A up to xo(1) choices, the number of choices for n = AB is at most xc/2+o(1) also.

By a third and final argument, we show that the number of such n is bounded
by

xa+(b−c)/2+o(1). (8)
The number of choices for A is at most xa. Also, D is squarefull and D �
xb−c, so that the number of possible values of D is � x(b−c)/2. So there are at
most xa+(b−c)/2+o(1) possibilities for AD = n/C. Since n is prime-abundant and
gcd(C,σ(C)) = 1, we have rad(C) | σ(A)σ(D). So given A and D, Lemma 8 implies
there are only xo(1) possibilities for C.

Comparing (6), (7), and (8), we see that the number of prime-abundant n ∈
(x/2, x] corresponding to the triple (a, b, c) is at most

xt+o(1), where t = min{b/2, c/2, a + (b− c)/2}.

Since n � xa+b, we have a + b ≤ 1 + o(1), and so

3t = t + t + t ≤ b/2 + c/2 + a + (b− c)/2 = a + b ≤ 1 + o(1),

whence t ≤ 1/3 + o(1). This confirms the upper estimate (5).
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4. Analogues for Euler’s Function

In view of the duality between ϕ and σ, it is natural to wonder about the ϕ-version
of the prime-perfect numbers. Call n ϕ-abundant if every prime dividing n divides
ϕ(n), and call n ϕ-perfect if the set of primes dividing n coincides with the set of
primes dividing ϕ(n). Let Nϕ(x) denote the number of ϕ-perfect n ≤ x, and let
N �

ϕ(x) denote the number of ϕ-abundant n ≤ x.
Since ϕ(m2) = mϕ(m), every square is prime-abundant, and so N �

ϕ(x) � x1/2.
(Note the sharp contrast with the result of Theorem 2.) More generally, every
squarefull number is prime-abundant, which gives a somewhat larger value of the
implied constant in this estimate. In our first theorem in this section, we show that
N �

ϕ(x)/x1/2 tends to infinity, but not too rapidly. Let L(x) be as in the statement
of Theorem 4.

Theorem 9. For some positive constant c and all large x, we have

N �
ϕ(x) ≥ x1/2 exp(c(log2 x)1/2/(log3 x)3/2).

In the opposite direction, we have as x →∞,

N �
ϕ(x) ≤ x1/2L(x)1/2+o(1).

As a consequence, N �
ϕ(x) = x1/2+o(1)

.

Proof. We start with the upper bound. By the remark following Lemma 8, we
can assume that rad(n) > x1/2L(x)1/2. The remaining ϕ-abundant n satisfy
gcd(n,ϕ(n)) > x1/2L(x)1/2; but by [8, Theorem 11],

�

m≤x

gcd(m,ϕ(m)) ≤ x · L(x)1+o(1),

and so the number of such n is at most x1/2L(x)1/2+o(1).
We now turn to the lower bound. We can pick a positive constant c0 for which

the following holds: With z := c0 log2 x/ log3 x and P =
�

p≤z
p, the number of

m ≤ y with P � ϕ(m) is � y/ log2 x, uniformly for 3
√

x ≤ y ≤ x (cf. the proof of [20,
Lemma 2]). We consider numbers n of the form n = m2A, where A | P , m ≤

�
x/A,

m is coprime to P , and P | ϕ(m). Note that each such n is ϕ-abundant. Moreover,
distinct pairs (m,A) give rise to distinct values of n.

It remains to count the number of pairs (m,A). For a given A, the number of
m ≤

�
x/A with m coprime to P is �

�
x/A/ log z �

�
x/A/ log3 x, by Mertens’

theorem and an elementary inclusion-exclusion argument. Of these m, almost all
of them are such that P divides ϕ(m), by our choice of c0 above. So the number of
n we construct is

�
√

x

log3 x

�

A|P

1√
A

=
√

x

log3 x

�

p≤z

�
1 +

1
√

p

�
�
√

x(log3 x)O(1) exp




�

p≤z

1
√

p



 .
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Since
�

p≤z
p−1/2 ∼ 2

√
z/ log z, we have the lower bound.

It seems plausible that there are almost as many ϕ-perfect numbers as ϕ-abundant
numbers, in the sense that

Nϕ(x) = x1/2+o(1). (9)

Indeed, (9) follows from a standard conjecture, as we now explain. Say that η ∈
(0, 1) is admissible if there are positive numbers K = K(η) and x0 = x0(η) for
which

#{p ≤ x : P (p− 1) ≤ x1−η} ≥ x

(log x)K
(for x ≥ x0). (10)

In [6], Erdős used Brun’s sieve to show that some η is admissible, and he conjectured
that all η < 1 are admissible. The best unconditional result in this direction is due
to Baker and Harman [2], who have shown the admissibility of η = 0.7039.

Theorem 10. Fix an admissible number η. Then the number of ϕ-perfect n ≤ x
is at least xη/2+o(1)

, as x →∞.

Taking as input the result of Baker and Harman, we obtain the first inequality
of Theorem 4. If Erdős is right that every η < 1 is admissible, then Theorems 9
and 10 give the estimate (9). We remark that the Elliott–Halberstam conjecture
implies that every η < 1 is admissible (cf. [1, Theorem 3], [12, §5.1]).

Call m ϕ-deficient if every prime dividing ϕ(m) divides m. Then m is ϕ-perfect
precisely when m is both ϕ-abundant and ϕ-deficient.

Lemma 11. Fix an admissible number η. Then the number of ϕ-deficient m ≤ x
is at least xη+o(1)

, as x →∞.

Proof. Let α = (1− η)−1. Put z = (log x/ log log x)α, and put

w = x/ exp(2 log x/ log2 x).

By the definition of admissibility, the set P of primes p ≤ z for which P (p − 1) ≤
log x/ log log x has cardinality at least (log x)α/(log2 x)O(1); here the O-constant
may depend on η. Let u = � log w

log z
�, and consider all numbers n that can be formed

as a product of u distinct primes from P. Each such n satisfies n ≤ w and P (ϕ(n)) ≤
log x/ log log x. Moreover, as x →∞, the number of such n is

�
#P
u

�
≥

�
#P
u

�u

≥ x
α−1

α +o(1) = xη+o(1),

by a short computation. For each such n, put

m := n
�

p≤log x/ log log x

p. (11)
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Then
m ≤ w

�

p≤log x/ log log x

p ≤ w exp((1 + o(1)) log x/ log log x) < x

for large x, and each such m is ϕ-deficient. Since distinct values of n give rise to
distinct values of m, the result follows.

Proof of Theorem 10. Since ϕ(m2) = mϕ(m), the number m2 is ϕ-perfect if m is
ϕ-deficient. So Theorem 10 follows from Lemma 11.

If one is willing to assume further unproved hypotheses, then one can take the
reasoning of Lemma 11 and Theorem 10 a bit further. It seems plausible that in a
wide range of x and y,

#{p ≤ x : p− 1 is y-smooth}
π(x)

≈ Ψ(x, y)
x

.

It may even be that the left and right-hand sides are asymptotic to one another in
the range x ≥ y and y →∞; this is explicitly conjectured in [25], but the thought
dates back to [6]. In particular, it seems reasonable to assume the following:

With � = log2 x and z = e�
2
, the set P of primes p ≤ z with P (p − 1) ≤

log x/(2 log2 x) satisfies #P ≥ e�
2−(1+o(1))� log �.

Let w := x/ exp(2 log x/ log2 x). Then whenever m is a product of k := � log w

log z
�

primes from P, the number n := m
�

p≤log x/ log2 x
p is ϕ-deficient and belongs to

[1, x]. A quick calculation shows that the number of values of n we have just
constructed is x/L(x)1+o(1). Since each n2 is ϕ-perfect, this implies that Nϕ(x) ≥
x1/2/L(x)1/2+o(1).

As we show in the rest of this section, for ϕ-perfect numbers which are squarefull,
this (conditional) lower bound is best-possible.

Theorem 12. As x →∞, the number of ϕ-perfect n ≤ x which are squarefull is at

most x1/2/L(x)1/2+o(1)
. Also, as asserted in Theorem 4, Nϕ(x) ≤ x1/2/L(x)1/4+o(1)

.

We do not know if the exponent 1
4 in the latter half of Theorem 12 is optimal;

perhaps squares tell almost the whole story and the “correct” exponent is 1
2 .

For the proof of Theorem 12, we require the following analogue of Lemma 7:

Lemma 13. We can exhibit an algorithm which, given a squarefree number m,

outputs a divisor a of m with gcd(a,ϕ(a)) = 1, and which is nearly one-to-one in

the following sense: Each output corresponds to at most xO(1/ log2 x)
inputs in [1, x].
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Proof. List the primes dividing m in decreasing order, say p1 > p2 > · · · > pk. Let
a = 1, and for 1 ≤ i ≤ k, replace a with api if gcd(api,ϕ(api)) = 1. At the end of
the algorithm, write m = ab. Clearly (a,ϕ(a)) = 1. If p | b, then there must be a
prime q dividing a for which p | q− 1; hence b | ϕ(a). So the result follows from the
maximal order of the divisor function.

For primes p, define the Pratt prime tree T (−)(p) as follows: The root node is p,
and for each node q, its child nodes are labeled with the prime divisors of q − 1.

Lemma 14. Suppose that n is ϕ-perfect, and write n = AB, where A is squarefree,

B is squarefull, and gcd(A,B) = 1. Then A is the product of all those primes not

dividing B which appear in at least one of the trees T (−)(p), for p dividing B. In

particular, n is determined entirely by B.

Proof. Suppose that p divides B. Then ϕ(p) | ϕ(B) | ϕ(n). Since n is prime-
perfect, every prime q dividing p − 1 = ϕ(p) divides n. For each such q, we have
q − 1 = ϕ(q) | ϕ(n), and so each prime r dividing q − 1 divides n. Continuing this
process, we see that n is divisible by all the primes in all the trees T (−)(p), and
hence A is divisible by the product of primes appearing in the lemma statement.

Now we show every prime dividing A belongs to some T (−)(p), where p | B.
Suppose otherwise, and let q be the largest counterexample. Since n is prime-
perfect, q | ϕ(A)ϕ(B). If q | ϕ(A), then q | r − 1 for some prime r > q; by the
maximality of q, it follows that r belongs to one of the trees T (−)(p), where p | B.
But then q belongs to T (−)(p). This contradiction shows that q | ϕ(B). Since A
and B are relatively prime, q � B, and so q | p−1 for some prime p dividing B. But
in this case, q belongs to T (−)(p).

Finally, we quote an estimate from [25] concerning the multiplicities of values of
the Euler function. Let ϕ−1(m) = {n : ϕ(n) = m}.

Theorem B. As m →∞, we have #ϕ−1(m) ≤ m/L(m)1+o(1)
.

Proof of Theorem 12. For each ϕ-perfect number n ≤ x, write n = AB, with A and
B as in Lemma 14. It is enough to prove that given A, the number of corresponding
values of B is bounded by x1/2A−1/2L(x)−1/2+o(1), uniformly for A ≤ L(x)1/2.
Indeed, if this claim is proved, the first assertion of Theorem 12 follows immediately
upon taking A = 1. To obtain the bound on Nϕ(x), we take two cases: The number
of n corresponding to values of A ≤ L(x)1/2 is at most

x1/2L(x)−1/2+o(1)
�

A

A−1/2 = x1/2/L(x)1/4+o(1),

as desired. On the other hand, if A > L(x)1/2, then B ≤ x/L(x)1/2, and so the
number of possible values of B is� x1/2/L(x)1/4. Since B determines A by Lemma
14, we obtain the stated upper bound on Nϕ(x).
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It remains to prove the initial claim. Fix A. Write R = rad(B), and notice
that R ≤ x1/2A−1/2. Since R determines B in at most L(x)o(1) ways by Lemma
8, and B determines A, it is enough to prove that the number of possibilities for
R is bounded by x1/2A−1/2L(x)−1/2+o(1). Let d be the output of the algorithm of
Lemma 13 when m = R. That lemma allows us to assume that

x1/2A−1/2 ≥ d > x1/2A−1/2L(x)−1/2. (12)

Since n is prime-perfect, rad(ϕ(d)) | AB, and so if we put

�(d) =
rad(ϕ(d))

gcd(rad(ϕ(d)), A)
,

then �(d) | R. Since d and �(d) are coprime, the number of possible values of R is
at most

x1/2A−1/2
�

d

1
d · �(d)

, (13)

where the sum is over d satisfying (12). Rewrite the sum in the form
�

e≤x1/2

1
e

�

d : �(d)=e

(12) holds

1
d
. (14)

We estimate the inner sum by partial summation. Fix e ≤ x1/2. Note that if
�(d) = e, then rad(ϕ(d)) | Ae, and so the number of possible values of ϕ(d), given A
and e, is bounded by L(x)o(1) (by Lemma 8). It now follows from Theorem B that

G(t) : = #{d ≤ t : �(d) = e}
≤ L(x)o(1) · t/L(t)1+o(1) (as x →∞),

uniformly for e ≤ x1/2 and t ∈ [x1/2A−1/2L(x)−1/2, x1/2A−1/2]. So the inner sum
in (14) is at most

� x
1/2

A
−1/2

x1/2A−1/2L(x)−1/2

dG(t)
t

≤ G(x1/2A−1/2)
x1/2A−1/2

+
� x

1/2
A
−1/2

x1/2A−1/2L(x)−1/2

G(t)
t2

dt

≤ 1
L(x)1/2+o(1)

,

as x → ∞. Substituting into (14) and then (13), we obtain the claimed upper
bound on the number of possibilities for R.

5. Problems From the Literature

5.1. H-perfect numbers

Harborth [14] has considered another variant of the perfect numbers for which the
set of examples is provably infinite. If n is a natural number, let S range over all
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possible subsets of divisors of n, and put

S(n) =
�

S

�

d∈S
d.

Observe that every divisor d of n occurs in precisely 2d(n)−1 subsets S, so that
S(n) = σ(n) · 2d(n)−1. We will say n is H-perfect if n | S(n). (So, e.g., the H-
perfects include all multiply perfect numbers.) Harborth showed that the number
of H-perfect n ≤ x exceeds

log x · log log x

2 log 2
, (15)

but remarks that

Eine vernünftige Abschätzung nach oben scheint sich nicht so einfach zu
ergeben.1

Our purpose here is to show that Harborth’s lower bound may be considerably
strengthened and to establish “eine vernünftige Abschätzung nach oben.” We begin
with a simple characterization of H-perfect numbers. As before, we write σ(n)/n =
N/D, where N(n) and D(n) are coprime natural numbers.

Lemma 15. The natural number n is H-perfect if and only if D(n) is a power of

2.

Proof. Suppose that n is H-perfect. Then n divides S(n) = σ(n) · 2d(n)−1, and so
D(n) = n/ gcd(n,σ(n)) divides 2d(n)−1. Thus, D(n) is a power of 2. Conversely,
suppose that D(n) = 2t for some integer t ≥ 0. Since D(n) divides n, we have
t ≤

�
p�|n 1 ≤ d(n)− 1. Thus, D(n) = 2t | 2d(n)−1 and

n = gcd(n,σ(n)) · D(n) | σ(n) · 2d(n)−1 = S(n),

so that n is H-perfect.

The following lower bound substantially strengthens (15).

Proposition 16. As x →∞, the number of n ≤ x which are H-perfect is at least

exp((log x)(log 2+o(1))/ log3 x).

Proof. Let y →∞, and choose m ≤ y so that d(m) is maximal. Consider numbers
n = 2m−1�, where � runs over all divisors of 2m − 1. Then

σ(n)
n

=
(σ(2m−1)/�)σ(�)

2m−1
,

1A reasonable upper bound does not seem so easy to obtain.
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so that D(n) | 2m−1, and hence D(n) is a power of 2. So n is H-perfect. Moreover,
the number of such n is at least

d(2m − 1) ≥ 2ω(2m−1) ≥ 1
4
2d(m) ≥ exp(y(log 2+o(1))/ log2 y),

and each such n belongs to [1, 22y]. (Above, we use the inequality ω(2m − 1) ≥
d(m)− 2, which already was featured in the proof of Theorem 1.) As in the proof
of Theorem 1, solving for y in terms of X := 22y completes the argument.

The upper bound is more straightforward. Indeed, since D(n) must be a power
of 2 and only O(log x) such powers appear below x, Theorem A immediately gives
the following:

Proposition 17. For x ≥ 1, the number of H-perfect n ≤ x is bounded by

xO(1/

√
log2 x)

.

5.2. Harmonic and Superharmonic Numbers

We make some remarks about harmonic numbers, first studied by Ore [21] (and
named “harmonic” in [23]), and superharmonic numbers, recently introduced by
Cohen [4]. The natural number n is said to be harmonic if the harmonic mean
of its divisors is an integer. By a short calculation, n is harmonic precisely when
σ(n) | n · d(n).

The distribution of harmonic numbers was studied by Kanold [17], who showed
that the count of such numbers in [1, x] is bounded by x1/2+o(1), as x → ∞. This
can be easily improved by using a theorem of Wirsing [29], which we quote as
Theorem C.

Theorem C. Let x ≥ 1, and let α be a positive rational number. The number of

n ≤ x with σ(n)/n = α is bounded by xO(1/ log2 x)
, uniformly in α.

Proposition 18. The number of harmonic n ≤ x is bounded by xO(1/ log2 x)
.

Proof. Suppose that n is harmonic. Put k = n·d(n)/σ(n), so that σ(n)/n = d(n)/k.
Since σ(n)/n ≥ 1, we have

k ≤ d(n) ≤ max
m≤x

d(m) ≤ xO(1/ log2 x).

(Here we again use [15, Theorem 317].) Thus, the fraction σ(n)/n is restricted to
xO(1/ log2 x) possible values. But by Theorem C, each value corresponds to at most
xO(1/ log2 x) possibilities for n.

Cohen [4] calls n superharmonic if σ(n) | nk · d(n) for some natural number k.
While it is not known whether or not there are infinitely many harmonic num-
bers, Cohen observes [4, Corollary 3] that there are infinitely many superharmonic
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numbers n. In fact, using an algorithm similar to our Algorithm A, he proves [4,
Theorem 4] that for any N , there is a superharmonic number n for which N | n.

Call a number n prime-deficient if every prime dividing σ(n) divides n. (Numbers
of this kind for which ω(n) is bounded have been studied by Luca [19].) We can
treat the prime-deficients by a modification of the argument offered for Lemma 11:
Replace p − 1 with p + 1 in the equation (10) defining admissibility, and replace
P with the set of primes p ∈ (log x, z] with P (p + 1) ≤ log x/ log log x. The proof
of Lemma 11 gives that if η is admissible, then there are at least xη+o(1) prime-
deficient values of n ≤ x. In fact, the heuristic argument following Lemma 11 yields
that the number of prime-deficient n ≤ x should be at least x/L(x)1+o(1). Clearly,
every prime-deficient n is superharmonic, so this also serves as a lower bound for
the count of superharmonic numbers.

We now demonstrate a matching upper bound. This strengthens [4, Theorem 7],
where an upper bound of the form x/ exp(c(log x)1/3) was proved.

Theorem 19. As x → ∞, the number of superharmonic n ≤ x is at most

x/L(x)1+o(1)
.

Proof. We fix � > 0, and we show that for large x, the number of superharmonic
n ≤ x is at most x/L(x)1−�. Fix a natural number K with 1

K
< �

2 . Write n = AB,
where A is K-free, B is K-full, and gcd(A,B) = 1. We can assume that B ≤ L(x),
since the number of exceptional n (even ignoring the superharmonic condition) is
at most

x
�

B>L(x)
B K-full

B−1 < x/L(x)1−�/2,

once x is large.
Let d be the output of Algorithm B when m = A. We can assume that d >

x/L(x). Indeed, since A is K-free, the remark following Lemma 7 shows that if
d ≤ x/L(x), then A belongs to a set of size at most

x

L(x)
· xOK(1/ log2 x) =

x

L(x)1+o(1)
.

Since B ≤ L(x) and B is K-full, the number of possibiliites for B is smaller than
L(x)�/2 for large x. So the number of possibilities for n = AB with d ≤ x/L(x) is
at most x/L(x)1−2�/3 for large x, which is negligible.

To count the remaining n, we fix both B and D := d(n). For n ≤ x, we have
d(n) ≤ x1/ log2 x for large x, and so the number of possibilities for D is L(x)o(1).
Since d � A � n, we see that σ(d) | σ(n). But n is superharmonic, so that rad(σ(d)) |
ABD, and so defining

�(d) :=
rad(σ(d))

gcd(rad(σ(d)), BD)
,
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we have that �(d) | A. Since gcd(d,σ(d)) = 1, we see that d · �(d) | A. Since A ≤ x,
the number of possibilities for A is at most x

�
d

1
d·�(d) , where the sum is over

d ∈ (x/L(x), x]. A similar sum appeared in the proof of Theorem 12. Proceeding as
in that argument, and invoking the σ-analogue of Theorem C (which is proved in the
same way), we find that the number of possibilities for A is at most x/L(x)1+o(1).
Since the number of possibilities for the pair (B,D) is at most L(x)�/2L(x)o(1), the
number of remaining possibilities for n is at most x/L(x)1−�/2+o(1).

6. Concluding Remarks

Rivera [27] has asked whether any numbers n are simultaneously prime-perfect and
ϕ-perfect. Several examples were subsequently found by Luke Pebody (ibid.); his
smallest is n = 2 · 34 · 5 · 7 · 11 · 133 · 173 · 292 · 313 · 372 · 672, for which

σ(n) = 216 · 37 · 52 · 74 · 112 · 132 · 17 · 29 · 31 · 37 · 672

and
ϕ(n) = 217 · 39 · 52 · 7 · 11 · 132 · 172 · 29 · 312 · 37 · 67.

Probably there are infinitely many such n, but this may be difficult to show. In fact,
we do not even see how to obtain infinitely many n for which rad(ϕ(n)) = rad(σ(n)).

We are morally certain that each even squarefree integer belongs to the range
of the functions rad(ϕ(n)) and rad(σ(n)). In fact, we believe that each appears
infinitely often in both ranges, but even the weaker version of the claim appears
difficult. We can at least prove that both ranges contain a positive proportion of
the squarefree numbers. In fact, this is true even if n is restricted to primes p. To
see this, we recall a result of Erdős and Odlyzko [9].

Theorem D. The set of odd natural numbers k with the property that k · 2n + 1 is

prime for some n ≥ 1 is a set of positive lower density. The same holds for k ·2n−1.

For a prime p = k · 2n + 1 as above, rad(ϕ(p)) = 2 · rad(k). Thus, our claim
about the image of rad(ϕ(p)) is a consequence of the following elementary lemma.
Similarly, the claim for rad(σ(p)) follows from the lemma and the second half of
Theorem D.

Lemma 20. If A is a set of positive lower density, then rad(A) := {rad(a) : a ∈ A}
also has positive lower density.

Proof. Fix z so that the set of natural numbers with squarefull part > z has upper
density smaller than the lower density of A. Discarding from A those integers with
squarefull part > z, we can assume that the squarefull part of each a ∈ A belongs
to the set S of squarefull numbers ≤ z. Put m := #S.
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By hypothesis, there is a number d > 0 and a real x0 so that 1
x
#A ∩ [1, x] ≥ d

for all x ≥ x0. We claim that rad(A) has lower density at least d/m. Let x ≥ x0.
For some s ∈ S, the set As(x) of a ∈ A ∩ [1, x] with squarefull part s has size at
least dx/m. The function rad restricted to As(x) is one-to-one and maps elements
to new numbers which are not larger. Hence, rad(A) has at least dx/m elements in
[1, x].
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