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Abstract
A sequence of rational integers {An} is said to be a divisibility sequence if Am | An

whenever m | n. If the divisibility sequence {An} also satisfies a linear recurrence
relation of order k, it is said to be a linear divisibility sequence. The best known
example of a linear divisibility sequence of order 2 is the Lucas sequence {un}, one
particular instance of which is the famous Fibonacci sequence. In their extension
of the Lucas functions to order 4 linear recursions, Williams and Guy showed that
the order 4 analog {Un} of {un} can have no more than two ranks of apparition
for a given prime p and frequently has two such ranks, unlike the situation for
{un}, which can only have one rank of apparition. In this paper we investigate the
problem of finding those sequences {Un} which have only one rank of apparition for
any prime p.

– In memory of John Selfridge, a close friend and
collaborator for nearly half a century.

1. Introduction

Let p, q ∈ R and α,β be the zeroes of x
2 − px + q ∈ R[x]. We define, for n ∈ Z,

un(p, q) =
α

n − β
n

α− β
, vn(p, q) = α

n + β
n

When p, q are coprime integers, both un(p, q) and vn(p, q) are integers for all n ≥
0 and are called the Lucas functions. The Lucas functions possess a number of
properties (see Ribenboim [2, pp.53–83] or Williams [3, pp.69–95]) which make
them particularly useful for primality testing. In particular, if n | m, then un(p, q) |
um(p, q); also, both un(p, q) and vn(p, q) satisfy the second order linear recurrence

Xn+1 = pXn − qXn−1

In general a linear recurring sequence of order k over the integers is a sequence
{Xn}, where we have

Xn+k = A1Xn+k−1 + A2Xn+k−2 + A3Xn+k−3 + · · · + AkXn
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and X0,X1,X2, . . . ,Xk−1, A1, A2, A3, . . . , Ak are given fixed integers, with Ak �=
0. Furthermore, if Xm | Xn whenever m | n, then {Xn} is said to be a k th order
divisibility sequence. Thus, we see that the Lucas sequence {un(p, q)} is a second
order divisibility sequence. This sequence also has the property that (un, um) = |ug|
where g = (m,n) and we use the notation (a, b) with a, b ∈ Z to denote the greatest
common divisor of a and b.

If a divisibility sequence {An} is such that (An, Am) = |Ag|, where g = (m,n),
we say that {An} is a strong divisibility sequence.

In his investigation of the problem of primality testing, Lehmer [1] introduced
the functions ūn(r, q), v̄n(r, q) where r, q are coprime integers. These are defined by

ūn(r, q) =
�

un(
√

r, q) when 2 � n

un(
√

r, q)/
√

r when 2 | n

v̄n(r, q) =
�

vn(
√

r, q) when 2 | n

vn(
√

r, q)/
√

r when 2 � n

The sequences {ūn(r, q)}, {v̄n(r, q)} are comprised of integers for all n ≥ 0 and
satisfy the fourth order linear recurrence

Xn+4 = (r − 2q)Xn+2 − q
2
Xn

Furthermore, {ūn(r, q)} is a strong divisibility sequence. Further properties of the
Lehmer functions can be found in [1].

In their study of a fourth order analog of the Lucas functions, Williams & Guy
[4] defined Un = Un(P1, P2, Q), Vn = Vn(P1, P2, Q), where P1, P2, Q are integers,
(P1, P2, Q) = 1, and

Un =
α

n
1 + β

n
1 − α

n
2 − β

n
2

α1 + β1 − α2 − β2
Vn = α

n
1 + β

n
1 + α

n
2 + β

n
2

Here α1β1 = α2β2 = Q, α1 + β1 = ρ1, α2 + β2 = ρ2 and ρ1, ρ2 are the zeroes of
f(x) = x

2 − P1x + P2. Note that α1, β1, α2, β2 are the zeroes of

F (x) = x
4 − P1x

3 + (P2 + 2Q)x2 −QP1x + Q
2

Thus, Un and Vn satisfy the fourth order linear recurrence

Xn+4 = P1Xn+3 − (P2 + 2Q)Xn+2 + P1QXn+1 −Q
2
Xn

Also, the discriminant D of F (x) is given by

D = E∆2
Q

2

where ∆ = P
2
1 − 4P2 and E = (P2 +4Q)2− 4QP

2
1 . We will assume throughout this

work that D �= 0 so that the zeroes of F (x) are distinct.
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We notice that U−1 = 1/Q, U0 = 0, U1 = 1, U2 = P1, U3 = P
2
1 − P2 − 3Q. If we

change the sign of P1 and consider the sequence {U∗
n} where U

∗
−1 = 1/Q, U

∗
0 = 0,

U
∗
1 = 1, U

∗
2 = −P1,

U
∗
n+4 = (−P1)U∗

n+3 − (P2 + 2Q)U∗
n+2 + (−P1)QU

∗
n+1 −Q

2
Xn

it is easy to establish by induction that

U
∗
n = Un(−P1, P2, Q) = (−1)n−1

Un(P1, P2, Q)

Thus, by changing the sign of P1 we only change the sign of U2n.
It is possible to show that just about every important property of the Lucas

functions has an exact analog in the theory of the Un and Vn functions. However,
there is one result for Un that does not have an analog in this theory: the {Un}
sequence is not in general a strong divisibility sequence. For example, take P1 = 1,
P2 = −7, Q = 1. In this case we have U6 = 95, U20 = 217172736 and (U6, U20) = 19,
whereas U(6,20) = U2 = 1. It turns out that the least positive integer n for which
19 | Un is n = 6, but even though 19 | U20, we do not have 6 | 20. In the next
section we investigate this phenomenon more closely.

2. Laws of Apparition

We begin this section with a definition.

Definition. Let ω1 (if it exists) be the least positive integer such that p | Uω1 . We
define the increasing sequence ω1,ω2, . . . ,ωj ∈ Z by p | Uωi and ωi � ωj (1 ≤ i < j).
Each ωi in this sequence is called a rank of apparition of p.

In [4] it is shown that there can be at most two ranks of apparition of a prime
p in {Un}. Indeed, if p � ∆Q; K denotes the splitting field of F (x) in F[x]; α1,
β1, α2, β2 are the zeroes of F (x) in K; and p has two ranks of apparition, ω1 and
ω2 in {Un}, then ω1 is the least integer for which α

ω1
1 = α

ω1
2 in K and ω2 is the

least integer for which (α1α2)ω2 = Q
ω2 in K. It is this possibility, that a prime p

can have two ranks of apparition in {Un} that prevents {Un} from being a strong
divisibility sequence.

Proposition 2.1. If p is any prime that has two ranks of apparition in {Un}, then
{Un} cannot be a strong divisibility sequence.

Proof. Let p have two ranks of apparition, ω1 and ω2 in {Un}, where ω1 < ω2

and ω1 � ω2. Clearly p | (Uω1 , Uω2). If g = (ω1,ω2), we see that 0 < g < ω1. If
(Uω1 , Uω2) = |Ug|, then p | Ug, contrary to the definition of ω1. ✷

Definition. The divisibility sequence {Un} is said to be monoapparitic if there
is only one rank of apparition for each prime which divides a term of the sequence.
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We have seen in Proposition 2.1 that a necessary condition that {Un} be a strong
divisibility sequence is that {Un} be monoapparitic. However, this condition is not
sufficient. As we shall see below, the sequence given by P1 = −5, P2 = −14, Q = 16
is monoapparitic, but 112 | U12 and 112 | U44. Now 4 = (12, 44) and U4 = 55 so
that |U4| �= (U12, U44). In this paper we will attempt to determine monoapparitic
{Un}. To assist us in this investigation we list a number of results from [4].

1. If p = 2, then p has two ranks of apparition if and only if 2 | P1 and 2 � P2Q.

2. If p is odd and p | Q, then p has only one rank of apparition in {Un}.

3. If p is odd and p � Q, p | ∆ and p � E, then p has two ranks of apparition in
{Un}.

4. If p is odd, p � Q, p | ∆ and p | E, then p has only one rank of apparition in
{Un}.

5. If p is odd, p � Q, p � ∆ and p | E, then p can have two ranks of apparition in
{Un}.

We next consider the case where p � 2Q∆E.

6. If
�

E
p

�
= −1, then p has only one rank of apparition in {Un}.

7. If
�

E
p

�
= 1, and

�
∆
p

�
= −1, then p has two ranks of apparition in {Un} when

p � P1.

In this case we see that if p � P1, we must have
�

∆
p

�
= 1 in order for p to have

a single rank of apparition in {Un}. Indeed, as there must exist an infinitude of
primes p such that p � P1 and

�
E
p

�
= 1, we see that

�
∆
p

�
= 1 for all of these primes

if {Un} is to be monoapparitic. In the next section we will show that if {Un} is
monoapparitic and E = GU

2, ∆ = SV
2, where G, S are squarefree, then we must

have G = S or S = 1.

3. Types of Monoapparitic {Un}

In order to establish the main result of this section we require several preliminary
results.

Lemma 3.1. Let K (> 1) be a squarefree integer and let the values of η, λ be
preselected from the set {1,−1}. There exists an integer r such that r ≡ λ (mod 4)
and such that if p is any prime satisfying p ≡ r (mod 4K), then

�
K
p

�
= η.

Proof. We consider two cases.
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Case 1. 2 � K. Let q be any prime divisor of K. There exists an integer s such
that �

s

q

�
= (−1)

K−1
2

λ−1
2 η

We may now use the Chinese remainder theorem (CRT) to find a value of r such
that

r ≡ s (mod q), r ≡ 1 (mod K/q), and r ≡ λ (mod 4)

because q, K/q and 4 are coprime in pairs.
Now if p is prime,

�
K

p

�
= (−1)

p−1
2

K−1
2

�
p

K

�
= (−1)

p−1
2

K−1
2

�
p

q

��
p

K/q

�

If p ≡ r (mod 4K), then p ≡ λ (mod 4), p ≡ s (mod q), p ≡ 1 (mod K/q). Hence
�

K

p

�
= (−1)

λ−1
2

K−1
2

�
s

q

�
= η

Case 2. 2 | K. In this case K = 2M and M is odd. If p is a prime,
�

K

p

�
=

�
2
p

��
M

p

�

If M = 1, put r = 3 if η = λ = −1; put r = 7 if η = 1, λ = −1; put r = 5 if η = −1,
λ = 1; and put r = 1 if η = λ = 1. Thus, if p ≡ r (mod 8) (8 = 4K), we get

�
K

p

�
=

�
2
p

�
= η

If M > 1, then by the first case of the lemma there exists some k ≡ λ (mod 4) such
that if a prime p ≡ k (mod 4M), then

�
M
p

�
= η. Put t ≡ 2−1 k−λ

4 (mod M) and
r = λ + 8t. If p ≡ r (mod 8M) (8M = 4K), then

p ≡ λ (mod 8) ⇒
�

2
p

�
= 1

But r ≡ λ + 8
�
2−1 k−λ

4

�
≡ k (mod 8M); thus,

�
K
p

�
=

�
M
p

�
= η ✷

Corollary 3.1.1. Let K be a squarefree integer with |K| > 1 and let the values of
η and λ be preselected from the set {1,−1}. There exists an integer r with r ≡ λ

(mod 4) such that if p is any prime satisfying p ≡ r (mod 4|K|), then
�

K
p

�
= η.

Proof. We have �
K

p

�
= λ

�
|K|
p

�
(|K| > 1)
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By the lemma, there exists some r ≡ λ (mod 4K) such that if p ≡ r (mod 4K),
then

�
|K|
p

�
= λη ⇒

�
K
p

�
= η. ✷

Lemma 3.2. Given k positive integers A1, A2, . . . , Ak which are coprime in pairs
and integers r1, r2, . . . , rk such that ri ≡ rj (mod 4) (1 ≤ i, j ≤ k), there exists an
integer r such that r ≡ ri (mod 4Ai) (i = 1, 2, . . . , k).

Proof. Since r1 ≡ r2 ≡ · · · ≡ rk (mod 4), we may assume that ri ≡ λ (mod 4) for
some fixed λ (0 ≤ λ < 4). By the CRT we can find some s such that

s ≡ (ri − λ)/4 (mod Ai) (i = 1, 2, . . . , k)

Putting r = λ + 4s we get the desired result. ✷

We are now able to prove the following theorem. We use [a, b] to denote the least
common multiple of the integers a and b.

Theorem 3.3. Let K, L be squarefree integers such that |K| �= |L| and |K|,
|L| > 1. Let the values of η1, η2 and λ be preselected from the set {1,−1}. There
exists an integer r such that r ≡ λ (mod 4) and if p is any prime such that

p ≡ r (mod [4|K|, 4|L|])

then
�

K
p

�
= η1,

�
L
p

�
= η2.

Proof. Put D = (K,L); we have (K/D,D) = (L/D,D) = (K/D,L/D) = 1. We
may assume with no loss of generality that |K| > |L|. As in the proof of Lemma
3.1, we distinguish two cases.

Case 1. |L|/D > 1. By Corollary 3.1.1 we know that there exist integers r1 and r2

such that r1 ≡ r2 ≡ λ (mod 4) and if p is any prime satisfying

p ≡ r1 (mod 4|K|/D), p ≡ r2 (mod 4|L|/D)

then
�

K/D
p

�
= η1,

�
L/D

p

�
= η2. Also, there exists an integer r3 such that r3 ≡ λ

(mod 4) and if p is any prime satisfying p ≡ r3 (mod 4D), then
�

D
p

�
= 1.

By Lemma 3.2 there must exist some r such that

r ≡ λ (mod 4)
r ≡ r1 (mod 4|K|/D)
r ≡ r2 (mod 4|L|/D)
r ≡ r3 (mod 4D)

If p ≡ r (mod [4|K|, 4|L|]), then
�

K

p

�
=

�
K/D

p

��
D

p

�
= η1,

�
L

p

�
=

�
L/D

p

��
D

p

�
= η2
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Case 2. |L|/D = 1. In this case, by Lemma 3.1, there exists an integer r1 such
that r1 ≡ λ (mod 4) and if p is any prime satisfying p ≡ r1 (mod 4|K|/D), then

�
K/D

p

�
= η1η2λ.

Also, since D > 1, there exists an integer r3 ≡ λ (mod 4) such that if p ≡ r3

(mod 4), then
�

D
p

�
= η2λ. By Lemma 3.2, we can find r ≡ λ (mod 4) such that

r ≡ r1 (mod 4|K|/D)
r ≡ r3 (mod 4D)

If p is any prime satisfying p ≡ r (mod [4|K|, 4|L|]) then

p ≡ r (mod 4|K|), p ≡ r1 (mod 4|K|/D), p ≡ r3 (mod 4D).

Hence
�

K

p

�
=

�
D

p

��
K/D

p

�
= η2λη1η2λ = η1,

�
L

p

�
= λ

�
D

p

�
= η2 ✷

We are now able to prove the result mentioned at the end of §2.

Theorem 3.4. Let ∆ = SV
2 and E = GU

2, where S, G, U , V are integers and S

and G are squarefree. If {Un} is monoapparitic, then S = G or S = 1.

Proof. Put λ = 1, η1 = −1, η2 = 1, K = S, L = G. We first suppose that
|G| > 1. If |S| �= |G| and |S| �= 1, then by Theorem 3.3 there exists an integer
r ≡ λ (mod 4) such that if p is an prime satisfying p ≡ λ (mod [4|S|, 4|G|]), then�

S
p

�
= η1 = −1,

�
G
p

�
= η2 = 1. Then, by Dirichlet’s theorem, we know that

there exists an infinitude of primes p such that
�

E
p

�
= 1,

�
∆
p

�
= −1. But by

Remark 7 in §2, we know that p must have two ranks in {Un}. Thus, for {Un} to
be monoapparitic, we must have |S| = |G| or |S| = 1.

We now consider the case S = −G. By Lemma 3.1 we know that there exists an
infinitude of primes p ≡ −1 (mod 4) such that

�
S

p

�
= −1 =⇒

�
G

p

�
=

�
−S

p

�
= 1 =⇒

�
∆
p

�
= −1,

�
E

p

�
= 1.

As this is not possible for a monoapparitic {Un}, we must have S = G.
We next consider the case |S| �= |G| and |S| = 1. If we put λ = −1, K = G,

η = 1 in Lemma 3.1, we see that there must exist an infinitude of primes p such
that p ≡ −1 (mod 4) and

�
E
p

�
= 1. If S = −1, then

�
∆
p

�
=

�
−1
p

�
= −1, which is

not possible if {Un} is monoapparitic. Hence S = 1.
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Next, if G = 1, then
�

∆
p

�
= 1 for all primes p, which means that S = 1 implies

S = G.
Finally, if G = −1, we put λ = 1, K = S, η = −1. If |K| > 1 we know from

Corollary 3.1.1 that there exists an infinitude of primes p such that
�

∆
p

�
=

�
S
p

�
=

−1. Since
�

E
p

�
=

�
G
p

�
=

�
−1
p

�
= 1, {Un} cannot be monoapparitic.

Thus, |S| = 1. If S = −1, then S = G; otherwise S = 1. ✷

It follows that if {Un} is to be monoapparitic we must have three possible cases.

1. E is a square and ∆ is a square.

2. E is a not square and ∆ is a square.

3. E and ∆ are not squares, but E∆ is a square.

In the sections that follow we will deal with each of these cases.

4. The Case of E a Square

In this section we will investigate whether there exist any monoapparitic {Un} when
E is a perfect square. We will need the following result.

Theorem 4.1. If E = U
2, then there must exist integers r1, r2, q1, q2 satisfying

r1 > 0, r2 > 0, r1r2 a perfect square, (r1, q1) = (r2, q2) = 1 such that

P
2
1 = r1r2, P2 = q1r2 + q2r1 − 4q1q2, Q = q1q2

Proof. Putting W = P2 + 4Q, T = P1, we get W
2 − U

2 = 4QT
2. Put d = (U, T ),

d
� = (W,T ). We have d

2 | W
2, and hence d | W so that d | d

�. Also, d
�2 | U

2 implies
d
� | U , and therefore d

� | d. Hence d = d
� or (U, T ) = (W,T ). Put

U
� = U/d, T

� = T/d, W
� = W/d

We get �
W

� − U
�

2

��
W

� + U
�

2

�
= QT

�2

Put G =
�

W �−U �

2 ,
W �+U �

2

�
. Since G | W

� and G | U
� we must have (G,T

�) = 1;
Hence G

2 | Q. It follows that
�

W
� − U

�

2G

��
W

� + U
�

2G

�
=

�
Q

G2

�
T
�2
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Since
�

W �−U �

2G ,
W �+U �

2G

�
= 1 we must have

W
� + U

�

2G
= Q

�
1R

2
2,

�
W

� − U
�

2G

�
= Q

�
2R

2
1,

where (Q�
1R2, Q

�
2R1) = 1, Q

�
1Q

�
2 = Q/G

2 and T
� = R1R2. If we put q1 = GQ

�
1,

q2 = GQ
�
2, r2 = dR

2
2, r1 = dR

2
1, we get P

2
1 = T

2 = r1r2, Q = q1q2, W = q1r2 +q2r1,
P2 = q1r2 + q2r1 − 4q1q2. Also, since d > 0, we must have r1, r2 > 0. If p is
any prime which divides (r1, q1) or (r2, q2), then p | P1, p | Q, p | P2, which is not
possible. Thus (r1, q1) = (r2, q2) = 1. ✷

Corollary 4.1.1. If E is a perfect square, then |Un| = |un(
√

r1, q1)un(
√

r2, q2)|,
where r1, q1, r2, q2 are as in Theorem 4.1.

Proof. Define µ1, ν1, µ2, ν2, by

µ1 + ν1 =
√

r1, µ1ν1 = q1, µ2 + ν2 =
√

r2, µ2ν2 = q2

If we put α1 = µ1µ2, β1 = ν1ν2, α2 = ν1µ2, β2 = µ1ν2, we have

α1β1 = α2β2 = q1q2 = Q.

Also, if ρ1 = α1 + β1, ρ2 = α2 + β2, then

ρ1 + ρ2 = µ1µ2 + ν1ν2 + ν1µ2 + µ1ν2 = (µ1 + ν1)(µ2 + ν2) =
√

r1r2 = ±P1

ρ1ρ2 = (µ1µ2 + ν1ν2)(ν1µ2 + µ1ν2)
= q1(µ2

2 + ν
2
2) + q2(µ2

1 + ν
2
1)

= q1r2 + q2r1 − 4q1q2 = P2

Thus, if ρ1 + ρ2 = P1, then ρ1, ρ2 are the zeroes of f(x) and

Un =
α

n
1 + β

n
1 − α

n
2 − β

n
2

α1 + β1 − α2 − β2
=

�
µ

n
1 − ν

n
1

µ1 − ν1

��
µ

n
2 − ν

n
2

µ2 − ν2

�
= un(

√
r1, q1)un(

√
r2, q2).

If ρ1 + ρ2 = −P1, then, since we have seen that

Un(−P1, P2, Q) = (−1)n−1
Un(P1, P2, Q),

we get our result. ✷

Now suppose we define µ2 = µ
s
1, ν2 = ν

s
1 , where µ1 + ν1 =

√
r, µ1ν1 = q,

(r, q) = 1. In this case we get
Un =

unusn

us
(4.1)
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where um = um(
√

r, q). Here we have α1 = µ
s+1
1 , β1 = ν

s+1
1 , α2 = qµ

s−1
1 ,

β2 = qν
s−1
1 , ρ1 = vs+1, ρ2 = qvs−1, Q = q

s+1, where vm = vm(
√

r, q). Note
that we can verify from the formulas for um and vm in terms of µ1 and ν1 that

rv
2
m − 4qvm+1vm−1 = (r − 4q)2u2

m and v
2
m − (r − 4q)u2

m = 4qm
.

We find that

P1 =
√

rvs, P2 = qvs−1vs+1, ∆ = (r − 4q)2u2
s

and E = (ρ2
1 − 4Q)(ρ2

2 − 4Q) = q
2(r − 4q)2u2

s−1u
2
s+1

Now E here is always a perfect integer square.
In the case where s is odd, we always have ∆ an integer square, but if s is even,

then us =
√

rūs where ūs is an integer, hence for ∆ to be a square we need r to be
a perfect square. Under these conditions we have un ∈ Z (n ≥ 0) and the following
result.

Theorem 4.2. If p is a prime and p � 2Q∆, then p has only one rank of apparition
in {Un}, where Un is given by (4.1).

Proof. The proof of the result is similar to, but easier than, the proof of Theorem
5.1 below. Thus we refer the reader to Theorem 5.1. ✷

We know that if p | Q, then p has only one rank of apparition in the sequence
{Un} as defined by (4.1). Suppose p � Q. If p is odd and p | ∆, then p � us,
implying p | E and hence p has only one rank of apparition in {Un}. However, if
p | us, then since u

2
s − us−1us+1 = q

s−1 we see that p � us−1us+1 when p � q.
Thus, if p | us, then in order for p to have only one rank of apparition in {Un},
we must have p | r − 4q. It follows that if all the distinct primes which divide
us also divide r − 4q, then {Un}, where Un is given by (4.1), is monoapparitic.
Unfortunately, this is difficult to ensure on selecting an r, q pair. However, we can
produce the following result.

Theorem 4.3. Suppose p is a prime, p | s and |us| = |ūs| = p
k (k ≥ 0). If ω is

the least positive integer n such that p | Un, where Un is given by (4.1), then if
p | Um, we must have ω | m.

Proof. Let λ be the rank of apparition of {ūn} modulo p. We must have p | ūs and
p | s; also,

λ | s =⇒ ūλ | ūs =⇒ λ = p
κ (κ ≤ k).

However, by the Law of Apparition for Lehmer functions [1, Theorem 1.7], we must
have λ | p or λ | p± 1. Since (p, p± 1) = 1, we can only have λ = p. Also, since
p | Uλ, we must have ω ≤ λ. If p | ūω, then λ | ω implies ω = λ = p. If p | ūm,
then λ | m implies ω | m. Suppose p | ūω and p � ūm. In this case, since p | Um,
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we have p | ūsm/ūs. It is a simple matter, using the methods of, say, [3, p.86] to
establish that �

ūsm

ūs
, ūs

� ���� m.

Since p | ūs, we must have p | m so that ω | m. If p � ūω, then p | ūsw/ūs.

Therefore p | ω and hence λ | ω so that ω = λ which implies p | ūω, a
contradiction. ✷

Now suppose that us is given as in Theorem 4.3. Then the sequence {Un} as
given in (4.1) is monoapparitic if 2 has at most one rank of apparition in {Un}.

We note that, since
√

r = α+β, we have r | v2k−1v2k+1 and by induction v2k ≡ r

(mod 2). If 2 | q, then 2 | Q and therefore 2 has at most one rank of apparition in
{Un}. If 2 | r, then 2 | P1 = U2 implies that 2 has at most one rank of apparition in
{Un}. We now suppose that 2 � r. Since, when 2 | s, v2 ≡ 1 (mod 2), we see that
2 � P1; hence 2 can have at most one rank of apparition in {Un}. If s is odd, then
|us| = p

k, where p | s, means that 2 � Us. Since v
2
s ≡ ru

2
s (mod 4), we have 2 � vs

so that 2 � P1. It follows that {Un}, given by (4.1), is always monoapparitic when
|us| = p

k, where p is some prime divisor of s.

Example 1. Consider the case s = 2. Here r must be a perfect square, say r = t
2.

We have Un = u
2
n(t, q)vn(t, q)/t. Now us = u2 = t. Thus, if t = ±2k with k ≥ 0,

then {Un} is monoapparitic. Here P1 = t(t2 − 2q), P2 = qt
2(t2 − 3q), Q = q

3.

Example 2. We next consider the case s = 3. Here us = u3 = r − q and

Un = un(
√

r, q)u3n(
√

r, q)/u3(
√

r, q).

If r − q = ±3k with k ≥ 0, then {Un} is monoapparitic. Here P1 = r(r − 3q),
P2 = r

3
q−6r2

q
2 +10rq3−4q4 = q(r−2q)(r2−4rq +2q2), Q = q

4. If we put r = 4,
q = 1, we get P1 = 4, P2 = 4, Q = 1 and Un = n

2 which is clearly monoapparitic
and strong.

Indeed, we have shown that if E is a perfect square, there exist infinitely many
{Un} which are monoapparitic.

5. Another Monoapparitic {Un} When E Is a Square

In this section we will produce another set of sequences {Un} that are monoapparitic
when E is a perfect square. As before we define µ1 and ν1 by µ1+ν1 =

√
r, µ1ν1 = q,

where r, q are coprime integers. We now put µ2 = iµ
s
1, ν2 = −iν

s
1 , where i

2 +1 = 0.
Here

Un =
α

n
1 + β

n
1 − α

n
2 − β

n
2

α1 + β1 − α2 − β2
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where α1 = iµ
s+1
1 , β1 = −iν

s+1
1 , α2 = iqµ

s−1
1 , β2 = −iqν

s−1
1 . We denote by un and

vn the functions un(
√

r, q) and vn(
√

r, q) respectively. We get

ρ1 = µ1µ2 + ν1ν2 = i(µs+1
1 − ν

s+1
1 ) = i(µ1 − ν1)us+1

ρ2 = ν1µ2 + µ1ν2 = qi(µ1 − ν1)us−1

P1 = ρ1 + ρ2 = i(µ1 − ν1)(us+1 + qus−1) = i(µ1 − ν1)
√

rus

P2 = ρ1ρ2 = −q(µ1 − ν1)2us+1us−1 = q(4q − r)us+1us−1

Q = α1β1 = q
s+1

We find that

ρ
2
1 − 4Q = −(r − 4q)u2

s+1 − 4qs+1 = −v
2
s+1

ρ
2
2 − 4Q = −q

2(r − 4q)u2
s−1 − 4qs+1 = −q

2
v
2
s−1

Thus E = (ρ2
1 − 4Q)(ρ2

2 − 4Q) = q
2
v
2
s−1v

2
s+1

Also ∆ = P
2
1 − 4P2 = −(µ1 − ν1)2ru2

s − 4q(4q − r)us+1us−1

= (4q − r)(ru2
s − 4qus+1us−1)

It is easy to verify from the formulas for un and vn in terms of µ1 and ν1 that

ru
2
n − 4qun+1un−1 = v

2
n

Hence ∆ = (4q − r)v2
s .

Since E is a perfect square, in order for {Un} to be monoapparitic, ∆ must also
be a perfect square; therefore we put t

2 = 4q− r and find that P1 = −t
√

rus. Since
P1 must be a rational integer, we see that if 2 � s we must have r a perfect square.
We assume that this condition is satisfied in what follows. We can now represent
{Un} by

Un =

�
(−1)n/2

tunusn/vs when 2 | n

(−1)(n−1)/2
unvsn/vs when 2 � n

(5.1)

With no loss of generality we may write µ1 = (
√

r + it)/2, ν1 = (
√

r− it)/2. Let p

be any odd prime such that p � ∆Q and let K be the splitting field of F (x) in Fp[x].
By results in [4] we know that since both E and ∆ are perfect squares, K = Fp when
η =

�
−1
p

�
= 1, and K = Fp2 otherwise. If we put g(x) = x

4−(r−2q)x2 +q
2 and let

L be the splitting field of g(x) ∈ Fp[x], we have µ1, ν1 ∈ L such that µ1 + ν1 =
√

r

and µ1ν1 = q. Now if
�

r
p

�
= 1 and

�
−1
p

�
= 1, then L = Fp. Otherwise L = Fp2 .

Note that L∗ = �λ� and if i = λ
p−1
4 when p ≡ 1 (mod 4) or i = λ

p2−1
4 when p ≡ −1

(mod 4), then i
2 + 1 = 0 in L. Thus i ∈ L and L = K.
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Theorem 5.1. If p � 2∆Q, then p has a single rank of apparition in {Un} where
Un is given by (5.1).

Proof. We may write

α1 = iµ
s+1
1 , β1 = −iν

s+1
1 , α2 = iqµ

s−1
1 , β2 = −iqν

s−1
1 ,

where µ1, ν1, i ∈ K and i
2 + 1 = 0. Now suppose that ω1 and ω2 are defined to be

the least positive integers such that in K

α
ω1
1 = α

ω1
2 and (α1α2)ω2 = Q

ω2

respectively. We know that if p has two ranks of apparition in {Un}, then either
ω1 � ω2 or ω2 � ω1. Now

α
ω1
1 = α

ω1
2 ⇐⇒ (iµs+1

1 )ω1 = (qiµs−1
1 )ω1 ⇐⇒ µ

2ω1
1 = q

ω1

Also,

(α1α2)ω2 = Q
ω2 ⇐⇒ (i2qµs−1

1 µ
s+1
1 )ω2 = q

(s+1)ω2 ⇐⇒ µ
2sω2
1 = (−1)ω2q

sω2

We next suppose that ω2 > ω1 and let ω2 = tω1 + u with u �= 0 and −ω1/2 ≤ u ≤
ω1/2. We have

µ
2s(tω1+u)
1 = (−1)tω1+u

q
s(tω1+u) =⇒ µ

4s(tω1+u)
1 = q

2s(tω1+u)

=⇒ µ
4su
1 µ

4stω1
1 = q

2stω1q
2su

=⇒ µ
2s(2u)
1 = (−1)2u

q
s(2u)

=⇒ (α1α2)2u = Q
2u

=⇒ (α1α2)2|u| = Q
2|u|

Now −ω1 ≤ 2u ≤ ω1 implies |2u| ≤ ω1 < ω2 which contradicts the definition of ω2.
Suppose now that ω2 < ω1 and let ω1 = tω2 +u with u �= 0 and −ω2/2 ≤ u ≤ ω2/2.
Here we have

µ
2(tω2+u)
1 = q

tω2+u =⇒ (−1)tω2µ
2su
1 = q

su

=⇒ µ
2s(2u)
1 = (qs(2u)

=⇒ (α1α2)2u = Q
2u

=⇒ (α1α2)2|u| = Q
2|u|

It follows that |2u| ≥ ω2, but since 2|u| ≤ ω2, we must have ω2 = 2|u| so that
2 | ω2. However, in this case we get µ

2su
1 = q

su and (α1α2)u = Q
u implies that

|u| ≥ ω2 = 2|u|, a contradiction. ✷
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We next consider the case of p | 2Q∆. If p | Q, p can only have one rank of
apparition in {Un}. If p � Q, then if p is odd, p | ∆ implies p | t or p | v

2
s . If p � v

2
s ,

then p | t. [Recall that ∆ = (4q− r)v2
s = t

2
v
2
s .] If p | E, then p | vs−1vs+1 and since

v
2
s − vs−1vs+1 = t

2
q

s−1

we get p | v
2
s , a contradiction. Thus, if p | ∆ and p | E, then p | v

2
s and p | vs−1vs+1;

therefore p | t
2
q

s−1 which implies p | t. Now since

v
2
s + t

2
u

2
s = 4qs

we get p | 4q so that p = 2, a contradiction. We have shown that if p is odd and
p | ∆, then p � E, which implies that p has two ranks of apparition in {Un}. Thus,
{Un}, where Un is given by (5.1), can be monoapparitic only when |∆| = 22k.

We have seen that if Un is given by (5.1), then all primes, except possibly 2, can
have only one rank of apparition in {Un} when |∆| = 22k. We next show that if
|∆| = 22k, then 2 can have only one rank of apparition in {Un}. Since |∆| = 22k,
we have |tvs| = 2k. If 2 | t, then 2 | P1 and 2 | P2. If 2 � t, then |t| = 1 and if 2 | s,
we get 2 � Us so that 2 � P1. If 2 � s, then r is a perfect square, say r = m

2, and
2 � m. Now v1 = ±m and v1 | vs implies m | vs which implies |m| = 1 (m is
odd). Thus, r = m

2 = 1 and since 4q − r = t
2, we have a contradiction.

Consider the special case of s = 2. Here we have

∆ = t
2(2q − t

2)2, E = q
2(t2 − 4q)2(t2 − q)2, P1 = t(t2 − 4q),

P2 = −t
2
q(t2 − 3q), Q = q

3

For this {Un} sequence to be monoapparitic, we require

t(2q − t
2) = ±2k

Hence t = � 2u, 2q − t
2 = η 2v, where |�| = |η| = 1. If u = 0, then 2q = 1 + η 2v

implies v = 0 and q = 1+η
2 . If η = −1, then q = 0 implies that E = 0, contradicting

D �= 0. If η = 1, then q = 1 and t
2 = 1 implies that E = 0, a contradiction. Then

u > 0 implies q = 22u−1 + η2u−1, t = �2u. In the case of s = u = � = η = 1, we get
t = 2, q = 3 and P1 = 16, P2 = 60, Q = 27. We know that the associated sequence
is monoapparitic.

6. The Case When E Is Not a Square

We initiated a computer search to discover likely monoapparitic sequences {Un}.
Several were discovered and we found that most of these satisfied the condition
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that α2/β2 = ζk, where ζk is a k-th root of unity with k = 3 or 4. For each of the
discovered sequences, E is not a perfect square. For such sequences we have

ρ2 = α2 + β2 = β2(1 + ζk)
P1 = β2(1 + ζk) + ρ1

P2 = ρ1β2(1 + ζk)

Hence

ρ2 = β2(1 + ζk) =
P1 + �

√
∆

2
, where � = ±1, and

1
β2

=
(1 + ζk)(P1 − �

√
∆)

2P2

Since α2 = Q/β2 we get

ζk =
α2

β2
=

Q(1 + ζk)2(P1 − �
√

∆)
P2(P1 + �

√
∆)

=
4(1 + ζk)2Q
(P1 + �

√
∆)2

It follows that �
P1 + �

√
∆

2

�2�
Q =

(1 + ζk)2

ζk
= 2 +

1
ζk

+ ζk (6.1)

Suppose that α2/β2 = ζk for any k. We must have 1
ζk

+ ζk ∈ Q(
√

∆). Since
ζk + 1

ζk
must be a zero of an irreducible polynomial in Z[x] of degree φ(k)/2, we

must have φ(k)/2 ≤ 2 or k ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12}. Since α2 �= β2 (D �= 0),
we cannot have k = 1. Also, if ∆ is not an integer square, then k ∈ {5, 8, 10, 12}.
It is an easy matter to eliminate the values 10 and 8 for k because P

2
1 /P2 /∈ Q

in these cases. When k = 12 we find that from (6.1) we get (P1, P2, Q) �= 1, and
when k = 5, we find that either P

2
1 = −P2, Q = P2 or P

2
1 = 5P2, Q = P2. In

the second case we get 5 | (P1, P2, Q) and in the first case we can take P1 = 1,
P2 = −1, Q = 1 or P1 = −1, P2 = −1, Q = 1. However, neither of these cases
is very interesting because the resulting {Un} sequences are purely periodic with
period 10 with U10k = 0 and |Uk| = 1 (10 � k). This sequence is, however, trivially
monoapparitic. Thus, the possibilities for k narrow down to the set {2, 3, 4, 6}.

We now consider the posibility that k = 6. We have ζ6 + ζ
−1
6 = 1 and

�
P1 + �

√
∆

2

�2

= 3Q

It follows that
√

∆ ∈ Z and we put ∆ = S
2 for some S ∈ Z. We then get Q = 3R2

with R ∈ Z and P1 + S = 6R. Since P
2
1 − 4P2 = S

2 we find that P2 = 9R2 − 3RS.
Hence,

U2 = P1 = 6R− S, U3 = P
2
1 − P2 − 3Q = (6R− S)(3R− S)
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Thus, if p is a prime and p | (6R − S), then p | U2 and p | U3 and {Un} cannot
be monoapparitic. Thus, P1 = 6R − S = ±1. In this case we have S = 6R ∓ 1,
∆ = (6R∓ 1)2, P2 + 4Q = 3R2 ± 3R and E = 3R2(3R2 ± 6R− 1). If p is a prime
and p | ∆, then if p | E, we get p | 3R which implies p � ∆, a contradiction.
Thus, if p | ∆, p must have two ranks of apparition in {Un}. It follows that
∆ = (6R ± 1)2 = 1, which implies R = 0, and hence E = 0, which is impossible.
Thus, if α2/β2 = ζk and {Un} is monoapparitic, it is necessary that k ∈ {2, 3, 4}.
These cases are covered in the following theorem.

Theorem 6.1. Suppose α2/β2 = ζk, where k ∈ {2, 3, 4}. Let p be any prime such
that p � 2∆Q and let ω be the least positive integer such that p | Uω. If p | Um for
any positive integer m, then ω | m.

Proof. As usual, let K denote the splitting field of F (x) ∈ Fp[x]. In K we have
α1 + β1 �= α2 + β2 (p � ∆) and

α
ω
1 + β

ω
1 = α

ω
2 + β

ω
2 and α

ω
1 β

ω
1 = α

ω
2 β

ω
2

By renaming α1 and β1, we may assume with no loss of generality that α
ω
1 = α

ω
2

and β
ω
1 = β

ω
2 . Now let m = qω + r, where 0 ≤ r < ω. If r = 0, then ω | m and we

are done. Suppose that r �= 0. Since

α
m
1 + β

m
1 = α

m
2 + β

m
2 and α

m
1 β

m
1 = α

m
2 β

m
2

we have either α
m
1 = α

m
2 or α

m
1 = β

m
2 . If α

m
1 = α

m
2 , then

α
r
1α

qω
1 = α

r
2α

qω
2 =⇒ α

r
1 = α

r
2 =⇒ β

r
1 = β

r
2 =⇒ Ur = 0 ∈ K

Since p | Ur and r < ω, we have a contradiction. Thus we must have

α
m
1 = β

m
2 =⇒ α

qω+r
1 = β

qω+r
2

=⇒ α
qω
1 α

r
1 = β

r
2β

qω
2

=⇒ α
r
1 = (β2/α1)qω

β
r
2 = (β2/α2)qω

β
r
2

=⇒ α
r
1 = ζ

−qω
k β

r
2

=⇒ β
r
1 = ζ

qω
k α

r
2

=⇒ β
kr
1 = α

kr
2

=⇒ α
kr
1 = β

kr
2

=⇒ Ukr = 0 ∈ K

Thus, since p | Ukr, we must have ω ≤ kr.
If k | ω, then ζ

ω
k = 1 and we can prove that Ur = 0 ∈ K, which is a contradiction.

Hence we may assume that 0 < ω < kr and k � ω.
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Let kr = tω + s, where 0 ≤ s < ω. Since tω ≡ −s (mod k), we get ζ
tω
k = ζ

−s
k . If

s > 0, then

β
tω+s
1 = α

tω+s
2 =⇒ β

s
1 = α

s
2(α2/β2)tω

=⇒ β
s
1 = α

s
2ζ

tω
k = α

s
2ζ

−s
k = β

s
2

Hence α
s
1 = α

s
2 and p | Us. As this contradicts the definition of ω, we can only

have s = 0 and kr = tω. Since ω > r, we have 0 < t < k. If k = 2 or 3, then, since
(t, k) = 1, we have k | ω, which is not possible. If k = 4, then k � ω, so that ω = 2r
and 2 � r. In this case we get m = r(2q + 1) and

α
2r
1 = α

2r
2 =⇒ α

r
1 = −α

r
2 =⇒ α

m
1 = −α

m
2

However, we know that α
m
1 = β

m
2 and this means that

−α
m
2 = β

m
2 =⇒ (α2/β2)m = −1 =⇒ ζ4 = −1

Since 2 � m, this is impossible. It follows that we can only have r = 0 and ω | n. ✷

If we consider the case of k = 2, we have ζk = −1 and we must have
�

P1 + �
√

∆
2

�2�
Q = 0

Hence ∆ = P
2
1 and P2 = 0. We get ρ2 = 0, ρ1 = P1, and

α2 =
�
−Q, β2 = −

�
−Q, α

n
2 + β

n
2 =

�
0 when 2 � n

2(−1)n/2
Q

n/2 when 2 | n

In this case we find that
U2n+1 = v2n+1(P1, Q)/P1

U4n+2 = v
2
2n+1(P1, Q)/P1

U4n = (P 2
1 − 4Q)u2

2n(P1, Q)/P1





(6.2)

and E = 16Q2 − 4QP
2
1 need not be a perfect square. Now if p | ∆, we must have

p | E in order that {Un} should be monoapparitic. It follows that |∆| = 22h with
h ≥ 0. Thus, if {Un} is given by (6.2), it will be monoapparitic when

P1 = ±1, P2 = 0, Q ∈ Z or P1 = ±2h
, P2 = 0, Q ∈ Z, 2 � Q

If k = 3, then �
P1 + �

√
∆

2

�2�
Q = 1;

hence, ∆ = S
2 and Q = R

2 with S,R ∈ Z. We get P1 = 2R − S, P2 = R
2 − RS.

Since (P1, P2, Q) = 1 we must have (R,S) = 1. Also, E = 3R2(3R − S)(R + S)
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need not be a perfect square. Furthermore, we must have |S| = 3h with h ≥ 0 and
3 � R when 3 | S. In this case, it is a simple matter to show that E can only be a
perfect square when h > 1 and R = ±32h−2 + 1− S/3.

If k = 4, then �
P1 + �

√
∆

2

�2�
Q = 2;

and Q = 2R2, ∆ = S
2, where R,S ∈ Z. We get P1 = 4R − S, P2 = 4R2 − 2RS

and (2R,S) = 1. Also E = 2R2(4R2 + 4RS − S
2) is not a perfect square. Here, in

order to ensure that {Un} is monoapparitic we must have |S| = 1.
Thus, we have established that there exists an infinitude of monoapparitic se-

quences {Un} for which ∆ is a square and E is not.

7. The Case When Neither ∆ Nor E Is a Perfect Square

There remains the case in which neither ∆ nor E is a perfect square. However, in
this case we must have ∆E a perfect square, which means that ∆ = GU

2, E = GV
2

with G,U, V ∈ Z; G is squarefree and G �= 1.

Theorem 7.1. If G is defined as above, then G must be the sum of two integer
squares.

Proof. Let H = (U, V ). Put S = U/H, T = V/H. From the definition of E and ∆
it is a simple matter to produce the identity (P2 − 4Q)2 − 4Q∆ = E. Hence

(P2 − 4Q)2 − 4QGH
2
S

2 = GH
2
T

2

It follows that GH | P2 − 4Q. On putting W = (P2 − 4Q)/GH we get

GW
2 − 4QS

2 = T
2

Thus, Q = (GW
2 − T

2)/4S2, P2 = GHW + (GW
2 − T

2)/S
2 and

P
2
1 = ∆ + 4P2 = GH

2
S

2 + 4(GHW + (GW
2 − T

2)/S
2)

Hence
S

2
P

2
1 − 4GHWS

2 − 4GW
2 + 4T 2 −GH

2
S

4 = 0

or

S
2
P

2
1 + 4T 2 = G(4W 2 + 4HWS

2 + H
2
S

4)
= G(HS

2 + 2W )2

If we put Y = SP1, X = HS
2 + 2W , we get Y

2 + 4T 2 = GX
2. If D = (Y, 2T ),

then D
2 | GX

2, which implies D | X. Now if Y
� = Y/D, Z

� = 2T/D, X
� = X/D,
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we get Y
�2 + Z

�2 = GX
�2, where (Y �

, Z
�) = 1. Thus, if p is any prime divisor of G,

we have that p = 2 or
�
−1
p

�
= 1 which implies p ≡ 1 (mod 4). Since G > 0, we

see that G must be the sum of two squares. ✷

Theorem 7.2. Under the conditions of the theorem we must have

P1 = Y/S, P2 =
�
(Y/S)2 −GH

2
S

2
�
/4

Q =
�
(Y/S)2 − 2GHX + GH

2
S

2
�
/16

Here S = U/H, where H = (U, V ). Also, Y
2 + 4T 2 = GX

2, S | Y , T = V/H,
Y/S ≡ HS (mod 2) and X ≡ HS

2 + 2T (mod 4).

Proof. We have already seen in the proof of the theorem that S | Y and P1 = Y/S.
Also, since 4P2 = P

2
1 −∆, we get

4P2 = (Y/S)2 −GH
2
S

2 and (Y/S)2 ≡ GH
2
S

2 (mod 4)

If 2 | HS, then 2 | Y/S and Y/S ≡ HS (mod 2). If 2 � HS, then (Y/S)2 ≡ G

(mod 4). Since G is squarefree, we must have G ≡ 1 (mod 4) and

(Y/S)2 ≡ H
2
S

2 (mod 4)

It follows that Y/S ≡ HS (mod 2). Finally, we know that

4Q = (GW
2 − T

2)/S
2

where W = (X −HS
2)/2. Substituting for W in the above expression, we get

4Q = (GX
2 − 4T 2 − 2GHXS

2 + GH
2
S

4)/4S2

= (Y 2 − 2GHS
2
X + GH

2
S

4)/4S2

Thus, Q = ((Y/S)2−2GHX+GH
2
S

2)/16. Also, since 4 | GW
2−T

2, we find that
T ≡ W (mod 2) when G is odd, and 2 | T when G is even. Since G is squarefree,
we get 2 | W when 2 | T ; thus, T ≡ W (mod 2) and X = HS

2 + 2W ≡ HS
2 + 2T

(mod 4). ✷

With some additional work it is possible to prove the following result, which, for
brevity, we only state here.

Theorem 7.3. If ∆ = GH
2
S

2, E = GH
2
T

2, where G is squarefree and (S, T ) = 1,
it is necessary and sufficient that P1, P2 and Q be given by

P1 = Y/S, P2 = ((Y/S)2 −GH
2
S

2)/4, Q = ((Y/S)2 − 2GHX + GH
2
S

2)/16

where X, Y , G, H, S, T ∈ Z; Y
2 + 4T 2 = GX

2; S | Y ; G ≡ 1 (mod 4) unless 2 � S

and 4 | H; Y/S ≡ HS (mod 2); X ≡ HS
2 + 2T (mod 4); and one of the following

conditions holds.
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i) 2 � HS

ii) 2 � S, 4 | H, 4 | Y/S

iii) 2 � S, 2�H, 2�Y/S, H ≡ X (mod 4)
iv) 2 � S, 2�H, 4 | Y/S, X ≡ H/2 (mod 4)
v) 2�S, 4 | Y/S, 4 | H

vi) 2�S, 4 | Y/S, H ≡ X/2 (mod 4)
vii) 4 | S, 4 | Y/S, 4 | H

viii) 4 | S, 4 � Y/S, H ≡ X/2 (mod 4)

Consider the example H = S = Y = 1. In this case we have ∆ = G, E = GT
2,

G ≡ 1 (mod 4), X ≡ 3 (mod 4), and

P1 = Y, P2 = (Y 2 −G)/4, Q = (Y 2 − 2GX + G)/16

where 4T 2−GX
2 = −1. If we put G = 5, T = 1, X = −1, we get P1 = 1, P2 = −1,

Q = 1, a case considered in §6.
If we put T = 19, X = −17, then P1 = 1, P2 = −1, Q = 11. However, for these

values of P1, P2 and Q we find that the prime 61 has two ranks of apparition, 12
and 30, in {Un}. Thus, {Un} is not monoapparitic.

8. Open Questions

1) Have we found all examples of monoapparitic sequences {Un} for which E is a
perfect square?
2) Have we found all examples of monoapparitic {Un} for which E is not a perfect
square and ∆ is.
3) Do there exist any nontrivial monoapparitic {Un} such that neither ∆ nor E is
a perfect square?
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