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Abstract

This is a survey of results on partition regularity of matrices, beginning with the classic results
of Richard Rado on kernel partition regularity, continuing with the groundbreaking results of
Walter Deuber on image partition regularity, and leading up to the present day. Included are
the largely settled world of finite matrices and the mostly unknown world of infinite matrices.

1. Introduction

I am deeply honored to be invited to speak on this occasion. I have known Ron Graham since
1972. Back then he was older than I. Well, I guess technically he still is, but then he looked like
he was older than I. I suspect he has a picture in a closet somewhere.

It doesn’t really have anything to do with the subject of this talk, but I would like to call
attention to some of the greatest prose in the mathematical literature. As you may recall, if
α, β, γ, and δ are cardinals and [A]γ = {C ⊆ A : |C| = γ}, then the notation α −→ (β)γ

δ

abbreviates the statement “whenevever A is a set with |A| = α and [A]γ is divided into δ

classes, there is some B ∈ [A]β such that [B]γ is contained in one of these classes”. In his lovely
little book [11], Ron wrote “We will occasionally use this arrow notation unless there is danger
of no confusion.”

Ron is very much identified with the subject of Ramsey Theory and it is a portion of that
subject with which I am concerned now, namely the partition regularity of matrices. In his
famous 1933 paper [36] Richard Rado studied partition regularity of systems of linear equations.

1 This is an expanded version of an address presented to the Integers Conference 2005 in Cele-
bration of the 70th Birthday of Ron Graham on October 29, 2005.
The author acknowledges support received from the National Science Foundation (USA) via
grants DMS-0243586 and DMS-0554803.
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That is, given a system of equations

a1,1x1 + a1,2x2 + . . . + a1,vxv = b1

a2,1x1 + a2,2x2 + . . . + a2,vxv = b2

...
...

...
...

...
au,1x1 + au,2x2 + . . . + au,vxv = bu

and given a finite partition of the set N of positive integers, could one guarantee a solution set
{x1, x2, . . . , xv} contained in one cell of the partition? In alternative coloring terminology, one
is asking whether, whenever N is finitely colored, there must be a monochromatic solution set.

In matrix notation, the question being investigated was whether, given a finite coloring of
N, one could find %x with monochromatic entries such that A%x = %b. (We will follow the usual
custom of denoting the entries of a matrix by the lower case letter corresponding to the upper
case name of the matrix.)

Most attention has been paid to the case where the system of equations is homogeneous,
that is where%b = 0, and we shall address that first. In that case, the mapping %x %→ A%x is a linear
transformation. The terminology kernel partition regular was suggested by Walter Deuber and
is based on consideration of this transformation.

Definition 1.1. Let u, v ∈ N and let A be a u × v matrix with entries from Q. Let S be
a subsemigroup of (R,+). Then A is kernel partition regular over S (KPR/S) if and only if,
whenever S \ {0} is finitely colored, there must exist monochromatic %x ∈ Sv such that A%x = 0.

We shall address the kernel partition regularity of a matrix A in Section 2.

In the case that %b '= 0 one may, by moving %b to the other side of the equation (and replacing
%b by −%b), talk about the kernel partition regularity of the affine transformation %x %→ A%x +%b.

Definition 1.2. Let u, v ∈ N and let A be a u × v matrix with entries from Q and let
%b ∈ Qu\{0}. Let S be a subsemigroup of (R,+). Then the pair (A,%b ) is kernel partition regular
over S (KPR/S) if and only if, whenever S is finitely colored, there must exist monochromatic
%x ∈ Sv such that A%x +%b = 0.

Notice that there is no point in requiring that 0 not be colored in the case that %b '= 0. We
shall address the kernel partition regularity of pairs (A,%b ) where %b '= 0 in Section 3.

Call a subset B of N “large” if whenever A is KPR/N there must exist %x with entries from
B such that A%x = 0. Rado conjectured that large sets are partition regular. That is whenever
a large set is partitioned into finitely many cells, one of these must be large. Deuber [3] proved
this conjecture using what he called (m,p, c)-sets. These sets are the images of certain linear
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transformations and Deuber’s results can be described in terms of the image partition regularity
of certain matrices.

Definition 1.3. Let u, v ∈ N and let A be a u × v matrix with entries from Q. Let S be
a subsemigroup of (R,+). Then A is image partition regular over S (IPR/S) if and only if,
whenever S \ {0} is finitely colored, there must exist %x ∈ Sv such that the entries of A%x are
monochromatic.

We shall address the image partition regularity of a matrix A in Section 4.

Definition 1.4. Let u, v ∈ N and let A be a u × v matrix with entries from Q and let
%b ∈ Qu \ {0}. Let S be a subsemigroup of (R,+). Then the pair (A,%b ) is image partition
regular over S (IPR/S) if and only if, whenever S is finitely colored, there must exist %x ∈ Sv

such that the entries of A%x +%b are monochromatic.

We shall address the image partition regularity of pairs (A,%b ) where %b '= 0 in Section 5.

We shall see in Sections 2 through 5 that the image and kernel partition regularity of finite
matrices is largely settled. By way of contrast, the partition regularity of infinite matrices is
a wide open field. There are many partial results, but no characterizations. We shall discuss
what is known about infinite matrices in Section 6.

In a final section we will present some information about related topics.

2. Kernel Partition Regularity of Linear Transformations

In his original 1933 paper [36] Rado characterized kernel partition regularity of a finite matrix
over N and he extended the result in his later paper [37] to cover other subsets of R (and even
of C). The characterization was in terms of something called the columns condition.

Definition 2.1. Let u, v ∈ N and let A be a u × v matrix with entries from Q. Denote the
columns of A by %c1, %c2, . . . , %cv. Then A satisfies the columns condition if and only if there exist
m ∈ {1, 2, . . . , v} and a partition {I1, I2, . . . , Im} of {1, 2, . . . , v} into nonempty sets such that

(a)
∑

i∈I1
%ci = 0 and

(b) for each t ∈ {2, 3, . . . ,m} (if any),
∑

i∈It
%ci is a linear combination with coefficients from

Q of {%ci : i ∈
⋃t−1

j=1 Ij}.

In his papers, Rado characterized kernel partition regularity over N, Z, Q, and R, as well
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as over the semigroups Q+ = {x ∈ Q : x > 0} and R+ = {x ∈ R : x > 0}.

Theorem 2.2 (Rado). Let u, v ∈ N and let A be a u × v matrix with entries from Q. The
following statements are equivalent.

(a) A is KPR/N.

(b) A is KPR/Z.

(c) A is KPR/Q+.

(d) A is KPR/Q.

(e) A is KPR/R+.

(f) A is KPR/R.

(g) A satisfies the columns condition.

Proof. The implications in the following diagram are all trivial.

KPR/N
↙ ↘

KPR/Z KPR/Q+

↘ ↙ ↘
KPR/Q KPR/R+

↘ ↙
KPR/R

To see that (f) implies (g), assume that A is KPR/R. Then by [37, Theorem VII] A satisfies
the version of Definition 2.1 which replaces (b) with

(b) for each t ∈ {2, 3, . . . ,m} (if any),
∑

i∈It
%ci is a linear combination with coefficients from

R of {%ci : i ∈
⋃t−1

j=1 Ij}.

But since a rational vector is in the linear span over R of a set of rational vectors if and only if
it is in the linear span over Q of those same vectors, this tells us that A satisfies the columns
condition.

That (g) implies (a) follows from the original version of Rado’s Theorem ([36, Satz IV], or
see [12, Theorem 3.5] or [22, Theorem 15.20]).

Notice that Rado’s Theorem easily implies the classic theorem of Schur [39].

Theorem 2.3 (Schur). Whenever N is finitely colored there exist x and y in N such that
{x, y, x + y} is monochromatic.

Proof. This is just the assertion that the matrix ( 1 1 −1 ) satisfies the columns condition.
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Rado’s Theorem also implies a far reaching generalization of Schur’s Theorem (which was
new at the time) involving arbitrarily large (but finite) sets of finite sums. We introduce some
special notation for these. Given a sequence 〈xn〉∞n=1 in R, FS(〈xn〉∞n=1) = {

∑
n∈F xn : F ∈

Pf (N)}, where for any set X, Pf (X) is the set of finite nonempty subsets of X. Also, given
m ∈ N and a sequence 〈xn〉mn=1 in R, FS(〈xn〉mn=1) =

{∑
n∈F xn : ∅ '= F ⊆ {1, 2, . . . ,m}

}
.

Before stating the finite Finite Sums Theorem in its generality, let us consider the case
m = 3. This version says that whenever N is finitely colored, there must exist x1, x2, and x3

such that FS(〈xn〉3n=1) = {x1, x2, x1 + x2, x3, x1 + x3, x2 + x3, x1 + x2 + x3} is monochromatic.
If one labels the columnns of a matrix by the nonempty subsets of {1, 2, 3} and the rows by
the subsets of {1, 2, 3} with at least two elements, then the coefficient matrix of the required
equations is as follows.

{1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
{1, 2} 1 1 0 −1 0 0 0
{1, 3} 1 0 1 0 −1 0 0
{2, 3} 0 1 1 0 0 −1 0
{1, 2, 3} 1 1 1 0 0 0 −1









One then easily sees that this matrix satisfies the columns condition.

Corollary 2.4. Let m ∈ N. Whenever N is finitely colored, there exists a sequence 〈xn〉mn=1 in
N such that FS(〈xn〉mn=1) is monochromatic.

Proof. We may assume that m ≥ 2. Let A be a (2m −m− 1)× (2m − 1) matrix with columns
indexed by the nonempty subsets of {1, 2, . . . ,m} and rows indexed by the subsets of {1, 2, . . . ,
m} with at least two members. The entry in row F and column G is 1 if G = {n} and n ∈ F , −1
if F = G, and 0 otherwise. Then A satisfies the columns condition with, for t ∈ {1, 2, . . . ,m},
It = {F ⊆ {1, 2, . . . ,m} : minF = t}.

A special case of Corollary 2.4 is the following theorem of Hilbert [13]. (In [13], Hilbert
actually proved that there are infinitely many choices for a, a fact which does not follow from
Rado’s Theorem.)

Corollary 2.5 (Hilbert). Let m ∈ N. Whenever N is finitely colored, there exist a ∈ N and a
sequence 〈xn〉mn=1 in N such that a + FS(〈xn〉mn=1) is monochromatic.

Proof. Take 〈xn〉m+1
n=1 as guaranteed by Corollary 2.4 and let a = xm+1.

In spite of the fact that van der Waerden’s Theorem [42] was a major motivation for Rado’s
original paper—his introduction begins with a description of van der Waerden’s Theorem—
the situation is trickier with respect to this theorem. Consider the length five version of this
theorem, which says that whenever N is finitely colored, there must exist a monochromatic
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length five arithmetic progression {a, a + d, a + 2d, a + 3d, a + 4d}. If one lets

y1 = a

y2 = a + d

y3 = a + 2d

y4 = a + 3d

y5 = a + 4d

then a natural candidate for a set of equations describing this progression is

y3 − y2 = y2 − y1

y4 − y3 = y3 − y2

y5 − y4 = y4 − y3

whose matrix of coefficients is



1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1



 .

This matrix does satisfy the columns condition because the columns sum to 0. In this case the
monochromatic solution that is guaranteed by Rado’s Theorem might be constant, which is
hardly what one has in mind when speaking of an “arithmetic progression”. The standard fix
to this problem is to add the requirement that the increment also be the same color (in which
case it is necessarily positive). In the length five case one can let y6 = d and add the equation
y6 = y2 − y1. Then the coefficient matrix becomes





1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
1 −1 0 0 0 1





which satisfies the columns condition with I1 = {1, 2, 3, 4, 5} and I2 = {6}.

One might hope to just derive van der Waerden’s Theorem by a better choice of equations.
We see in fact that it is impossible to prove van der Waerden’s Theorem from Rado’s Theorem
without strengthening the conclusion.

Theorem 2.6. Let v ≥ 3. There do not exist u and a u× v matrix A with rational coefficients
such that

(a) A satisfies the columns condition and

(b) whenever %x ∈ Nv and A%x = 0, {x1, x2, . . . , xv} is a (nontrivial) v-term arithmetic pro-
gression.

Proof. Suppose one has such u and A. Trivially no column of A can be 0. Since the columns of
A do not sum to zero, pick m ≥ 2 and I1, I2, . . . , Im as guaranteed by the columns condition.
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Pick %x ∈ Nv such that A%x = 0. Let l = max
({

2v(xi−xj) : i, j ∈ {1, 2, . . . , v}
}
∪

{
xi : i ∈ {1, 2,

. . . , v}
})

. Define %y ∈ Nv by

yj =
{

xj + l if j ∈ I1

xj if j ∈ {1, 2, . . . , v} \ I1 .

Then A%y = 0 so pick a, d ∈ N such that {y1, y2, . . . , yv} = {a, a + d, . . . , a + (v − 1)d}. Pick
i '= j in I1 and k ∈ {1, 2, . . . , v} \ I1 and pick b, c, e ∈ {0, 1, . . . , v − 1} such that yi = a + bd,
yj = a + cd, and yk = a + ed. Assume without loss of generality that b < c. Since yi > l ≥ xk

we have that e < b.

Now l
2 > xk − xi so l

2 < xi − xk + l = yi − yk = (b − e)d < vd so d > l
2v . Thus

xj − xi = yj − yi ≥ d > l
2v so l < 2v(xj − xi), a contradiction.

What one is really concerned about in deriving van der Waerden’s Theorem is not that one is
guaranteed a monochromatic solution to A%x = 0, but that one is guaranteed a monochromatic
solution which is not constant. When this occurs has been characterized recently in joint
research with Imre Leader.

Theorem 2.7. Let u, v ∈ N and let A be a u × v matrix with entries from Q. The following
statements are equivalent.

(a) Whenever N is finitely colored there exists monochromatic nonconstant %x ∈ Nv such that
A%x = 0.

(b) Whenever Z is finitely colored there exists monochromatic nonconstant %x ∈ Zv such that
A%x = 0.

(c) Whenever Q is finitely colored there exists monochromatic nonconstant %x ∈ Qv such that
A%x = 0.

(d) The matrix A satisfies the columns condition and there exists nonconstant %x ∈ Qv such
that A%x = 0.

(e) The matrix A satisfies the columns condition and if the sum of the columns of A is 0,
then there exists nonempty D ⊆! {1, 2, . . . , v} and for each j ∈ D there exists αj ∈ Q\{0}
such that

∑
j∈D αj %cj = 0, where %cj is column j of A.

Proof. [16, Theorem 3.2].

3. Kernel Partition Regularity of Affine Transformations

In his original paper [36] Rado also solved the problem of the partition regularity of a non-
homogeneous systems of linear equations over Z and N. And in [37] he obtained a similar
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characterization for nonhomogeneous systems of linear equations over Q. That is, he deter-
mined when the pair (A,%b ) is kernel partition regular over N, Z, and Q.

We present proofs of (a) (which is [36, Satz VIII]) and (c) (which is [36, Satz V]) in the
following theorem for the benefit of the reader who either has difficulty in getting access to [36]
or has difficulty reading German.

Theorem 3.1 (Rado). Let u, v ∈ N, let A be a u × v matrix with entries from Q, and let
%b ∈ Qu \ {0}.

(a) The pair (A,%b ) is KPR/Z if and only if there exists k ∈ Z such that Ak +%b = 0.

(b) The pair (A,%b ) is KPR/Q if and only if there exists k ∈ Q such that Ak +%b = 0.

(c) The pair (A,%b ) is KPR/N if and only if either

(i) there exists k ∈ N such that Ak +%b = 0 or

(ii) there exists k ∈ Z such that Ak +%b = 0 and A satisfies the columns condition.

Proof. (a) The sufficiency is trivial.

For the necessity, note first that we can presume that the entries of A and %b are integers.
(Pick k ∈ N such that the entries of kA and k%b are integers. If kAd + k%b = 0, then Ad +%b = 0.)
For j ∈ {1, 2, . . . , v}, let %cj be column j of A and let %α =

∑v
j=1 %cj (so for i ∈ {1, 2, . . . , u},

αi =
∑v

j=1 ai,j).

We note first that if i ∈ {1, 2, . . . , u} and αi = 0, then bi = 0. To see this, pick n ∈ N \ {1}
such that n > |bi| and color Z by congruence mod n. Pick d ∈ {0, 1, . . . , n − 1} and %x ∈ Zv

such that A%x + b = 0 and xj ≡ d (mod n) for each j ∈ {1, 2, . . . , v}. For each j ∈ {1, 2, . . . , v}
pick wj ∈ Z such that xj = nwj + d. Then −bi = n

∑v
j=1 ai,jwj + dαi. Since αi = 0, n|bi and

thus bi = 0.

Let G = {i ∈ {1, 2, . . . , u} : αi '= 0}. Since %b '= 0, G '= ∅. It suffices to find d ∈ Z \ {0}
such that for each i ∈ G, αid = bi. We show first that for each i ∈ G, αi|bi, so let i ∈ G be
given. If |αi| = 1 we are done, so assume that |αi| > 1 and let n = |αi|. Color Z by congruence
mod n. Pick d ∈ {0, 1, . . . , n − 1} and %x ∈ Zv such that A%x +%b = 0 and xj ≡ d (mod n) for
each j ∈ {1, 2, . . . , v}. For each j ∈ {1, 2, . . . , v} pick wj ∈ Z such that xj = nwj + d. Then
−bi = n

∑v
j=1 ai,jwj + dαi, so n|bi.

For each i ∈ G, pick mi ∈ Z such that bi = miαi. We show now that if n is a prime
such that n > |αi| and n > |mi| for each i ∈ G, then there exists dn ∈ {0, 1, . . . , n − 1} such
that mi = dn if mi ≥ 0 and mi = dn − n if mi < 0. To see this color Z by congruence mod
n. Pick dn ∈ {0, 1, . . . , n − 1} and %x ∈ Zv such that A%x + %b = 0 and xj ≡ dn (mod n) for
each j ∈ {1, 2, . . . , v}. For each j ∈ {1, 2, . . . , v} pick wj ∈ Z such that xj = nwj + dn. Then
miαi = bi = −(n

∑v
j=1 ai,jwj +dnαi) so n divides (mi−dn)αi so n divides mi−dn. If mi ≥ 0,
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then −n < mi − dn < n so mi = dn. If mi < 0, then −n < mi − dn + n < n so mi = dn − n.

If for each i ∈ G, mi ≥ 0, or for each i ∈ G, mi < 0, we are done. So suppose that we
have s, t ∈ G such that ms ≥ 0 and mt < 0. Pick distinct primes p and n such that n > |αi|,
p > |αi|, n > |mi|, and p > |mi| for each i ∈ G. Then ms = dn = dp and mt = dn−n = dp− p,
so n = p, a contradiction.

(b) The ideas needed for the proof are in [37]. See [16, Theorem 2.5] for the details.

(c) For the necessity, note that (A,%b ) is KPR/Z so pick by (a), k ∈ Z such that Ak +%b = 0.
If k ∈ N, we have that (i) holds, so assume that k ≤ 0. To see that A satisfies the columns
condition we show that A is KPR/N so that Theorem 2.2 applies. So let r ∈ N and let
ϕ : N → {1, 2, . . . , r}. Define ψ : N → {1, 2, . . . , r} by ψ(x) = ϕ(x−k). Pick %y ∈ Nv such that %y

is monochromatic with respect to ψ and A%y +%b = 0. Let %x = %y − k. Then %x is monochromatic
with respect to ϕ and A%x = A%y −Ak = 0.

For the sufficiency, if (i) holds the conclusion is trivial, so assume that (i) fails (and thus
(ii) holds). Let r ∈ N and let ϕ : N → {1, 2, . . . , r}. Pick k ∈ Z such that k ≤ 0 and Ak +%b = 0.
Define ψ : N → {1, 2, . . . , r − k} by

ψ(x) =
{

ϕ(x + k) if x > −k
r + x if x ≤ −k .

Since A satisfies the columns condition, pick by Theorem 2.2 some %y ∈ Nv such that %y is
monochromatic with respect to ψ and A%y = 0. We cannot have that the constant color of the
entries of %y is greater than r, because then we would have that the columns of A would sum to
0 and thus Ak +%b = 0 +%b '= 0. Let %x = %y + k. Then %x is monochromatic with respect to ϕ and
A%x +%b = A%y + Ak +%b = 0.

Notice two things about Theorem 3.1. First, while trivially for a pair (A,%b )

KPR/N ⇒ KPR/Z ⇒ KPR/Q

none of the implications are reversible. The pair
(
(2), 1

)
is kernel partition regular over Q but

not over Z (since the only solution to 2x+1 = 0 is not an integer) and the pair
(
(1), 1

)
is kernel

partition regular over Z but not over N.

Second, with the exception of Theorem 3.1(c), the conclusion is that the only way a pair
can be kernel partition regular is for it to be trivially so. This certainly explains why Theorem
2.2 is very famous, while hardly anyone has heard of Theorem 3.1.

However, the picture changes when one considers nonconstant kernel partition regularity.

Theorem 3.2. Let u, v ∈ N, let A be a u× v matrix with entries from Q, and let %b ∈ Qu \ {0}.
If S = Z or S = Q, then the following statements are equivalent.
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(a) Whenever S is finitely colored there exists monochromatic nonconstant %x ∈ Sv such that
A%x +%b = 0.

(b) There exists d ∈ S such that Ad +%b = 0, A satisfies the columns condition, and there
exists nonconstant %x ∈ Qv such that A%x +%b = 0.

Proof. [16, Theorem 3.3].

Notice that as a consequence of Theorem 3.2, we have that the pair
(
( 2 −2 2 ), (1)

)
is

nonconstantly kernel partition regular over Q but not over Z.

The following theorem establishes that nonconstant kernel partition regularity of (A,%b )
over Z and N are equivalent. It is interesting that there does not seem to be a trivial proof of
this equivalence. (By way of contrast, the equivalence of Theorem 2.2 (a) and (b) is trivial—
given ϕ : N → {1, 2, . . . , r} define ψ : Z \ {0} → {1, 2, . . . , 2r} by ψ(x) = ϕ(x) if x > 0 and
ψ(x) = r + ϕ(−x) if x < 0.)

Theorem 3.3. Let u, v ∈ N, let A be a u× v matrix with entries from Q, and let %b ∈ Qu \ {0}.
The following statements are equivalent.

(a) Whenever N is finitely colored there exists nonconstant monochromatic %x ∈ Nv such that
A%x +%b = 0.

(b) Whenever Z is finitely colored there exists nonconstant monochromatic %x ∈ Zv such that
A%x +%b = 0.

(c) There exists d ∈ Z such that Ad +%b = 0, A satisfies the columns condition, and there
exists nonconstant %x ∈ Qv such that A%x +%b = 0.

Proof. [16, Theorem 3.4].

4. Image Partition Regularity of Linear Transformations

Recall from the introduction that Rado called a subset B of N large provided that whenever A

is KPR/N there must exist %x with entries from B such that A%x = 0 and he conjectured that
whenever a large set is finitely colored there must be a monochromatic large set. Deuber [3]
proved this conjecture, using what he called “(m,p, c)-sets”.

Definition 4.1. Let m,p, c ∈ N with p ≥ c. Then B is an (m,p, c)-set if and only if
There exists %x ∈ Nm such that B = {

∑m
i=1 λixi : each λi ∈ {−p,−p + 1, . . . , p − 1, p} and if

t = min{i : λi '= 0}, then λt = c}.

Notice that each (m,p, c)-set is the image of a first entries matrix .
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Definition 4.2. Let u, v ∈ N and let A be a u× v matrix. Then A is a first entries matrix if
and only if

(1) the entries of A are from Q,
(2) no row of A is 0,
(3) the first (leftmost) nonzero entry of each row is positive, and
(4) the first nonzero entries of any two rows are equal if they occur in the same column.

A number c is a first entry of A if c is the first nonzero entry of some row of A.

While Deuber’s proof of Rado’s conjecture used the terminology of (m,p, c)-sets, the proofs
are valid for images of arbitrary first entries matrices, and we shall phrase them in that fashion.
We write ω = N ∪ {0}.

Theorem 4.3 (Deuber). Let u, v ∈ N and let A be a u× v matrix with entries from Q which
satisfies the columns condition. There exists m ∈ {1, 2, . . . , v} and a v ×m first entries matrix
B with entries from ω such that AB = O.

Proof. The ideas needed for the proof are in [3]. For the details see [22, Lemma 15.15].

Theorem 4.4 (Deuber). Let v,m, r ∈ N and let B be a v ×m first entries matrix. There
exist n, q ∈ N and an n× q first entries matrix C such that, whenever %y ∈ Zq and the entries of
C%y are r-colored, there exists %w ∈ Zm such that the entries of B %w are contained in the entries
of C%y and are monochromatic.

Proof. [3, Satz 3.1]. Or see [23, Theorem 3.4].

Theorem 4.5 (Deuber). Let n, q ∈ N and let C be an n× q first entries matrix. There exist
s, t ∈ N and an s× t matrix D which is KPR/N such that whenever %x ∈ Nt and D%x = 0, there
exists some %y ∈ Zq such that all entries of C%y are included in the entries of %x.

Proof. [3, Satz 2.2].

With these tools, we are able to spell out the simple argument establishing Rado’s Conjec-
ture.

Corollary 4.6 (Deuber). Let X be a large subset of N, let r ∈ N, and let ϕ : X → {1, 2, . . . ,
r}. There exists a large monochromatic subset of X.

Proof. Let u, v ∈ N and let A be a u × v matrix with entries from Q which is KPR/N. Then
by Theorem 2.2 A satisfies the columns condition. By Theorem 4.3 pick m ∈ {1, 2, . . . , v} and
a v×m first entries matrix B with entries from ω such that AB = O. Pick n, q ∈ N and a first
entries matrix C as guaranteed by Theorem 4.4. Finally, pick s, t ∈ N and an s × t matrix D

as guaranteed by Theorem 4.5.
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Pick %x ∈ Nt such that the entries of %x are contained in X and D%x = 0. Pick %y ∈ Zq such
that all entries of C%y are included in the entries of %x. Pick %w ∈ Zm such that the entries of B %w

are contained in the entries of C%y and are monochromatic. Let %z = B %w. Then A%z = 0.

Notice that, as a consequence of Theorem 4.5, first entries matrices are image partition reg-
ular. Several Ramsey Theoretic results are trivially equivalent to the image partition regularity
of first entries matrices. For example, the length 5 version of van der Waerden’s Theorem and
the case m = 3 of the Finite Sums Theorem (Corollary 2.4) are naturally represented by the
following matrices.





1 0
1 1
1 2
1 3
1 4









1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1





Notice that in representing these theorems by first entries matrices one does not need to think
or come up with equations that need to be solved.

Since the fact that first entries matrices are image partition regular had been known since
the publication of [3] in 1973, and since image partition regularity is such a natural concept, I
was surprised to find out in the early 1990’s that it was not known which finite matrices are
image partition regular. Imre Leader and I solved that problem in [15]. Since then, several
other characterizations have been obtained in collaboration with Leader, Dona Strauss, and
Irene Moshesh. Some of these involve the notion of central sets, which we pause now to define.

Central sets were introduced by Furstenberg [9] and defined in terms of notions of topological
dynamics. These sets enjoy very strong combinatorial properties. (See [9, Proposition 8.21] or
[22, Chapter 14].) See Chapter 19 and notes on that chapter in [22] for a description of how
the equivalence with the algebraic definition given below was arrived at. (The idea that they
might be equivalent is due to my long time collaborator Vitaly Bergelson. I have no idea how
he came up with that idea.)

Let (S,+) be an infinite discrete semigroup. We take the points of βS to be the ultrafilters
on S, the principal ultrafilters being identified with the points of S. Given a set A ⊆ S,
A = {p ∈ βS : A ∈ p}. The set {A : A ⊆ S} is a basis for the open sets (as well as a basis for
the closed sets) of βS.

There is a natural extension of the operation + of S to βS, making βS a compact right
topological semigroup with S contained in its topological center. This says that for each p ∈ βS

the function ρp : βS → βS is continuous and for each x ∈ S, the function λx : βS → βS is
continuous, where ρp(q) = q + p and λx(q) = x + q. See [22] for an elementary introduction to
the semigroup βS.
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Any compact Hausdorff right topological semigroup (T,+) has a smallest two sided ideal
K(T ) which is the union of all of the minimal left ideals of T , each of which is closed [22,
Theorem 2.8] and any compact right topological semigroup contains idempotents. Since the
minimal left ideals are themselves compact right topological semigroups, this says in particular
that there are idempotents in the smallest ideal. There is a partial ordering of the idempotents
of T determined by p ≤ q if and only if p = p + q = q + p. An idempotent p is minimal with
respect to this order if and only if p ∈ K(T ) [22, Theorem 1.59]. Such an idempotent is called
simply “minimal”

Definition 4.7. Let (S,+) be an infinite discrete semigroup. A set A ⊆ S is central if and
only if there is some minimal idempotent p in βS such that A ∈ p.

Notice in particular that if S is partitioned into finitely many pieces, one of them must be
central.

Theorem 4.8. Let u, v ∈ N and let A be a u × v matrix with entries from Q. The following
statements are equivalent.

(a) A is IPR/N.
(b) For every central set C in N, there exists %x ∈ Nv such that A%x ∈ Cu.
(c) For every central set C in N, {%x ∈ Nv : A%x ∈ Cu} is central in Nv.
(d) There exist m ∈ N, a v × m matrix G with non-negative rational entries and no row

equal to 0, and a u×m first entries matrix B, with non-negative entries and all its first
entries equal to 1, such that AG = B.

(e) There exist m ∈ N, a v × m matrix G with non-negative rational entries and no row
equal to 0, and a u×m first entries matrix B, with all its first entries equal to 1, such
that AG = B.

(f) There exist m ∈ N, a v×m matrix G with entries from ω and no row equal to 0, a u×m

first entries matrix B with entries from ω, and c ∈ N such that c is the only first entry
of B and AG = B.

(g) There exist m ∈ N, a u ×m first entries matrix B with all entries from ω, and c ∈ N
such that c is the only first entry of B and for each %y ∈ Nm there exists %x ∈ Nv such
that A%x = B%y.

(h) There exist m ∈ N and a u×m first entries matrix B such that for each %y ∈ Nm there
exists %x ∈ Nv such that A%x = B%y.

(i) There exist t1, t2, . . . , tv ∈ Q+ such that the matrix




t1a1,1 t2a1,2 t3a1,3 · · · tva1,v −1 0 0 · · · 0
t1a2,1 t2a2,2 t3a2,3 · · · tva2,v 0 −1 0 · · · 0
t1a3,1 t2a3,2 t3a3,3 · · · tva3,v 0 0 −1 · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

t1au,1 t2au,2 t3au,3 · · · tvau,v 0 0 0 · · · −1




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is KPR/N.

(j) There exist t1, t2, . . . , tv ∈ Q+ such that the matrix




1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
t1a1,1 t2a1,2 t3a1,3 . . . tva1,v

t1a2,1 t2a2,2 t3a2,3 . . . tva2,v

t1a3,1 t2a3,2 t3a3,3 . . . tva3,v

...
...

...
. . .

...
t1au,1 t2au,2 t3au,3 . . . tvau,v





is IPR/N.

(k) There exist b1, b2, . . . , bv ∈ Q+ such that the matrix




b1 0 0 · · · 0
0 b2 0 · · · 0
0 0 b3 · · · 0
...

...
...

. . .
...

0 0 0 · · · bv

A





is IPR/N.

(l) There exist b1, b2, . . . , bv ∈ Q+ such that the matrix




b1 0 0 · · · 0
0 b2 0 · · · 0
0 0 b3 · · · 0
...

...
...

. . .
...

0 0 0 · · · bv

A





is IPR/Z.

(m) For each %r ∈ Qv \ {%0} there exists b ∈ Q \ {0} such that
(

b%r
A

)

is IPR/N.

(n) Whenever m ∈ N, φ1,φ2, . . . ,φm are nonzero linear mappings from Qv to Q, there exists
%b ∈ Qm such that, whenever C is central in N, there exists %x ∈ Nvfor which A%x ∈ Cu

and, for each i ∈ {1, 2, . . . ,m}, biφi(%x) ∈ C, and in particular φi(%x) '= 0.

(o) For every central set C in N, there exists %x ∈ Nv such that %y = A%x ∈ Cu, all entries
of %x are distinct, and for all i, j ∈ {1, 2, . . . , u}, if rows i and j of A are unequal, then
yi '= yj.

(p) Given any column %c ∈ Qu, the matrix (A %c ) is IPR/N.
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(q) Whenever m ∈ N, φ1,φ2, . . . ,φm are nonzero linear mappings from Qv to Q, and C is a
central subset of N, there exist positive b1, b2, . . . , bm in Q such that {%x ∈ Nv : A%x ∈ Cu

and for each i ∈ {1, 2, . . . ,m} , biφi(%x) ∈ C} is central in Nv.

(r) Whenever m ∈ N and C is a central subset of N {%x ∈ Nv : A%x ∈ Cu, all entries of %x are
distinct, and entries of A%x corresponding to distinct rows of A are distinct} is central in
Nv.

Proof. [17, Theorem 2.10], [15, Theorem 3.1], and [21, Theorem 4.1].

Notice that condition (i) of Theorem 4.8 is a computable condition. (Also, condition (l)
leads to another computable condition via Theorem 4.13 below.)

Condition (p) of Theorem 4.8 is from [21], and is somewhat surprising. While it follows easily
from some of the other characterizations, it seems counterintuitive in terms of the definition of
image partition regularity that one can add any column to an image partition regular matrix,
and it will remain image partition regular.

Note that by Theorem 4.8(n), any matrix which is IPR/N is automatically nonconstantly
IPR/N.

For Theorem 4.13 it will be convenient to assume that, if l = rank(A), then the first l rows
of A are linearly independent. Since rearranging the rows of A clearly does not affect its image
partition regularity, there is no loss of generality in this assumption.

Definition 4.9. Let u, v ∈ N and let A be a u×v matrix with entries from Q with rank(A) =
l < u. Assume that the first l rows of A are linearly independent and denote the rows of A by
%r1, %r2, . . . , %ru. For i ∈ {l + 1, l + 2, . . . , u} and j ∈ {1, 2, . . . , l}, let γi,j ∈ Q be determined by
%ri =

∑l
j=1

γi,j %rj . Then D(A) is the (u− l)× u matrix defined by, for i ∈ {1, 2, . . . , u− l} and
j ∈ {1, 2, . . . , u},

di,j =






γl+i,j if j ≤ l
−1 if j = l + i
0 otherwise.

Several of the equivalences in the following theorem have not been recorded before. To prove
these we shall need three lemmas. The first one is a minor modification of [17, Lemma 2.2].

Lemma 4.10. Let A be a u× v matrix with entries from Z, define ϕ : Zv → Zu by ϕ(%x) = A%x,
and let ϕ̃ : β(Zv) → (βZ)u be its continuous extension. Let p be a minimal idempotent in
βN with the property that for every C ∈ p there exists %x ∈ Zv such that A%x ∈ Cu and let
p = ( p p . . . p )T . Then there is a minimal idempotent q ∈ β(Zv) such that ϕ̃(q) = p.
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Proof. By [22, Exercise 4.3.5 and Theorem 1.65] p ∈ K(βZ) and so by [22, Theorem 2.23],
p ∈ K

(
(βZ)u

)
. By [22, Corollary 4.22], ϕ̃ : β(Zv) → (βZ)u is a homomorphism.

We claim that p ∈ ϕ̃[β(Zv)] so suppose instead that p /∈ ϕ̃[β(Zv)], which is closed, and pick
a neighborhood U of p such that U ∩ ϕ̃[β(Zv)] = ∅. Pick D ∈ p such that D

u ⊆ U and pick
%x ∈ Zv such that A%x ∈ Du. Then ϕ(%x) ∈ U ∩ ϕ̃[β(Zv)], a contradiction.

Let M = {q ∈ β(Zv) : ϕ̃(q) = p}. Then M is a compact subsemigroup of β(Zv), so pick an
idempotent w ∈ M by [22, Theorem 2.5]. By [22, Theorem 1.60], pick a minimal idempotent
q ∈ β(Zv) with q ≤ w. Since ϕ̃ is a homomorphism, ϕ̃(q) ≤ ϕ̃(w) = p so, since p is minimal in
(βZ)u, we have that ϕ̃(q) = p.

Lemma 4.11. Let u, v ∈ N, let A be a u× v first entries matrix with entries from Q, and let
C be a central subset of N. Then there exists %x ∈ Nv for which A%x ∈ Cu.

Proof. [17, Lemma 2.8].

Lemma 4.12. Let A be a central subset of N and let α ∈ Q+. Then N ∩ αA is central in N.

Proof. This fact is presented as [1, Lemma 3.8]. That proof uses the dynamical characterization
of central sets. An algebraic proof is in [17, Lemma 2.1].

Theorem 4.13. Let u, v ∈ N and let A be a u×v matrix with entries from Q. Let l = rank(A)
and assume that the first l rows of A are linearly independent. The following statements are
equivalent.

(a) A is IPR/Z.

(b) A is IPR/Q.

(c) A is IPR/R.

(d) Either l = u or D(A) is KPR/N.

(e) There exist t1, t2, . . . , tv ∈ Q \ {0} such that the matrix




t1a1,1 t2a1,2 t3a1,3 · · · tva1,v −1 0 0 · · · 0
t1a2,1 t2a2,2 t3a2,3 · · · tva2,v 0 −1 0 · · · 0
t1a3,1 t2a3,2 t3a3,3 · · · tva3,v 0 0 −1 · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

t1au,1 t2au,2 t3au,3 · · · tvau,v 0 0 0 · · · −1





is KPR/Z.

(f) For each %r ∈ Qv \ {%0} there exists b ∈ Q \ {0} such that
(

b%r
A

)

is IPR/Z.
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(g) There exist b1, b2, . . . , bv ∈ Q \ {0} such that the matrix




b1 0 0 · · · 0
0 b2 0 · · · 0
0 0 b3 · · · 0
...

...
...

. . .
...

0 0 0 · · · bv

A





is IPR/Z.

(h) There exist m ∈ N and a u×m first entries matrix B such that for each %y ∈ Zm there
exists %x ∈ Zv such that A%x = B%y.

(i) For every central set C in N, there exists %x ∈ Zv such that A%x ∈ Cu.

(j) For every central set C in N, {%x ∈ Zv : A%x ∈ Cu} is central in Zv.

(k) Given any column %c ∈ Qu, the matrix (A %c ) is IPR/Z.

(l) There exist t1, t2, . . . , tv ∈ Q \ {0} such that the matrix




1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
t1a1,1 t2a1,2 t3a1,3 . . . tva1,v

t1a2,1 t2a2,2 t3a2,3 . . . tva2,v

t1a3,1 t2a3,2 t3a3,3 . . . tva3,v

...
...

...
. . .

...
t1au,1 t2au,2 t3au,3 . . . tvau,v





is IPR/Z.

(m) Whenever m ∈ N, φ1,φ2, . . . ,φm are nonzero linear mappings from Qv to Q, there exists
%b ∈ Qm such that, whenever C is central in N, there exists %x ∈ Zvfor which A%x ∈ Cu

and, for each i ∈ {1, 2, . . . ,m}, biφi(%x) ∈ C, and in particular φi(%x) '= 0.

(n) For every central set C in N, there exists %x ∈ Zv such that %y = A%x ∈ Cu, all entries
of %x are distinct, and for all i, j ∈ {1, 2, . . . , u}, if rows i and j of A are unequal, then
yi '= yj.

(o) Whenever m ∈ N, φ1,φ2, . . . ,φm are nonzero linear mappings from Qv to Q, and C is
a central subset of N, there exist b1, b2, . . . , bm in Q \ {0} such that {%x ∈ Zv : A%x ∈ Cu

and for each i ∈ {1, 2, . . . ,m} , biφi(%x) ∈ C} is central in Zv.

(p) Whenever m ∈ N and C is a central subset of N, {%x ∈ Zv : A%x ∈ Cu, all entries of %x are
distinct, and entries of A%x corresponding to distinct rows of A are distinct} is central in
Zv.

Proof. That statements (a), (b), and (c) are equivalent follows from [25, Theorem 2.4]. (What
we are calling IPR was called WIPR there.) That statements (a), (d), (e), (f), (g), and (h) are
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equivalent is [15, Theorem 2.2], so we have that statements (a) through (h) are equivalent.

To see that (h) implies (i), pick B as guaranteed by (h) and let C be a central subset of N.
Pick by Lemma 4.11 some %y ∈ Nm such that B%y ∈ Cu. Pick %x ∈ Zv such that A%x = B%y.

To see that (i) implies (j), pick d ∈ N such that all entries of B = dA are in Z. Let C

be a central subset of N. By Lemma 4.12, dC is central in N so pick a minimal idempotent
p in βN such that dC ∈ p. Define ϕ : Zv → Zu by ϕ(%x) = B%x and let ϕ̃ : β(Zv) → (βZ)u

be its continuous extension. We claim that for each D ∈ p there exists %x ∈ Zv such that
B%x ∈ Du. Indeed, given D ∈ p, d−1D = {z ∈ N : dz ∈ D} is central in N by Lemma 4.12, so by
assumption, there is some %x ∈ Zv such that A%x ∈ (d−1D)u so B%x ∈ Du. By Lemma 4.10, pick a
minimal idempotent q of β(Zv) such that ϕ̃(q) = p. Now ( dC )u is a neighborhood of p so pick
E ∈ q such that ϕ̃[E ] ⊆ ( dC )u. Then E ⊆ {%x ∈ Zv : B%x ∈ (dC)u} = {%x ∈ Zv : A%x ∈ Cu}, so
{%x ∈ Zv : A%x ∈ Cu} is central in Zv.

Trivially (j) implies (a) so we have now established that statements (a) through (j) are
equivalent.

Trivially (k) implies (a). To see that (h) implies (k), let %c ∈ Qu be given. Pick a first entries
matrix B as guaranteed by (h) and let D = (B %c ). Then D is a first entries matrix. Given
%w ∈ Zm+1, let %y consist of the first m entries of %w and pick %z ∈ Zv such that A%z = B%y. Let

%x =





z1

z2
...
zv

wm+1




.

Then (A %c ) %x = D%y so (A %c ) satisfies statement (h) and is therefore IPR/Z.

Now note that trivially (o) implies (m) and (m) implies (i). Also trivially (p) implies (n)
and (n) implies (i). To complete the proof we shall show that (a) implies (o) and (o) implies
(p).

So assume that A is IPR/Z, let m ∈ N, let φ1,φ2, . . . ,φm be nonzero linear mappings from
Qv to Q, and let C be a central subset of N. For each i ∈ {1, 2, . . . ,m} pick a row %ri ∈ Qv \ {0}
such that φi(%x) = %ri · %x for all %x ∈ Qv. By applying statement (f) m times in succession
(using the fact that at each stage the new matrix satisfies (f) because (a) implies (f) ) choose
b1, b2, . . . , bm in Q \ {0} such that the matrix





b1 %r1

b2 %r2
...

bm %rm

A




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is IPR/Z. The conclusion then follows because this matrix satisfies statement (j).

Finally, assume that statment (o) holds. For i '= j in {1, 2, . . . , v}, let
−→
φi,j be the linear

mapping from Qv to Q taking %x to xi − xj . For i '= j in {1, 2, . . . , u}, if row i and row j of

A are distinct, let
−→
ψi,j be the linear mapping from Qv to Q taking %x to

∑v
t=1(ai,t − aj,t) · xt.

Applying statement (o) to the set
{
φi,j : i '= j in {1, 2, . . . , v}

}
∪

{
ψi,j : row i and row j of A

are distinct
}
, we reach the desired conclusion.

Notice that IPR/N is a strictly stronger condition than IPR/Z. To see this consider

A =




1 −1
3 2
4 6



 .

Then D(A) = (−2 2 −1 ) so A is IPR/Z by Theorem 4.13(d). To see that A is not IPR/N,
notice that the only choice of t1 and t2 for which the matrix




t1 −t1 −1 0 0
3t1 2t1 0 −1 0
4t1 6t1 0 0 −1





satisfies the columns condition is t1 = 3
5 and t2 = −2

5 , so by Theorem 4.8(i) A is not IPR/N.
(And, by Theorem 4.13(e) one has a second verification that A is IPR/Z.)

When defining kernel partition regularity of A over S for a subsemigroup S of (R,+), there
is only one reasonable definition, namely the one given in Definition 1.1. Since the entries of %x

are to be monochrome, they must come from the set being colored. And if 0 were not excluded
from the set being colored, one would allow the trivial solution %x = 0 and so all matrices would
be KPR/S. (One might argue for the requirement that S be colored and the entries of %x should
be monochromatic and not constantly 0. But then, by assigning 0 to its own color, one sees
that this is equivalent to the definition given.)

By contrast, when defining image partition regularity, there are several reasonable choices
that can be made. Let T be the subgroup of (R,+) generated by S. If 0 ∈ S, then one may
color S or S \ {0} and one may demand that one gets the entries of A%x monochromatic with
%x ∈ (S \{0})v, %x ∈ Sv \{%0}, %x ∈ (T \{0})v, or %x ∈ T v \{%0}. If 0 /∈ S one may demand that one
gets the entries of A%x monochromatic with %x ∈ Sv, %x ∈ (T \ {0})v, or %x ∈ T v \ {%0}. (We note
that there is never a point in allowing %x = %0. If S \ {0} is colored, then %x = %0 is impossible,
and if 0 ∈ S and S is colored, then %x = %0 yields a trivial solution for any matrix.)

In [25] all of these possible versions are considered for the semigroups N, Z, Q, R, Q+, and
R+. For finite matrices these lead to a total of four distinct notions while for infinite matrices
there are 15 distinct notions.
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5. Image Partition Regularity of Affine Transformations

In this section we present characterizations of the image partition regularity of pairs (A,%b )
where %b '= 0. Most of the results of this section are from the dissertation of Irene Moshesh [30]
and will be appearing in [21].

The situation with respect to image partition reguarity of the pair (A,%b ) over Z and Q is
essentially identical to that for kernel partition regularity. That is, the pair is image partition
regular if and only if it is trivially so.

Theorem 5.1. Let u, v ∈ N, let A be a u× v matrix with entries from Q, and let %b ∈ Qu \ {0}.
The pair (A,%b ) is IPR/Z if and only if there exist k ∈ Z and %x ∈ Zv such that A%x +%b = k.

Proof. [21, Theorem 3.3].

Theorem 5.2. Let u, v ∈ N, let A be a u× v matrix with entries from Q, and let %b ∈ Qu \ {0}.
The pair (A,%b ) is IPR/Q if and only if there exist k ∈ Q and %x ∈ Qv such that A%x +%b = k.

Proof. [21, Theorem 3.2].

And, as in the case of kernel partition regularity, things get a little more interesting when
image partition regularity over N is considered.

Theorem 5.3. Let u, v ∈ N, let A be a u× v matrix with entries from Q, and let %b ∈ Qu \ {0}.
The following statements are equivalent.

(a) The pair (A,%b ) is IPR/N.

(b) Either

(i) there exist k ∈ N and %y ∈ Nv such that A%y +%b = k or

(ii) there exist k ∈ Z and %y ∈ Zv such that A%y +%b = k, A is IPR/N, and A has at least
two distinct rows.

Proof. [21, Theorem 3.5].

We did not introduce separately the notion weakly image partition regular over N for a linear
transformation (meaning that N is colored and one wants %x ∈ Zv) because it is equivalent to
IPR/Z. However, as we shall see, that equivalence no longer holds for affine transformations.

Definition 5.4. Let u, v ∈ N, let A be a u×v matrix with entries from Q, and let%b ∈ Qu\{0}.
The pair (A, b) is weakly image partition regular over N (WIPR/N) if and only if whenever N
is finitely colored, there exists %x ∈ Zv such that the entries of A%x +%b are monochromatic.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A18 21

Theorem 5.5. Let u, v ∈ N, let A be a u× v matrix with entries from Q, and let %b ∈ Qu \ {0}.
The following statements are equivalent.

(a) The pair (A,%b ) is WIPR/N.

(b) Either

(i) there exist k ∈ N and %y ∈ Zv such that A%y +%b = k or

(ii) there exist k ∈ Z and %y ∈ Zv such that A%y +%b = k and A is IPR/Z.

Proof. [21, Theorem 3.4].

With our experience dealing with kernel partition regularity behind us, we realize that we
should probably be asking also about nonconstant image partition regularity.

Definition 5.6. Let u, v ∈ N, let A be a u×v matrix with entries from Q, and let%b ∈ Qu\{0}.
(a) The pair (A, b) is nonconstantly weakly image partition regular over N (NCWIPR/N) if

and only if whenever N is finitely colored, there exists %x ∈ Zv such that the entries of
A%x +%b are monochromatic and nonconstant.

(b) Let S be any of N, Z, or Q. The pair (A, b) is nonconstantly image partition regular over
S (IPR/S) if and only if whenever S is finitely colored, there exists %x ∈ Sv such that
the entries of A%x +%b are monochromatic and nonconstant.

Theorem 5.7. Let u, v ∈ N, let A be a u× v matrix with entries from Q, and let %b ∈ Qu \ {0}.
The following statements are equivalent.

(a) The pair (A,%b ) is NCIPR/N.

(b) There exist k ∈ Z and %y ∈ Zv such that A%y +%b = k, A is IPR/N, and A has at least two
distinct rows.

Proof. [21, Theorem 4.4].

Theorem 5.7. Let u, v ∈ N, let A be a u× v matrix with entries from Q, and let %b ∈ Qu \ {0}.
The following statements are equivalent.

(a) The pair (A,%b) is NCWIPR/N.

(b) The pair (A,%b) is NCIPR/Z.

(c) There exist k ∈ Z and %y ∈ Zv such that A%y +%b = k, A is IPR/Z, and A has at least two
distinct rows.

Proof. [21, Theorem 3.6].

Theorem 5.8. Let u, v ∈ N, let A be a u× v matrix with entries from Q, and let %b ∈ Qu \ {0}.
The following statements are equivalent.
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(a) The pair (A,%b) is NCIPR/Q.

(b) Either

(i) rank(A) = u > 1 or

(i) rank(A) < u and the pair (D,−D%b ) is nonconstantly KPR/Q, where D = D(A).

Proof. [21, Theorem 3.5].

Theorem 5.9. Let u, v ∈ N, let A be a u× v matrix with entries from Q, and let %b ∈ Qu \ {0}.
All of the implications in the following diagram hold and the only implications that hold among
these notions are those shown or ones that follow by transitivity.

NCIPR/N ⇒ NCWIPR/N ⇔ NCIPR/Z ⇒ NCIPR/Q

⇓ ⇓ ⇓ ⇓

IPR/N ⇒ WIPR/N ⇒ IPR/Z ⇒ IPR/Q

Proof. All of the implications shown follow from the results of this section. We shall list
examples establishing that none of the missing implications hold, leaving the verification to the
reader.

The pair








1 0
0 1
2 2



 ,




5
4
0







 is IPR/N but not NCIPR/Q.

The pair








1 0
0 1
2 2



 ,




2
0
1







 is WIPR/N but not IPR/N.

The pair








1 0
0 1
2 2



 ,




−2
1
1







 is IPR/Z but not WIPR/N.

The pair








1 0
0 1
2 2



 ,




1/2
1/2
−5/2







 is IPR/Q but not IPR/Z.

The pair








1 −1
3 2
4 6



 ,




1
0
−3







 is NCIPR/Z but not IPR/N.

The pair
((

1 0
0 1

)
,

(
1/2
1/2

))
is NCIPR/Q but not IPR/Z.
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6. Partition Regularity of Infinite Matrices

In contrast with the situation with finite matrices, there are only piecemeal results for infinite
matrices. I only know of one result involving kernel partition regularity of infinite matrices. By
contrast, there are many sufficient conditions know for image partition regularity (over N) of
infinite matrices, but nothing close to a characterization. In this section I will try to discuss
some of the major themes involving image partition regularity of infinite matrices as well as
some of the contrasts with the finite situation.

The infinite matrices with which we will be concerned have countably many rows, all entries
are rational, and each row has finitely many nonzero entries. We define IPR/N and IPR/Z as
in Definition 1.3 allowing u and v to be ω, which is the cardinal of countable infinity. Probably
the simplest example of an infinite matrix which is IPR/N is given by the infinite Finite Sums
Theorem ([14] or see [22, Corollary 5.10]). This is a matrix consisting of all rows with entries
of 0’s and 1’s with finitely many 1’s in each row. A more general version is given by the
Milliken-Taylor Theorem, which we will present as Theorem 6.2.

Definition 6.1. Let %a = 〈ai〉ni=1 be a finite sequence in Z \ {0} with no adjacent repeated
terms and let A be an ω×ω matrix. Then A is a MT (%a)-matrix if and only if whenever 〈Fi〉ni=1

is a sequence in Pf (N) with maxFi < minFi+1 for all i ∈ {1, 2, . . . , n − 1} (if any), there is a
row %r of A with rj = ai if j ∈ Fi and rj = 0 if j /∈

⋃n
i=1 Fi. Further all rows of A are of this

form.

Theorem 6.2 (Milliken and Taylor). Let %a be a sequence in Z\{0} with no adjacent repeated
terms and final term positive and let A be a MT (%a)-matrix. Then A is IPR/N.

Proof. This is an immediate consequence of [29, Theorem 2.2] or [41, Lemma 2.2]. Or see [22,
Theorem 18.8]. For the details of the derivation see [5, Theorem 2.5].

The restriction that the final term of %a be positive is needed to guarantee that for sufficiently
fast growing %x ∈ Nω the entries of A%x are in N.

We know from Theorem 4.8 that any finite matrix which is IPR/N has the property that
images of that matrix can be found inside any central subset of N. As a consequence, we know

that if A and B are finite matrices which are IPR/N, so is
(

A O
O B

)
.

We see however that this is far from true for infinite matrices. (If A and B are ω×ω matrices,

then
(

A O
O B

)
is an (ω + ω)× (ω + ω) matrix. We shall blissfully ignore this distinction.)

The following result is a result of collaboration with Deuber, Leader, Lefmann, and Strauss.
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Theorem 6.3. Let %a and %b be sequences in Z \ {0} with no adjacent repeated terms and final

term positive, let A be a MT (%a)-matrix, and let B be a MT (%b)-matrix. The matrix
(

A O
O B

)

is IPR/N if and only if there is a positive rational α such that %b = α · %a.

Proof. This was established for entries of %a and %b positive in [5, Theorems 3.2 and 3.3]. The
general case follows from [19, Theorem 3.1].

One does however have the following result, whose proof was supplied by V. Rödl.

Theorem 6.4 (Rödl). Let A be a finite matrix which is IPR/N and let B be an infinite martix

which is IPR/N. Then the matrix
(

A O
O B

)
is IPR/N.

Proof. [18, Lemma 2.3].

In [18] we attempted to restore some of the order of Theorem 4.8 to infinite image partition
regularity by defining a stronger notion.

Definition 6.5. Let A be an infinite matrix with entries from Q and finitely many nonzero
entries in each row. Then A is centrally image partition regular over N if and only if whenever
C is a central subset of N, there exists %x ∈ Nω such that all entries of A%x are in C.

One immediately obtains the fact that if A and B are centrally image partition regular,

then
(

A O
O B

)
is centrally image partition regular.

Unfortunately, the condition of Theorem 4.8(o) need not hold. So we introduced an even
stronger requirement.

Definition 6.6. Let A be an infinite matrix with entries from Q and finitely many nonzero
entries in each row. Then A is strongly centrally image partition regular if and only if whenever
C is a central set in N, there exists %x ∈ Nω such that all entries of %y = A%x are in C and for all
i, j ∈ ω, if rows i and j of A are unequal, then yi '= yj .

Given a row of a matrix with finitely many nonzero entries, we shall refer to the sequence
obtained by deleting all 0’s and then deleting adjacent repetitions as the compressed form or
the row. For example, the compressed form of ( 0 −2 0 −2 3 0 0 3 1 0 0 . . . )
is 〈−2, 3, 1〉.

Theorem 6.7. Let k ∈ N, let 〈a1, a2, . . . , ak〉 be a compressed sequence in Z\{0} with ak > 0,
and let m ∈ Z \ {0}. Let M be a matrix, with finitely many nonzero entries in each row, such
that
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(i) the compressed form of each row is 〈a1, a2, . . . , ak〉 and
(ii) the sum of each row is m.

Then M is strongly centrally image partition regular.

Proof. [18, Theorem 3.7].

As an example, if

A =





1 1 0 0 0 . . .
1 0 1 0 0 . . .
0 1 1 0 0 . . .
1 0 0 1 0 . . .
0 1 0 1 0 . . .
0 0 1 1 0 . . .
1 0 0 0 1 . . .
...

...
...

...
...

. . .





and B =





1 2 0 0 0 . . .
1 0 2 0 0 . . .
0 1 2 0 0 . . .
1 0 0 2 0 . . .
0 1 0 2 0 . . .
0 0 1 2 0 . . .
1 0 0 0 2 . . .
...

...
...

...
...

. . .





,

then A and B are strongly centrally image partition regular and thus
(

A O
O B

)
is IPR/N. (In

fact it is strongly centrally image partition regular.)

Of course, dealing as it does with central sets, the proof of Theorem 6.7 relies heavily on
the algebraic structure of βN. Also, Theorem 6.7 does not apply if the row sums are 0.

Leader and Russell [26] provide an elementary proof of the following theorem, which includes
the above example as a special case. Notice that one is not assuming that the specified sequences
are compressed.

Theorem 6.8 (Leader and Russell). Let 〈a1, a2, . . . , ak〉 and 〈b1, b2, . . . , bn〉 be sequences in
Z \ {0} with ak > 0, bn > 0, and

∑k
i=1 bi '= 0. Let A be a matrix with the property that the

nonzero entries of each of its rows are a1, a2, . . . , ak in order and let B be a matrix with the

property that the nonzero entries of each of its rows are b1, b2, . . . , bn in order. Then
(

A O
O B

)

is IPR/N.

Proof. [26, Theorem 2].

As a consequence of Theorem 6.8, if

A =





1 −1 −1 1 0 0 . . .
1 −1 −1 0 1 0 . . .
1 −1 0 −1 1 0 . . .
1 0 −1 −1 1 0 . . .
0 1 −1 −1 1 0 . . .
1 −1 −1 0 0 1 . . .
1 −1 0 −1 0 1 . . .
...

...
...

...
...

...
. . .





, B =





−1 1 −1 1 0 0 . . .
−1 1 −1 0 1 0 . . .
−1 1 0 −1 1 0 . . .
−1 0 1 −1 1 0 . . .
0 −1 1 −1 1 0 . . .
−1 1 −1 0 0 1 . . .
−1 1 0 −1 0 1 . . .
...

...
...

...
...

...
. . .





,
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and

C =





1 2 0 0 0 . . .
1 0 2 0 0 . . .
0 1 2 0 0 . . .
1 0 0 2 0 . . .
0 1 0 2 0 . . .
0 0 1 2 0 . . .
1 0 0 0 2 . . .
...

...
...

...
...

. . .





,

then
(

A O
O C

)
is IPR/N and

(
B O
O C

)
is IPR/N. But it is a consequence of [18, Theorems

3.14 and 3.17] that
(

A O
O B

)
is not IPR/N.

An early result in image partition regularity came in collaboration with Walter Deuber. He
wanted to know whether, in his terminology, given a finite coloring of N, one could choose for
each triple (m,p, c), an (m,p, c)-set which was monochromatic and had the property that all
finite sums taken by choosing at most one element from each (m,p, c) set were also monochro-
matic. The answer was yes, and can be easily represented in terms of the image partition
regularity of a particular infinite matrix.

Notice that there are countably many first entries matrices and enumerate them as 〈An〉∞n=1.
Assume that for each n, An is a un×vn matrix, let α0 = 0 and for n ∈ N let αn =

∑n
t=1 vn. Let

M be a matrix with the property that each row of M has only finitely many nonzero entries
and for each n ∈ N, the entries of that row from αn−1 +1 through αn are either all 0 or are the
entries of a row of An. Assume further that every row of this kind appears in M .

Theorem 6.9. Let M be a matrix described above. Then M is IPR/N.

Proof. [4].

Then Hanno Lefmann and I established the following stronger result.

Theorem 6.10. Let M be a matrix as described before Theorem 6.9. Let %x ∈ Nω have the
property that all entries of M%x are in N and let C be the set of entries of M%x. If C is finitely
colored, then there exists %y ∈ Nω such that the entries of M%y are contained in C and are
monochromatic.

Proof. [20, Theorem 2.7].

Several results dealing with image partition regularity along the lines of Theorem 6.10 are
in [24]. We do not have space here to describe them in detail.
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7. Restricted and Sparse Results

In this section we address an issue related to partition regularity, which deals with sets which
are partition regular with respect to certain kernel or image partition regular matrices, but not
with respect to others. While this may be viewed as an entirely peripheral subject, one view of
its origins is the conjecture of Rado regarding “large” sets, which led through Deuber’s Theorem
to the subject of image partition regular matrices. The subject of restricted and sparce Ramsey
theoretic results is one on which I have little expertise, and I am grateful to Imre Leader for
providing me assistance with this section.

To introduce the notions of restricted and sparse we will use a subject which has nothing
at all to do with partition regular matrices, namely the simplest nontrivial version of Ramsey’s
Theorem. This says that whenever the edges of a complete graph on 6 vertices (a K6) are
colored with two colors, there must be a monochromatic triangle. Erdős and Hajnal [6] asked
for a graph which contains no K6 but has the property that whenever its edges are 2-colored
there must be a monochromatic triangle. It is easy to see that if a 9-cycle is deleted from a K10

the resulting graph has this property. (I do not know who first observed this fact.) A minimal
example was provided by Ron Graham.

Theorem 7.1 (Graham). If a graph on 7 vertices contains no K6, then there is a 2-coloring
of the edges with no monochromatic triangle. If a 5-cycle is deleted from a K8, the resulting
graph contains no K6 and has the property that whenever its edges are 2-colored there is a
monochromatic triangle.

Proof. [10].

In the same problem, Erdős and Hajnal conjectured that for each r ∈ N there exists some
graph which contains no K4 and has the property that whenever its edges are r-colored there
must exist some monochromatic triangle. The case r = 2 was proved by Folkman and the
general case by Nešetřil and Rödl.

Theorem 7.2 (Folkman). Let n1, n2 ∈ N and let Γ(n1, n2) be the set of finite graphs with the
property that whenever its edges are partitioned into classes C1 and C2, either C1 contains the
edges of a Kn1 or C2 contains the edges of a Kn2 . Let r = max{n1, n2}. There is a graph in
Γ(n1, n2) which contains no Kr+1.

Proof. [7].

Theorem 7.3 (Nešetřil and Rödl). Let m, r ∈ N and let G be a finite graph which contains
no Km. Then there is a finite graph which contains no Km and has the property that whenever
its edges are r-colored, there must exist a monochromatic copy of G.
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Proof. [31].

Theorems 7.1, 7.2, and 7.3 are examples of restricted Ramsey-type theorems. To talk about
sparse Ramsey-type theorems, we need to say what we mean by a cycle of triangles.

Definition 7.4. Let G be a graph and let n ∈ N. A cycle of triangles of length n in G is a
sequence T1, e1, T2, e2, . . . , Tn, en, Tn+1 where each Ti is a triangle, each ei is an edge of Ti and
of Ti+1, ei '= ej and Ti '= Tj for i '= j in {1, 2, . . . , n}, and Tn+1 = T1.

A graph is then sparse (with respect to triangles) provided there are no short cycles of
triangles.

Lemma 7.5. Let G = (V,E) be a graph with the property that whenever its edges are two
colored there must exist a monochromatic triangle. Then there must be some cycle of triangles
in G of odd length.

Proof. Let 〈Sα〉α∈I enumerate the triangles of G, viewed as edge sets. (So each Sα is a set of
three elements of E.) For each α ∈ I pick a Tα ⊆ Sα with |Tα| = 2. Let E′ = {Tα : α ∈ I},
let V ′ =

⋃
E′, and let G′ = (V ′, E′). Notice that V ′ ⊆ E. We claim that G′ has chromatic

number at least 3. For, given a two coloring of V ′, extend it arbitrarily to a two coloring of E

and pick α ∈ I such that Sα is monochromatic. Then Tα is monochromatic with respect to the
original coloring of V ′. But then, as is well known, G′ must have an odd cycle and this induces
a cycle of triangles in G of odd length.

Theorem 7.6 (Nešetřil and Rödl). Let n, r ∈ N. There is a graph which contains no cycle
of triangles of length less than or equal to n and has the property that whenever its edges are
r-colored, there must be a monochromatic triangle.

Proof. This is a corollary of a much more general result [32, Theorem 1.4].

Now we turn our attention to restricted and sparse theorems related to image partition
regularity of matrices, dealing with the restricted theorems first.

Consider first van der Waerden’s theorem. As we have seen, this is precisely the assertion
that for each n ∈ N, the matrix

Vn =





1 0
1 1
1 2
...

...
1 n





is image partition regular.
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Theorem 7.7 (Spencer). For each k, n ∈ N, there is a finite subset Sk,n of N with the property
that

(a) whenever Sk,n is k-colored, there is a monochromatic image of Vn and

(b) Sk,n contains no image of Vn+1.

Proof. [40].

Notice that Theorem 7.7 easily implies a uniform version of itself.

Corollary 7.8. For each n ∈ N \ {1} there is a subset Tn of N such that

(a) whenever Tn is finitely colored, there is a monochromatic image of Vn and

(b) Tn contains no image of Vn+1.

Proof. Given Sk,n as guaranteed by Theorem 7.7, a+Sk,n has the same properties for all a ∈ N
so simply choose a sequence 〈ak〉∞k=1 such that any length three progression in

⋃∞
k=1(ak +Sk,n)

is contained in some ak + Sk,n and let Tn =
⋃∞

k=1(ak + Sk,n).

Now consider the (finite) Finite Sums Theorem (Corollary 2.4). For each n ∈ N, let FSn

be the (2n − 1) × n matrix with rows indexed by Pf ({1, 2, . . . , n}) and columns indexed by
{1, 2, . . . , n} with an entry in row F and column k equal to 1 if k ∈ F and 0 otherwise. Then
the Finite Sums Theorem is the assertion that each FSn is image partition regular.

Theorem 7.9 (Nešetřil and Rödl). Let k, n ∈ N. There is a finite subset Sk,n of N such
that

(a) whenever Sk,n is k-colored, there is a monochromatic image of FSn and

(b) Sk,n contains no image of FSn+1.

Proof. This is a consequence of [33] where the corresponding version of the Finite Unions
Theorem is established.

Again, this result implies a uniform version of itself using the fact that if Sk,n is as guaranteed
by Theorem 7.9, then aSk,n has the same properties for each a ∈ N.

We now present some restricted Ramsey-type theorems about quite general image partition
regular matrices and kernel partition regular matrices. These were obtained in collaboration
with Vitaly Bergelson and Imre Leader.
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Definition 7.10. Let n ∈ N. A finite matrix A is an n-sparse monic first entries matrix if
and only if it is a first entries matrix all of whose first entries are equal to 1 such that for each
column j, the number of rows with first entry in column j and more than one nonzero entry is
at most n.

For n ∈ N let

V +
n =





0 1
1 0
1 1
1 2
...

...
1 n




.

The fact that V +
n is image partition regular for each n yields the strengthened version of van

der Waerden’s Theorem which has the increment the same color as the terms of the arithmetic
progression. Notice that V +

n is an n-sparse monic first entries matrix.

Theorem 7.11. Let n ∈ N. There is a set E ⊆ N such that

(a) whenever E is finitely colored and A is an n-sparse monic first entries matrix, E contains
a monochromatic image of A and

(b) E contains no image of V +
n+1.

Proof. [2, Theorem 3.6].

Corollary 7.12. Let (m,p, c) ∈ N3 with c ≤ p and let n = (2p + 1)m−1 − 1. There is a set
E ⊆ N such that

(a) whenever E is finitely colored E contains a monochromatic (m,p, c)-set and

(b) E contains no image of V +
n+1.

Proof. Pick E as guaranteed by Theorem 7.11 for n. Then cE has the same properties. Let A

be a matrix such that any image of A is an (m,p, c)-set and let B = 1
cA. Then B is an n-sparse

monic first entries matrix. Let cE be finitely colored and pick %x ∈ Nm such that the entries of
B%x are monochromatic. Notice that each entry of %x is an entry of B%x and is thus a multiple of
c. Let %y = 1

c%x. Then A%y is a monochromatic (m,p, c)-set.

The following theorem, also obtained in collaboration with Bergelson and Leader, establishes
not only do the specified matrices have monochromatic solutions, but all can be found in one
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given color. Given n ∈ N, the matrix

Wn =





1 1 −1 0 . . . 0
2 1 0 −1 . . . 0
...

...
...

...
. . .

...
n 1 0 0 . . . −1





is a kernel partition regular matrix corresponding to the image partition regular matrix V +
n .

That is any solution to Wn%x = 0 is a length n + 1 arithmetic progression together with its
increment.

Theorem 7.13. Let n ∈ N. There is a set E ⊆ N such that
(a) whenever E is finitely colored there is one color which contains a solution to A%x = 0 for

every kernel partition regular matrix A with at most n rows and
(b) E contains no solution to Wn+1%x = 0.

Proof. [2, Theorem 4.2].

The proof of [2, Theorem 4.2] in fact establishes that a similar strengthening of Theorem
7.11 holds.

We now turn our attention to sparse Ramsey-type theorems involving partition regular
matrices, first dealing with a sparse version of van der Waerden’s theorem. By a cycle of length
k of arithmetic progressions of length n we mean a sequence T1, x1, T2, . . . , Tk, xk, Tk+1 where
each Ti is a length n arithmetic progression, each xi ∈ Ti ∩ Ti+1, xi '= xj and Ti '= Tj for i '= j

in {1, 2, . . . , n}, and Tn+1 = T1.

Theorem 7.14 (Rödl). Let n, k ∈ N. There is a subset S of N such that
(a) whenever S is finitely colored there is a monochromatic arithmetic progression of length

n and
(b) S does not contain any cycle of length less than or equal to k of length n arithmetic

progressions.

Proof. [38].

A different proof of Theorem 7.14 was obtained by Prömel and Voigt [35] using ideas of
Frankl, Graham, and Rödl [8]. (The date on [38] is misleading. It circulated as a manuscript
for several years before it was published.)

In [34] Nešetřil and Rödl generalized Theorems 7.6 and 7.14 (as well as several other theorems
that I have not mentioned) “beyond belief”. (The quoted words are from Imre Leader.)



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A18 32

Very recently, Leader and Russell established a sparse version of Deuber’s Theorem. A cycle
of (m,p, c)-sets is defined like a cycle of arithmetic progressions.

Theorem 7.15 (Leader and Russell). Let m,p, c, k, g ∈ N with c ≤ p. There is a set S ⊆ N
such that

(a) whenever S is k-colored there is a monochromatic (m,p, c)-set and
(b) there is no cycle of (m,p, c)-sets of length less than or equal to g,

Proof. [27, Theorem 16].

We conclude with a somewhat related result. Given a matrix A and a subset C of N, we say
that C is kernel partition regular for A provided that whenever C is finitely colored there must
be a monochromatic solution to A%x = 0. Let A and B be kernel partition regular matrices.
Say that A Rado-dominates B if every set which is kernel partition regular for A is kernel
partition regular for B. Say that A solution-dominates B if every solution to A%x = 0 contains
a solution to B%y = 0. In [2] we conjectured that the only way A could Rado-dominate B is
for A to solution-dominate B. In a very recent result, Leader and Russell proved the simplest
non-trivial instance of this conjecture, namely for 1 × 3 matrices, and then showed that it is
indeed false for a 1× 3 matrix and a 1× 4 matrix. I will include the proof of Theorem 7.16(b)
because it is so short and pretty.

Theorem 7.16 (Leader and Russell).
(a) If A and B are 1× 3 matrices and A Rado-dominates B, then A solution dominates B.
(b) Any set which is kernel partition regular for ( 1 1 −1 ) is kernel partition regular for

( 1 1 1 −1 ).

Proof. (a) [28, Theorem 2].

(b) This is [28, Theorem 12]. Let C be kernel partition regular for ( 1 1 −1 ) and let
r ∈ N and let ϕ : C → {1, 2, . . . , r}. Define ψ : C → {1, 2, . . . , 2r} by, for z ∈ C,

ψ(z) =
{

ϕ(z) if there exist x, y ∈ C such that ϕ(x) = ϕ(y) = ϕ(z) and x + y = z
r + ϕ(z) otherwise.

Pick x, y, z ∈ C such that ϕ(x) = ϕ(y) = ϕ(z) and x + y = z. Then ϕ(x) = ϕ(z) ≤ r so pick
u, v ∈ C such that ϕ(u) = ϕ(v) = ϕ(x) and u + v = x. Then u + v + y = z.
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