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Abstract

Let a and b be distinct positive integers. We show that the equation u+a-p =v+b-p
has no solutions with u,v € N and p € GN\N. More generally, we show that if (S, +) is any
commutative cancellative semigroup and S has no nontrivial solutions to n-s=mn-t forn € N
and s,t € S, then the equation v + a-p = v 4+ b - p has no solutions with w,v € (5 and
p € BS\S. We characterize completely the Abelian groups for which such an equation can be
satisfied. We also show that if S can be embedded in the circle group T, then the equation
a-p+u=>b-p+ v has no solutions with u,v € S and p € 5S\S. Finally, we investigate
solutions to the equation a; -p+as-p+...+an-p=b1-p+by-p+...4+ by, -p where p € N\N
and aq,a9,...,0,,b1,ba,...,by, €N.

1. Introduction

Given any discrete semigroup (S,+) there is a unique extension of the operation in S to its
Stone-Cech compactification 3S making £S5 a right topological semigroup with S contained
in its topological center. (That is, for each p € 35, the function p, : S — (S defined
by pp(¢) = q + p is continuous. And for each s € S, the function A\; : BS — (S defined
by As(p) = s+ p is continuous.) We are denoting the operation by + because we shall be
concerned in this paper almost exclusively with commutative semigroups S. In fact, we are
primarily concerned with the semigroup (N, +). However, the reader should be cautioned that
(S is hardly ever commutative. (See [5, Theorem 4.27].) (We are writing N for the set of
positive integers and write w = NU {0}.)

For almost 25 years, the algebra of N has been a powerful tool in Ramsey Theory, beginning
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with the Galvin-Glazer proof of the Finite Sums Theorem. (See the notes to Chapter 5 of [5] for
a discussion of the history of this proof.) Conversely, the fact that there is a finite partition of N
with the property that no cell contains a sequence with all of its pairwise (distinct) sums and all
of its pairwise (distinct) products shows that the equation p + p = p - p has no solutions in GN.
The fact that there is an idempotent p of (GN, -) in the topological closure of {q € SN : g+¢ = ¢}
provided the first [4], and for fifteen years the only, proof of the following fact: Let r € N and
let N = J;_, Ai. Then there exist i € {1,2,...,r} and sequences (x,)5° 1 and (y,)>>; in N
such that FS((xn)5 1) U FP((yn)i 1) € A; where FS((zn)50 1) = {D,cp Tn : I is a finite
nonempty subset of N} and FP((yn);> 1) = {[[,cp ¥n : F' is a finite nonempty subset of N}.

An elementary proof of this fact was eventually provided in [1].

Other results, equally easy when done in terms of SN, seem unlikely to be provided with
elementary proofs any time soon. For example, {p € SN : every A € p has positive upper
density} is a compact subsemigroup of (SN, +), and consequently has an idempotent. Therefore,
whenever N is finitely colored, one may inductively choose a sequence ()72, with F/S({z)52;)
monochrome, in such a way that, having chosen (x¢)" ;, the set of choices for x,,41 has positive

upper density.

An alternative description of this result in the terminology of game theory was suggested
to us recently by Tomasz Luczak. At the start of the game, N is finitely colored. At the n'P
turn, player one chooses a subset A,, of N with positive upper density and player two chooses
any element z,, € A,. Player one wins provided F'S({x,)5° ;) is monochrome. The theorem

says that player one has a winning strategy.

See Part III of [5] for numerous other examples of the applications of the algebra of SN to

combinatorics, specifically Ramsey Theory.

In this paper, much of the interaction between algebra and Ramsey Theory occurs in the
reverse direction. That is, we use combinatorial results involving partitions of N, R, or T to

conclude that certain equations in N cannot be solved.

We take the points of 35 to be the ultrafilters on S and identify the principal ultrafilters
with the points of S. The topology of 35 is defined by choosing the sets of the form A = {p €
BS : A € p}, where A C S, as a base for the open sets. The set A is clopen in this topology
and is equal to clgg(A). Given p,q € 35S and A C S, one has that A € p + ¢ if and only if
{reS:—x+Acq} €p, where -+ A={seS:z+sec A}. Alternatively, p + ¢ can be
defined topologically as lim lim (s + t).

—rt*)q

SES tes

The following fact is easy to verify. Suppose that p,q € 55, that P € p and that Qs € ¢ for
each s € P. Then (J,cp(s+ Qs) € p+ q. We shall use this fact several times.

See [5] for an elementary introduction to the properties of the semigroup 35, as well as for



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 0 (2000), #A02 3

any unfamiliar algebraic assertions encountered here.

If X is a completely regular space, any function f from S to X, has a continuous extension
mapping 45 to X, which we shall denote by f

In this paper, we investigate solutions to certain “linear” equations. Before we talk about
these, we need to clarify what we mean, for example, by 2-p where p € 35\S. (We do not mean
p + p.) We take our motivation from the situation in SN. Here 2 - p is naturally interpreted
as multiplication in the semigroup (AN, ). It is defined to be l;(p) where [5 : BN — ON is the
continuous extension of ls : N — N defined by lo(x) = 2- z. It is characterized by the fact that
for any ACN, A€ 2 pifandonlyif 27'A € p where 27'A={r e N:2.-2 € A}. We take a

similar approach in an arbitrary semigroup.

Definition 1.1. Let (S,+) be a semigroup and let a € N. Define I, : S — S by l.(s) =
s+ s+...+ s (a times) and let l; : S — (S be the continuous extension of I,. For p € S
define a - p = l;(p)

Note that if p € S then, as usual, a - p is the sum of p with itself a times.

It is immediate from the definition that a-p = lim a - s.
s—p
seS

Lemma 1.2. Let (S,+) be a semigroup, let a € N, let p € 55, and let AC S. Then A€ a-p

if and only if a=*A € p, where a™'A = {x € S : a-x € A}. In particular, if B € p, then
a-Bea-p.

Proof. Necessity. We have that A is a neighborhood of l;(p) so pick B € p such that l;[E] C A.
Then B C o~ A.
Sufficiency. Suppose that A ¢ a-p. Then S\A € a - p and so, by the sufficiency applied to

S\A, a=1(S\A) € p. Since a~tANa~!(S\A) = 0, this is a contradiction. O

Lemma 1.3. Let (S,+) be a commutative semigroup, let a € N, and let p,q € BS. Then
a-(pt+q)=a-pta-q.

Proof. Since S is commutative, [, : S — S is a homomorphism and thus, by [5, Corollary 4.22],
s0is I, : 3S — BS. 0

In Sections 2 and 3 we investigate the equations a-p+u=b-p+vandu+a-p=v+0b-p,
where u,v € 45, p € S* = 3S\S, and a,b € N with a # b.

In Section 2, we show that the equation a-p+u = b-p+v has no solution for any semigroup
S which is embeddable in the unit circle T.
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In Section 3, we show that the equation u+a-p = v+ b-p has no solution (again for p € S*)
for a wide class of commutative cancellative semigroups. We in fact characterize those Abelian
groups S for which this equation can hold as exactly those for which {s € S : ablb —a|-s =0}

is finite.

In Section 4 we turn our attention to a particular class of linear equations in SN. (These
equations were in fact our original motivation for the equations studied in Sections 2 and 3.)

Consider the following result.

Theorem 1.4. Let ay,az,...,a,,b1,b2,...,b, € N so that for any i € {1,2,...,n — 1} and
any j € {1,2,...,m—1}, a; # a;41 and bj # bjy1. Let p be an idempotent in (BN, +). Suppose
that

a-pt+az-p+...+ap-p=br-p+ba-p+...+by-p.

Then m =n and for all i € {1,2,...,n}, a; = b;.

Proof. This is [6, Theorem 2.19], where it was derived as an easy consequence of [2, Theorems
2.10 and 3.3]. O

Notice that, if « € N and p = p+ p, then by [5, Lemma 13.1] a-p=a-(p+p) =a-p+a-p.

Consequently, the restriction on repeating coefficients in Theorem 1.4 is necessary.

We were led then to ask the following question, asking essentially whether the idempotent
requirement can be omitted from Theorem 1.4. (Originally, it was a conjecture, but we have

lost faith because of the difficulties that we have encountered.)

Question 1.5 Let ay,aq,...,an,b1,b2,...,b, € N so that for anyi € {1,2,...,n—1} and any
je{1,2,...,m—1}, a; # a;+1 and bj # bj11. Suppose that there exists some p € N* such that

ar-p+az-p+...+ap-p=br-p+by-p+...+by-D.

Must it then be true that m = n and for alli € {1,2,...,n}, a; = b; ¢

We investigate this question in Section 4, obtaining some partial results.

2. The Equation ¢ - p+u=1>0-p+ v

Let T4 be the circle group with the discrete topology (while T denotes the circle group with its
usual topology). We show here that if a,b € N with a # b, then the equation a-p+u=>b-p+v
has no solution with u,v € fT4 and p € T};. As a consequence, if S is a semigroup which can
be algebraically embedded in T, such as the semigroup (N, +) and the group (Z,+), then the
equation a - p +u = b - p + v has no solution with u,v € 85 and p € S*.
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We take T = R/Z and let 7 : R — T be the usual projection. Notice that, since 7 is a
homomorphism, if « € N and r € R, then a - 7(r) = 7(a - 7). We observe that 7 is an open

mapping and so are the maps [, and [, considered as maps from T to itself.

We define v : BT — T to be the continuous extension of the identity map from T4 to T, and
note that this is a homomorphism by [5, Theorem 4.8|. For any p € T4, v(p) is the point of T
to which p converges. To see this, suppose that U is a neighborhood of 7(p) in T. Then U € p,
because otherwise we should have p € T\ U and hence v(p) € clyp (y(T\ U)) = clp(T\ U).

Lemma 2.1. Let a € N and q € BTy4. Then a-v(q) =v(a - q).

Proof. Sincel, : T— T, ~v: 8Ty — T, and l; : BTy — BTy are continuous functions, and [, o~y
agrees with v o I, on T, it follows that I, o ¥(g) = v o lo(q). U

Lemma 2.2. Let U be an open subset of T. If q,r € BTy and U € q, then U +y(r) € ¢+ r.

Proof. For every x € U, —x + U + ~(r) is a neighborhood of v(r) and so —z + U + ~(r) € r.
Thus {x € T: -2+ U +~(r) er} €q. O

Lemma 2.3. Let p € BTy, let a,b € N with a # b, and let V' be an open subset of T such that
a-VNb-V =0. If there exist u,v € BTy such thata-p+u=0>b-p+wv, then y(p) +V ¢ p.

Proof. Put p’ = —y(p) + p, v' = —y(u) + v and v = —y(v) + v. Since v is a homomorphism,
v(a-p) +v(u) =~(b-p)+~v(v). By Lemma 2.1, a - y(p) + v(u) = b-v(p) + v(v), and so

a-p+u = a- (=vp)+a-p+(—y(w) +u) (by Lemma 1.3)
—a-v(p)+ (=) +a-p+u by [5 Theorem 6.54]
= b @)+ (=) +b-p+v

= b-p 4.

Notice that y(u') =v(v') =0. fV € p/, thena-V €a-p'+u and b-V € b-p’ +v' (by Lemma
2.2) — a contradiction. O

1

2n
Lemma 2.4 Leta,b € N witha < b and pickn € N such that (%) < 5%

let D — Cj ((%)Zk—kl—l—j/Z’(%)%—l—j/z)

k=n

. Forj €{0,1,2,3},

and let X; = —D; UD;. Then each X; is open,

6" ()")-Unvo

and for each j € {0,1,2,3}, wla- X;| Nwb- X;] = 0.
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Proof. The first two assertions are immediate. Suppose that we have j € {0,1,2,3} and
r,s € X; such that w(a-r) = n(b-s). Since the same equation holds with r replaced by —r and
s replaced by —s, we may assume that » > 0. Pick m € Z such that a-r =0-s 4+ m. Now

0<r< (“)2n ! <3 !

- a e =
b 2b
1 1 1 1 1

sothat 0 <a-r=0>0-s+m < 7" Also, ~% <s< % SO —3 <b-s< 3 Therefore —1 < m < 1
and thus m = 0. That is, a-r =b-s. Pick k € N with £ > n such that

an 2k+1+35/2 an 2k+35/2
() <r<(3)
2k+2+4j/2 2k+1+4j/2
Then (%) ’ < %7’ =s5< (%) "7 so that s ¢ X;. O

Theorem 2.5. Let p € T}, let u,v € T4, and let a,b € N with a #b. Thena-p+u#b-p+v.

Proof. Suppose that a-p+u =0b-p+ v and assume without loss of generality that a < b. Pick

a 2n 1 a 2n a 2n .
n € N such that (5) < % and let U = | — (5) ’(Z) . Let Xg, X1, X5, X3 be as in

Lemma 2.4.

We claim that v(p) + 7[U] € p. Indeed, v(p) + 7[U] is a neighborhood of v(p) so pick B € p
such that v[B] C ~(p) + w[U]. Then B = 4[B] C ~(p) + n[U]. Since p € T, {v(p)} ¢ p.
By Lemma 2.4, vy(p) + 7[U] = {y(p)} U U] O(W(p) + 7[X; ) so pick j € {0,1,2,3} such that
v(p) + 7[X;] € p. By Lemma 2.4, w[a- X;]N7[b- X;] =0, so by Lemma 2.3, v(p) + 7[X,] ¢ p,

a contradiction.

Corollary 2.6 Let S be a discrete semigroup which is algebraically embeddable in T, let p € S*,
let u,v € BS, and let a,b € N witha #b. Thena-p+u#b-p+wv.

Proof. Let ¢ : S — T be an injective homomorphism and let ¢ : 35S — STy be its continuous
extension. By [HS, Corollary 4.22], ¢ is a homomorphism. Since ¢ is injective, ¢(p) € T;. By
Theorem 2.5, a - F(p) + () # b- 3(p) + F(v) and thus a-p+u £ b-p+ v, 0

Corollary 2.7. Letp € 7", let u,v € BZ, and let a,b € N witha #b. Thena-p+u#b-p+wv.
Proof. Pick an irrational number a. Then the function n +— 7(n - ) algebraically embeds Z in

T so Corollary 2.6 applies.

3. The Equation u +a-p=v+ b-p

We show here that for a large class of semigroups S, including the semigroup (N, +), if a,b € N
with a # b, then the equation u 4+ a - p = v + b - p has no solution with u,v € 85 and p € S*.

We in fact characterize precisely those Abelian groups S for which solutions exist.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 0 (2000), #A02 7

Theorem 3.1. Let (S,+) be a commutative semigroup with identity 0 and let a,b € N with
a<b. If{s€S:ab(b—a)-s=0} is infinite, then there exrist u,v € 3S and p € S* such that
u+a-p=b+v-p.

Proof. Pick p € S* such that {s € S : ab(b—a)-s =0} € p. Notice that {s € S:ab(b—a)-s=
0} C{s€ S:(badb)-s = (aab) - s}. Assume first that (ab)-p € S*. In this case, let ¢ = (abd) - p.
Since I, o lyp agrees with Iy o Iy on a member of p we have that a - ((ab) -p) =b- ((ab) -p), ie.,
a-q="b-q.

Consequently we may assume that (ab) -p =t € S. Notice that a- (b-p) =b-(a-p) because
l, olp and I, o I, both agree with i; on S. Now suppose that b-p € S* and let ¢ = b-p. Then
a-g=a-(b-p)=tand thusb-gq+a-q=0-qg+t. By [5, Theorem 6.54],b-qg+t=1t+b-q so
that b-q+a-q=1t+b-q. (Hereis the only place we use the commutativity of S.)

Similarly if a-p € S*, we let ¢ = a-p and conclude that a-g+b-qg =t+ a-q. Thus we may
assume that b-p=u € Sanda-p=v e S. Let B={se€ S:a-s=wvand b-s=wu}. Then
Bep Ifse B,thenv+(b—a)-s=b-s=uwandsov+b-s=v+(b—a)-s+a-s=u+a-s.
Consequently A, ole and A, olNa agree on a member of p and thus u+a-p=v+5b-p. O

We shall show in Theorem 3.18 that the condition of Theorem 3.1 characterizes those Abelian
groups S for which the equation u + a-p = b+ v - p has solutions with u,v € 35S and p € S*.
The next theorem provides a way for building all Abelian groups in which such an equation
does not hold.

Lemma 3.2 Let h: S — T be a homomorphism, where S is a discrete commutative semigroup

and T is a compact right topological semigroup. For anya € N and anyp € 35S, a'ﬁ(p) = ﬁ(a'p).

Proof. The mappings p — a - E(p) and p — %(a - p) are continuous and agree on the dense
subspace S of 3S. U

The following lemma is well known. We give a proof because we do not have a reference.

Lemma 3.3. Let S and T be discrete spaces, let f and g be mappings from S to T, and let
f,ﬁ : BS — BT be their continuous extensions. Let p € 3S and suppose that f~'(p) =g(p) and
that there exists P € p such that fp is injective. Then {s € S: f(s) = g(s)} € p.

Proof. Since f|p is injective, we can choose a mapping h: T — S such that h(f(s)) = s for all
s € P. Then i~z(§(p)) = %(f(p)) = p since h/ovf agrees with the identity on P. Therefore, by

[5, Theorem 3.35] {s € S : h(g(s)) = s} € p. Now {s € S: g(s) € f[P]} € p, because f[P] is a

neighborhood of f(p) = g(p) in BT Since

{s€S:h(g(s)) =spn{seS:g(s) € fIPI} C{s € S: f(s) = g(s)},
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we have {s € S: f(s) = g(s)} € p as required. O

Recall that any cardinal is an ordinal, and as such is the set of all smaller ordinals. The

statements ¢ < k and ¢ € k are synonymous.

Theorem 3.4 Leta,b € N witha < b and let U(T') be the statement “T'is a discrete semigroup
with identity 0 and for all u,v € BT and allp € T*, u+a-p #v+b-p”. Let K > 0 be a cardinal
and let {T, : « < K} be a set of semigroups such that for each v < k, W(T,) and let S =P, _,. T,.
If each of the sets

{t < k: there exist s # t in T, such that either a-s=a-torb-s=>-t}

and
{t < k: there exists t € T,\{0} such that a -t =01t}

is finite, then ¥(S).

Proof. Suppose the theorem is false, and choose the smallest cardinal x for which a counterex-

ample exists.

We consider first the possibility that k < w. For each ¢ < k, 7, is a homomorphism by [5,
Corollary 4.22]. So 7,(u) +a-7,(p) = 7,(v) +b-7,(p) (by Lemma 3.2). Since ¥(7,) holds, this
is impossible if 7,(p) € T, and so one has some y, € T, such that {s € S: m,(s) =y.} € p. Let

y € S such that for each « < s, 7,(y) = y,. But then, {y} =, {s€5:m(s) =y} ecp a

contradiction.

We thus assume that £ > w. Define ¢ : S — & by ¢(0) = 0 and for s € S\{0}, ¥(s) =
max{t < k : m,(s) # 0}. We claim that for each v < k, {s € S : ¢(s) > v} € p. So suppose
instead that we have some v < r such that {s € S : ¢(s) <~} €p. Let f: S =D, T
be the projection onto the first 7 coordinates and let f : 35 — B(€D,., T,) be its continuous
extension. Then f(u)+a- f(p) = f(u+a-p) = f(v+b-p) = f(v)+0b- f(p), so by the induction

hypothesis, f(p) is principal. So pick z € P, T, such that {z} € f(p). Define y € S by

Jx o<y
9710 ife> 5.
Pick V € p such that f[V] = {z}. Then {y} =V n{se S:Y(s) <~} € p, a contradiction.
Thus {s € S :1¢(s) >~} € p for each v < k as claimed.

Pick v < k such that, whenever v < ¢ < k, we have a- s # a-t and b- s # b -t whenever s
and t are distinct members of T, and a -t # b -t whenever ¢t € T,\{0}. (We can do this because

the set of ¢’s violating these conditions is finite.)

Define g : S — S by
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Let P € p. We note that {s+a-t:s€ S, tec P, and ¢(t) > max{¢(s),7}} € u+a-pand
{/+b-t': s €8, t €P,and (') > max{y(s’),v}} € v+b-p. Thus we have s+a-t = s’ +b-t'
for some s,s’ € S and t,t' € P, with ¢(t) > max{¢(s),v} and (') > max{¢(s’),v}. Now
g(s+a-t)=a-g(t) and g(s"+b-t') =b-g(t"). Soa-g(p) =0b-g(p). Now I, is injective on
gl{s € S:v(s) >~} € g(p).

It follows from Lemma 3.3 that {s € S : a-s = b-s} € g(p) and hence that {s € S : a-g(s) =
b-g(s)} € p. This is a contradiction, because a - g(s) # b- g(s) if ¥(s) > . O

We now need to establish that the statement W(T") of Theorem 3.4 holds for some specific
groups. We shall use a real number z to denote the element 7(x) of T in order to avoid
equations in T that are too cumbersome. Of course, with this notation, the equation x = y in

T is equivalent to the relation x € y + Z in R.
Definition 3.5. Let r be a prime number. Then Z.° = {E €T:meNandn € w}.
Tn

The subgroups of T of this form are called quasicyclic. When using the notation 87Z.°, we

shall assume that Z:° has the discrete topology.

Definition 3.6. Let r be a prime number. For each s € Z.°, we define o(s) to be the order of
s, that is the least k € N such that k- s = 0, and we put 7(s) = log, (o(s)). Let 7 : BZ° — BZ

be the continuous extension of 7.

Lemma 3.7. Let r be a prime, let S = Z°, let p € S*, let u € S and let a € N. If r¢ is the
highest power of r which divides a, then T(u+ a-p) = —d + 7(p).
Proof. We note that every s € S\ {0} can be expressed as s = 7%, where m,n € N and
(m,r) = 1. Then o(s) = r™ and 7(s) = n. It is not hard to show that, for any s,t € S,
o(t) > o(s) implies that o(s + t) = o(t), and that o(t) > r¢ implies that o(a - t) = r~%o(t) and
thus 7(a-t) = —d+7(t). Now, for any s € S, {t € S: o(t) > max{o(s),r?}} € p, because this set
has a finite complement in S. Thus 7(u+a-p) = ,}EI}L gl_rg T(s+a-t) = }i_r)r}j(—quT(t)) = —d+7(p).
O

Lemma 3.8. Let r be a prime, let S = 7Z,°, let p € S*, let u,v € 3S, and let a,b € N. If
u+a-p=v—+b-p, then the highest power of r which divides a is equal to the highest power of
r which divides b.

Proof. Let r® and r¢ denote the highest powers of r which divide a and b respectively. By
Lemma 3.7, —d + 7(p) = —e + 7(p). This implies that d = e by [5, Lemma 6.28]. O

Theorem 3.9. Let r be a prime, let S = 7., let a,b € N, let u,v € S, and let p € S*. If
a#b, thenu+a-p#v+b-p.
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Proof. Suppose that w +a-p = v+ b-p. Then, by Lemma 3.8, we can write a = a;7¢ and
b= byr?, where a;,b; €N, d € w and (a1,7) = (by,7) = 1.

We choose k € N satisfying 7% > |a; — by].

Each s € S\{0} can be expressed as %(S)), where m(s),n(s) € Nand (m(s),r) = 1. Thus we
TTL S
k
have s = w, for some z(s) € w and some y(s) € {1,2,...,7F — 1} with (y(s),r) = 1.
,,nn S

We can choose y € {1,2,...,r7% — 1}, with (y,r) = 1, and a set P € p such that y(t) =y

for every t € P. Let s€ S. Then {t € P : 7(t) > k+d+ 7(s)} € p. It follows that the set of
xrk + Y

elements of Z° of the form z +a ,with x, z,k,l,n € wand n > k+d+1, is a member

l
r
of u+ a - p. The corresponding statement also holds for v + b - p. Thus we have an equation in
Z;° of the form:
k / 1.k
z xr z z'r
- . Y = +5b- J

rl a rn W rn’ ’

in which all the symbols denote non-negative integers and n > k+d+ 1 and n’ > k+d+1'.
We observe that the left hand side of this equation has order »”~¢ and the right hand side has
order 7™~ and so n = n’. Thus we have the following relation in R:

z ok +y 2 o'rk +y

- ta1 S + by
r

—nd €T +Z.

rn—d

Multiplying by 7"~¢ shows that a;y = b1y (mod 7*) and hence that a; = b; (mod r*). Since
la; — by| < r*, it follows that a; = b; and hence that a = b. O

o]
r o

We now turn our attention to the direct sum of copies of Z_°, one for each prime r. We

omit the easy proof of the following lemma, which enables us to invoke Theorem 3.4.
Lemma 3.10. Let r be a prime and let a,b € N with a < b.
(1) If there exists t € Z,°\{0} such that a-t="b-t, then r|(b— a).

(2) If there exist t # s in Z,~ such that a -t =a - s, then r|a.

Theorem 3.11. Let (1), be the sequence of primes, let S = @, L., let p € S*, let
u,v € #S, and let a,b € N with a <b. Thenu+a-p#v—+0b-p.

Proof. Let ¥(T) be the statement of Theorem 3.4. By Theorem 3.9, we have for each n € N
that W(Z,>) holds. By Lemma 3.10, we have that {n < w : there exist s # ¢ in Z; such that
either a-s = a-tor b-s = b-t} is finite and {n < w : there exists ¢t € Z;°\{0} such that
a-t=">0-t} is finite. Thus Theorem 3.4 applies. O

Now we consider the group (Q,+). We shall need the following well known fact.

Lemma 3.12. 7[Q] ~ @, Z°.
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Proof. This is proved in [3, Chapter 1, Section 5]. U

In the following theorem, Q,; denotes Q with the discrete topology.

Theorem 3.13. Let S = Qg , let u,v € BS, let p € S* and let a,b € N with a # b. Then
uta-pFuv+b-p.

Proof. Suppose that u+a-p = v+b-p. We may assume that [0,00)NQ € p. (Forif (—o0,0)NQ € p
we have by [5, Lemma 13.1] that —u+a-(—p) =—-1-(u+a-p)=—1-(v+b-p) = —v+a-(—p)
and then (0,00) NQ € —p. )

Assume first that there is some n € N such that [0,7) NQ € p. Since 7 is a homomorphism,
we have that its continuous extension 7 : Qg — ((7w[Q]4) is a homomorphism by [5, Corollary
4.22]. Therefore, 7(u + a - p) = 7(u) + 7(a - p).

Further, for s € Q, m(a-s) = a-7(s) so that 7 ol, and I, o T agree on S and hence on 5,

so that m(a - p) = a - 7(p).

Thus 7(u) +a-7(p) = 7(v) +b-7(p). By Theorem 3.11 and Lemma 3.12, this is impossible
if m(p) € (7[Q]a)*. Thus there is some x € Q such that 7(p) = m(z) and thus, {y € Q : 7(y) =
m(x)} € p. But {y € Q: w(y) = w(x)} N[0,n) is finite and so p ¢ S*, a contradiction.

Now assume that for all n € N, (n,00) N Q € p. We assume without loss of generality that

4b
a<bandleta:\/;. Define f: Q — w by

o= {171 221

Let f: 6Q, — Bw be the continuous extension of f.

Note that f(b) = f(a)+4. Note also that for all z,y € QN[1, c0) either f

Yy
or f(x-y)=f(z)+ f(y)+1. Picki € {0,1} such that {y € Q: f(a-y) = f
Then f ol, and Afa) © Ai © f agree on a member of p and thus f(a p)=f

Likewise, pick j € {0,1} such that f(b-p) = f(b) + 7 + f(p).

zy) = f(2)+f(y)
a)+i+f(y)} €p.

(a) +1i+ f(p).

—

Observe next that for all n € N, (n,00) NQ € a-p and (n,00) NQ € b-p. We now claim
B } + 1, then there is some k € {—1,0, 1} such

that for all z,y € Q, if y > max ,
a—1 a-1

that f(z +y) = f(y) + k. To see this, assume first that z > 0. Then y > v 7 S0 Y >z+y

o —

and thus o/ @) <y < y+ 2 < ay < of@*+2. Next assume that z < 0. Then y > —ra

a—1

and

thus y + 2 > 2. Then o/@-1 < ¥ <yt 4 <y < af W1,
(6% (6%

For each z € Q, pick k(x) € {—1,0,1} such that {y € Q: f(z+y) = f(y) +k(z)} € a-p and
pick k € {—1,0,1} such that {z € Q : k(z) = k} € u. We claim that f(u+a-p) = k+ f(a-p).
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For this it suffices to show that fo Pa-p i constantly equal to f(a -p) + k on a member of u. So
let € Q such that k(z) = k. Then fo Az and Ay o f agree on a member of a - p so the claim
is established.

Similarly, pick m € {—1,0,1} such that f(v+b-p) = m+ f(b-p). Then m+ f(b)+j+ f(p) =

fo+b-p) = f(uta-p) = k+ f(a)+i+ f(p). Then by [5, Lemma 6.28], m+ f(b)+j = k+ f(a)+i
and thus f(b) — f(a) =k+i—j—m <14+ 1+0+1 < 4, a contradiction. O

Theorem 3.14. Let S be a discrete Abelian group and let a,b € N with a < b. If for every
s € S\{0}, ab(b—a) - s # 0, then there do not exist u,v € S and p € S* such that u+a-p=
v+b-p.

Proof. We note that, by an obvious induction, for every s € S\{0} and every n € N, (ab(b —
a))"s # 0. By [3, Theorems 19.1 and 20.1], S can be embedded in a group of the form @, _, T,
where each T, is either Q or Z;° for some prime r. Let I = {v < k: T, = Z;° for some prime
r such that rlab(b — a)} and let J = k\I. Let G1 = @,; T, and let G2 = @,;T,. Let
¢ : S — Gy x G be an embedding. Given s € S, let ¢(s) = (s1,s2) Now (ab(b — a))n52 =0
for some n € N. Thus s # 0 implies that s; # 0. So the mapping s — 71 o ¢ is injective and
defines an embedding of S in Gj.

By Theorems 3.9 and 3.13, we have that for each ¢ € I, ¥(7,) holds. We have by Lemma
3.10 that {¢ € J : there exist s # t in T, such that either a-s =a-torb-s=>b-t} = and
{v € J : there exists t € T,\{0} such that a -t =b-¢t} = 0. Thus Theorem 3.4 applies to yield

the conclusion for G; and thus for S. O

Definition 3.15. If S is an Abelian group and r a prime number, we put S, = {s € S:r"s=0
for some n € N}.

Lemma 3.16. Let S be an Abelian group. Assume that u+a-p=v+b-p, where u,v € 85,
p € S* and a,b are distinct positive integers. Let R denote the set of prime factors of ab(b—a).
Then there exists s € S such that s + @, .y Sr € p, where P

sum.

rER S, denotes the internal direct

Proof. By [3, Theorems 19.1 and 20.1] we may assume that S C G where G is the (internal)
direct sum of discrete groups G; and G5, where (G1 is a direct sum of groups which are copies
of Q or of quasicyclic groups corresponding to primes which are not in R, and G5 is a direct
sum of quasicyclic groups corresponding to primes which are in R. Let m; denote the natural
map from S to G; and let 7 : 3S — G, be its continuous extension. By [5, Corollary 4.22]
and Lemma 3.2, m(u) + a - 71 (p) = m1(v) + b - 71 (p). So by Theorem 3.14, 71 (p) ¢ G7. Thus
there exist P € p and s; € G; for which 71[P] = {s1}. Choose any s € P. Then —s+ P C G,.
Now Gy is a torsion group and Go NS, = {0} for every r ¢ R. It follows that G2 C €D, . Sr,

since, by [3, Theorem 2.1}, every Abelian torsion group is the direct sum of its r-subgroups. [
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Lemma 3.17. Let r be a prime number and let G be an Abelian r-group. Let H = {x € G :
rz = 0}. Then H is isomorphic to a direct sum @,c; Zr, and G can be embedded in @, ; Z,° .
In particular, if H is finite, G can be embedded in the direct sum of a finite number of copies
of Z;°.

Proof. We observe that H has the form @,
[+ H — D =@, 7> denote the natural embedding. Consider the set of all pairs (NV,h),
where N is a subgroup of G which contains H and h : N — D is an injective homomorphism
which extends f. We order this set by saying that (N,h) < (N',h’) if N C N" and h'|y = h.
By Zorn’s Lemma choose a pair (M, g) which is maximal with respect to this ordering. We
shall show that M = G.

Z., because H is a vector space over Z,. Let

Suppose, on the contrary, that there exists x € G \ M. We may suppose that r -z € M.
(Letting k& be the largest element of w such that r*z ¢ M one has r(r*z) € M.) Since D is
divisible, we can extend g to a homomorphism g : M + Zz — D by [3, Theorem 16.1].

We claim that g is injective. To see this, suppose that g(t + nz) = 0, where t € M and
n € Z. Then g(rt+nrz) = 0 and so rt+nrz = 0, because rt+nrx € M. Thust+nz € H C M
and therefore t + nx = 0. O

Theorem 3.18. Let S be a discrete Abelian group and let a,b € N with a < b. There exist
u,v € BS and p € S* such that wu+a-p=v+0b-p if and only if {s € S :ab(b—a)-s =0} is

infinite.

Proof. The sufficiency is a consequence of Theorem 3.1.

For the necessity, assume that {s € S : ab(b —a) - s = 0} is finite. Let R denote the set of
prime factors of ab(b — a). For each r € R, {s € S : rs = 0} is finite. By Lemma 3.17, there is

an injective homomorphism A from S, to a group G which is the direct sum of a finite

reR
number of quasicyclic groups. Since G is divisible, h extends to a homomorphism b’ : S — G
by [3, Theorem 16.1]. We then have h/(u) + a - /(p) = h'(v) + b - h/(p). By Lemma 3.16,
5+ @, cr Sr € p for some s € S. Since b’ is injective on this set, W (p) € G*. By Theorems 3.4

and 3.9, this is a contradiction. ]

Corollary 3.19. Let S be a commutative cancellative semigroup and let a,b € N with a < b.
Assume that {(s,t) € S xS :s#t and ab(b—a)-s=ab(b—a) -t} is finite. Let u,v € 3S, let
p € S* and let a,b € N witha #b. Thenu-+a-p#v+b-p.

Proof. Let G be the group of quotients of S. (Notice that “quotients” is multiplicative termi-
nology. The members of G all have the form s — ¢ for some s,t € S.) Since {(s,t) € Sx S : s #
t and ab(b—a)-s = ab(b—a) -t} is finite, {x € G : ab(b — a) - © = 0} is finite, so Theorem 3.18
applies. O
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Lemma 3.20. Let r be a prime number. Suppose that S = @,_,.Z.°. Let o(s) denote the
order of the element s € S and let 0 : S — BN denote the continuous extension of o. If

uta-p=v+b-p for someu,ve€BS,peS* and a#binN, then o(p) € N.

Proof. Suppose we have u,v € S, p € S*,and a # b € Nwithu+a-p=v+b-p and o(p) € N*.
We make the inductive assumption that x is the smallest cardinal for which this is possible.
We note that Theorems 3.4 and 3.9 imply that xk > w.

We may suppose that (a,b) = 1 because, if (a,b) = d, we can replace a and b by % and
b ~
p respectively, replacing p by d - p. (Observe that o(d - p) € N*, and consequently d - p € N*.
Indeed, if o(d - p) =n € N, then {t € S : 0o(d-t) =n} € p and thus {t € S : o(t) < d-n} € p,
contradicting the assumption that o(p) € N*.)

We know by Theorem 3.14 that r|ab(b — a). We first consider the case in which r|a. Let r¥
be the largest power of r which divides a. Define 7: S — w by 7(s) = log, o(s). If s,t € S and
o(t) > r*o(s), then 7(s +a-t) = 7(a-t) = —k +7(t). Thus 7(u +a-p) = SIEI}L 1%i_r>11107(5 +a-t)=
—k 4+ 7(p). Similarly, since r Jb, 7(v + bp) = 7(p). By [5, Lemma 6.28], this is a contradiction.

We may thus suppose that rfa and rfb. This implies that, for every s € S, o(a -s) =
o(b-s) =o(s). If s € S\{0}, let I(s) = max{t < k : 7,(s) # 0} and let pu(s) = max{t < K :
o(m.(s)) = o(s)}. Define g : S — S by g(0) = 0 and for s € S\{0} and ¢ < &,

_ 0 if ¢« # p(s)
9(s)(e) = {71'“(5)(8) if 0 = p(s).

We claim that a - g(p) = b- g(p), so suppose instead that a - g(p) # b - g(p) and pick P € p
such that for all ¢,t' € P, a-g(t) #b-g(t'). Notice that for each A < k, {t € S : u(t) > \} € p.
To see this, suppose instead that {t € S : u(t) < A} € p. Let o denote the projection of S onto
@D, \ZF. Since {t € S : p(t) < A} € p, we have that {t € S : o(c(t)) = o(t)} € p and thus

o(a(p)) = o(p) € N*, contradicting our inductive assumption.

Consequently,

and o(t) > o(s)} € u+a-p and

{s+a-t:seS,teP ult)>1s),
I(s"), and o(t' > 0o(s')} €v+b-p.

{s'+b-t':s €S teP ut)>
Thus we may choose s,s" € S and ¢,t' € P with u(t) > I(s), o(t) > o(s), u(t') > I(s"), and
o(t") > o(s’) such that s+a-t =5 +0b-t'. Since u(a-t) = u(t) > I(s) and o(t) > o(s), we have
p(s+a-t) = p(a-t) and m,q.p(s+a-t) = a-m,4)(t) and so g(s+a-t) = a- g(t) and similarly
g(s"+b-t') =0b-g(t'). Since t,t' € P, this is a contradiction and thus a - g(p) = b- g(p) as

claimed.

Since [, is injective on S, it follows from Lemma 3.3 that {t € S:a-t =b-t} € g(p). Let r™
be the largest power of r which divides b — a. Now {t € 5 : o(t) > r™} € p and o(g(t)) = o(t)
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forallt € S. So {t € S:o(t) >r™} € g(p). This is a contradiction, because if o(t) > r™, then
a-t#b-t. O

Theorem 3.21. Let S be an Abelian group. Suppose that u+ ap = v + bp for some u,v € 35,
some p € S*, and some a # b in N. Then there exist s € S and k € N such that (ab(b—a))kp €
S.

Proof. By Lemmas 3.16 and 3.17, there exist s € S such that s+@, . S, € p and an embedding
h:@,cpSr — D=, Dr, where each D, is a direct sum of copies of Z°. By [3, Theorem
16.1], h extends to a homomorphism A’ from S to D. Since 7, o b’ is a homomorphism, so is
T o b’ by [5, Corollary 4.22]. Thus 7, o h/(u) +a - Ty o ' (p) = T o W' (v) 4+ b - 7 0 W (p). So, by

Lemma 3.20, for each 7 € R, 60 7, o ' (p) € N and hence 60 7, o ' (—s + p) € N.

So r"r - (w0 lfzv’(—s—i—p)) = 0 for some n, € N. Let n =[], .z 7" Then l;’(n (=s+p)) =
n-h'(—s+p) = 0. Now A’ is injective on D, cr Sr, so that (see [5, Exercise 3.4.1]) 1’ is injective
on cl(P,cp Sr). Since n - (—s+p) € cl(P,cp Sr) it follows that n - (—s + p) = 0. Our claim
follows from the fact that we can choose k£ € N such that (ab(b — a))k is a multiple of n. U

Our results depended in an essential way on the assumption that S is Abelian. However, our
next corollary shows that we can obtain analogous results for some non-Abelian semigroups. If
S is an arbitrary semigroup and a € N, we shall use 7, : S — S for the mapping s — s* and

Tq : BS — B8 for its continuous extension.

Corollary 3.22. Let S denote the free semigroup on a finite set of generators. If u,v € 35,
p € S*, and a,b € N with a # b, then um,(p) # vTp(p).

Proof. For s € S, let {(s) be the length of s. We note that ¢ is a homomorphism and that
(7 (s)) = n-L(s) for every n € N and every s € S. Thus {: S — BN is a homomorphism by [5,

Corollary 4.22], and it follows from the continuity of the maps involved that £(m,(z)) = n- {(z)

for every x € 3S. So l(u) + a-£(p) = £(v) + b - £(p). By Corollary 3.19, ¢(p) € N. However, if
Z(p) = n, the fact that ¢~1[{n}] is finite implies that p € S, a contradiction. O

4. The Equation a1'p + as'p+ . .. + app=0b1p+bap+...+ bup

Recall from Theorem 1.4 that if p4+p = p, a1, aq,...,a, € Nwith a; # a;41 foralli € {1,2,...,
n—1},b1,ba, ..., € Nwith b; # b,y foralli € {1,2,...,m—1}, and a;-p+as-p+...+a,p =
by -p+by-p+...+by p, then m =n and a; = b; for all i € {1,2,...,n}. Recall also that the
restriction on repeated coefficients is necessary. For example, for any idempotent p € SN, one
hasp+p+2-p+3-p=p+2-p+3-p+3-p.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 0 (2000), #A02 16

In this section we investigate solutions to the equation a1 -p+as -p+ ... +a, - p =
by -p+by-p+...+ b, -pfor p e N'. As an immediate consequence of Corollary 2.7 and
Theorem 3.14 we have that necessarily a; = b; and a, = b,,. Beyond that, the information
we are able to obtain is quite limited. In particular, our main results are restricted to the
case when there exists some d € N\{1} such that a1,as,...,a,,b1,b2,...,b, € {1,d}. (By [5,
Lemma 13.1] the restriction that aj,asg,...,an,b1,b2,...,b, € {1,d} is the same as requiring
that a1, a9,...,a,,b1,b2,...,b, € {k,l} where k divides [.)

Some special cases of our results include the facts that the equations p +3-p + p = p and
3-p+p+3-p+p=3-p+ p have no solutions. The nature of the arguments is such that
we cannot even determine whether the equation 2-p+3-p+2-p = 2-p can be solved. (We

conjecture very strongly that it cannot be solved.)

The key to the amount of success that we have had is the following lemma, which allows us

to work in base d arithmetic and add numbers with no carrying.

Lemma 4.1 Let p € N* and let ay,as,...,a,,b1,b2,...,b;y €N. Ifay-p+as-p+...+a, -p=
by p+by-p+...+bp-panday+as+ ...+ an # by +ba+ ...+ by, then for all d,l € N,
Nd' € p.

Proof. Tt suffices to show that for every prime ¢ and every [ € N, N¢! € p. So let a prime ¢ be
given. Without loss of generality assume that ¢ = ay +ag+ ... +a, — (by +ba+ ...+ by,) > 0.
Let [ € N be given and pick k& € N such that ¢* > ¢. Pick i € {0,1,...,¢"*" — 1} such that
A =N¢"*" +i € p. Then ayA+asA+...+a,A€a-p+as-p+...+a,-p (as can be
established by an easy induction) and b1 A + bo A+ ... + b A € by -p+ba-p+ ...+ by D
Consequently a1 A+asA+...+a, ANbiA+bsA+...+ b, A#D. Thus a1i+agi+...+ayi =
bii+byi+...+bpi (mod ¢**!). That is, c-i = 0 (mod ¢**!). Since ¢"**1 J¢, we have ¢'|i. Then
Ng"*! + i C Ng! so that N¢! € p as required. U

We now adopt some special notation to be used in our proof of the main theorem of this

section, Theorem 4.5.

Definition 4.2. Let d € N\{1}, let € N, and write z in its base d expansion as 22:1 db - g
where 0 < t; <ty <...<t;andeachg; € {1,2,...,d—1}. Then start(xz) = ¢;, and end(z) = ¢;.
ForieZ, fi(x)={j €{1,2,..., 01— 1} : tj11 —t; =i (mod 3)}|.

The notation does not reflect its dependence on the choice of d. The terminology “start”
and “end” comes from [2] and refers to the number as ordinarily written in base d (with high
order digits to the left). For example, if d = 5 and z = 4003201410300, then start(z) = 12,
end(z) =2, fo(z) =1, fi(x) =3, and fa(z) = 2.

Lemma 4.3. Let d € N\{1}, let u € N, let p € (72, Nd', and let i € {0,1,2}. If {x € N :
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start(z) =4 (mod 3)} € p, then

{z € N : start(x)
{z € N : start(x)
{z € N : start(x)

+1 (mod 3)} €d-p,
(mod 3)} € u+p, and

1
]
i+1(mod3)} cut+d-p.

Proof. Let A = {z € N: start(x) = ¢ (mod 3)}. To see that {z € N : start(x) = i+1 (mod 3)} €
d - p, note that A C d=!'{z € N : start(z) =i+ 1 (mod 3)}.

To see that A € u + p, we show that for all z € N, —x + A € p. So let x € N and let
B = ANNg*@%@)+1 Then B € p. If y € B, then start(y + x) = start(y) = i (mod 3) so
BC —z+ A

The proof that {x € N: start(z) =i+ 1 (mod 3)} € u+ d - p is similar. O

Lemma 4.4 Let d € N\{1}, let p € 2, Nd', let ay,as,...,a, € {1,d}, and fiz i,j € {0,1,2}
such that {x € N : start(z) = ¢ (mod 3) and end(z) = j (mod 3)} € p. Let ¢; = |[{i € {1,2,
coo,m—1} ta; = 1 and a;41 = d}|. Let r € N and fir o € {0,1,...,r — 1} such that
{r eN: fj11-i(x) =« (mod r)} € p. Then

{reN: fijz1i(x)=n-a+c (modr)} €ay-pt+as-p+...+ay, p.

Proof. Let A = {x € N: start(x) = ¢ (mod 3) and end(z) = j (mod 3)} and let B = {x € N :
fij+1—i(xz) = o (mod r)}. We proceed by induction on n.

Assume first that n = 1. Then ¢y =0and n-a+c¢; = a. If a1 =1, then B € a; - p directly,
so assume that a; = d. Given z € N, fj11_;(dz) = fj11-i(z) and so B C d~'B and hence
Beay-p.

Now let n > 1 and assume that the statement is true for n—1. Let F = {x e N: f;11_;(z) =

n-a+c; (mod r)}. We consider four cases.

Case 1: ap—1 =1 and a,, = 1. Then by the induction hypothesis,
E={zeN:fiiir)=n—-1)-a+c (modr)} €a1-p+az-p+...+ap_1-p.

Also, by Lemma 4.3, {z € N : start(z) =¢ (mod 3)} € a1 -p+az-p+...+ ap—1-p. We claim
that EN{x € N : start(z) =i (mod 3)} C {xr € N: —z + F € p} so let x € E such that
start(z) =4 (mod 3) and let [ = start(x) + 1. Then BNNd'NAC —z + F.

Case 2: a1 =1 and a,, = d. Then by the induction hypothesis,
E={zeN: fijz1iz)=n—-1)-a+cg—1(modr)} €ar-p+az-p+...+ap_1-D.

Also, by Lemma 4.3, {x € N:start(z) =i (mod 3)} €a; -p+az-p+ ...+ an_1-p. We claim
that EN{z € N : start(z) =i (mod 3)} C {r e N: —x + F € d - p} so let x € E such that
start(r) =i (mod 3) and let [ = start(z) + 1. Then BOANd'NA C d~(—x + F).
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Cases 3 (ap—1 =d and a,, = 1) and 4 (a,—1 = d and a,, = d) are handled similarly. O

Theorem 4.5. Let d € N\{1}, let p € (2, Nd', let a1, as,...,an,b1,bo,... bm € {1,d} and
assume that a1 -p+az-p+...+ap - p=by - p+by-p+...4+by -p. Let c=|{t €{1,2,...,
n—1}:a; # app1} and let e = [{t € {1,2,...,m — 1} : by # byy1}. Then ax = by, an = by,

and (n — m)|€

Proof. That a; = by and a,, = b, follows from Corollary 2.7 and Theorem 3.18. Let

aa = Hte{1,2,....n—1}:a; =1 and a;; = d},
co = |{te{l,2,....,n—1}:a; =d and a;41 = 1},
e7. = {te{l,2,...,m—1}:b;=1and by; =d}, and
ea = |[{te{l,2,...,m—1}:b;=d and by = 1}.

Notice that
(1) If a1 = ay, then ¢; = co.
(2) If a; =1 and a,, = d, then ¢; = ¢3 + 1.
(3) If ay =d and a,, = 1, then cg = ¢; + 1.
Since similar statements hold for e; and e5, we have in any event that co — c¢; = e5 — e5.

Fix 7,7 € {0,1,2} such that

{z € N :start(z) =i (mod 3) and end(z) = j (mod 3)} € p.

If m = n, pick r € N such that r > |e; — ¢1|. If m # n, let r = |m — m|. Pick a € {0,1,
...,7 — 1} such that {x € N : f;11_i(z) = a (mod r)} € p. By Lemma 4.4, we have that
{reN: fiiii(r)=n-a+c (modr)} €a1-p+as-p+...+ap-pand {z e N: fj_;(z) =
m-a+e; (modr)} €by-p+by-p+...4+ by -p. Consequently n-a+c; =m-a+e; (mod r).

If m = n, we have ¢; = e; (mod r) so, since r > |c1 — e1], ¢1 = e3.
If m # n, then r = |m — n| so that ¢; = e; (mod r) and thus (n — m)|(e; — ¢1).

Therefore in any case (n —m)|(ex — ¢1). We have observed that co — ¢; = e2 — e7 and thus

e—c=(ex—c2)+ (e1 —c1) = 2(e; — ¢1) so that (n — m)|e — as required. O

Corollary 4.6, Let d € N\{1}, let p € N*, let a1, az,...,an,b1,b2, ..., by, € {1,d}, and assume
that ap -p+as-p+...4+a,-p=by-p+by-p+...+by-p. Let c=|{t € {1,2,...,
n—1}:a; # app1}) and let e = [{t € {1,2,...,m — 1} : by # byy1}. Then ax = by, an = by,

and either a1 +as+ ...+ ap =by + by + ...+ by, or(n—m)\egc
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Proof. By Lemma 4.1, if a1 + a2+ ...+ an # by +bas+ ... + by, then p € m;’;@ so that
Theorem 4.5 applies. u

We see in particular that if the coefficients alternate, they must match exactly.

Corollary 4.7. Let d € N\{1}, let p € N*, let a1,aa,...,an,b1,b2,..., by € {1,d}, such
that for all i € {1,2,...,n— 1} and all j € {1,2,...,m — 1}, a; # a;11 and bj # bj41. If
ar-pt+as-pt...4+a, p=by-p+by-p+...4+by p, thenn=m and for alli € {1,2,...,n},

a; :bi.

Proof. Let c = |{t € {1,2,...,n—1} ray # a1} andlet e = [{t € {1,2,...,m—1} : by # b1 }.

Then c =n—1and e = m—1 and so e —c = m —n. By Corollary 4.6, either a1 +as+...+a, =
n—m

by +ba+...4+ by or (n—m)|

we have that for all i € {1,2,...,n}, a; = b;. O

. In either case we conclude that n = m. Since also a1 = by

Notice also that Corollary 4.6 tells us that many equations whose coefficients do not alternate
have no solutions. For example, there is no p € N* such that p+p=p+2-p+p+2-p+p. On
the other hand we no not know whether there exist solutions to p+p+p=p+2-p+p+2-p+p.
Nor do we know whether p+p+2-p+2-p=p+2-p+ p+ 2-p has any solutions (although
Theorem 4.5 tells us there are no solutions with p € (2, Nd').

There are other equations which we know can be solved by idempotents such as p+p+2-p =
p+ 2 - p for example, and we would conjecture that these are the only solutions. We know,
of course, that there are equations in SN only solvable by idempotents. Trivially p +p = p
is one such. Much less trivial is the fact that p + p + p = p implies that p is an idempotent.
(Indeed, if p+p+p = p, then {p, p+ p} forms a subgroup of N* and the very difficult Zelenuk’s
Theorem [5, Theorem 7.17] asserts that the only finite subgroups of N* are singletons.) It is
unknown whether there exists any p # p + p such that p+p+ p = p+ p. The existence of such
p is equivalent to the existence of a nontrivial continuous homomorphism from N to N* [5,
Corollary 10.20].

Similarly, we do not know whether the equation p+p+ 2-p = p+ 2 - p has any solutions
in N* besides idempotents. It is a consequence of Theorem 4.8 that there are no such solutions
with p € K(fN), the smallest ideal of SN.

Theorem 4.8 Let p € K(ON) and let g€ ON. If p+p+q=p+q, then p+p=rp.

Proof. Pick by [5, Theorem 2.8] a minimal left ideal L and a minimal right ideal R of SN with
p € RN L. By [5, Theorem 2.7], RN L is a group. Let e be the identity of RN L and let r
be the inverse of p in RN L. By [5, Theorem 1.46], L + ¢ is a minimal left ideal of SN and
e+q € L+ qso by [5, Theorem 2.11(c)], petq/r is @ homeomorphism from L onto L + ¢. Since
Petq(D) =P+e+qg=e+p+qg=r+ptptqg=r+ptg=et+qg=e+e+q= perq(p), we
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have that p = e. U
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