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Abstract

Let pn/qn = [a0; a1, . . . , an ] be the n-th convergent of the continued fraction expansion of
e1/s, where s ≥ 1 is some integer. Elsner studied the case s = 1 in order to prove arithmeti-
cal properties of every third convergent p3n+1/q3n+1 for Euler’s number e = [2; 1, 2k, 1 ]∞k=1.
Komatsu studied the case for all s ≥ 2 to prove those of every third convergent p3n/q3n for
e1/s = [1; s(2k − 1)− 1, 1, 1 ]∞k=1. He has also extended such results for some more general
continued fractions. In spite of many properties of such leaping convergents, their explicit
forms have not been known. In this paper we show some combinatorial properties of such
leaping convergents.

1. Introduction

Let pn/qn = [a0; a1, . . . , an ] be the n-th convergent of the continued fraction expansion of
[a0; a1, a2, . . . ]. The pn’s and qn’s satisfy the recurrence relation:

pn = anpn−1 + pn−2 (n ≥ 0), p−1 = 1, p−2 = 0,

qn = anqn−1 + qn−2 (n ≥ 0), q−1 = 0, q−2 = 1.

They also satisfy

pnqn−1 − pn−1qn = (−1)n−1,

pnqn−2 − pn−2qn = (−1)nan

and so on.
1This research was supported by the grant for specially promoted research of the Dean of Faculty of

Science and Technology, Hirosaki University, 2005.
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The number e1/s (s = 1, 2, . . . ) has many significant arithmetical properties. Elsner
[1] studied the case s = 1 of Euler’s number e = [2; 1, 2k, 1 ]∞k=1, finding that every third
convergent also has the similar characteristic relations to the original convergents. Putting
Pn = p3n+1, Qn = q3n+1 (n ≥ 0), P−1 = P−2 = Q−1 = 1, Q−2 = −1, P−n = Pn−3 and
Q−n = −Qn−3 (n ≥ 0), then for any integer n,

Pn = 2(2n + 1)Pn−1 + Pn−2, Qn = 2(2n + 1)Qn−1 + Qn−2,

Pn−1Qn − PnQn−1 = 2(−1)n−1,

Pn−2Qn − PnQn−2 = 4(2n + 1)(−1)n

and some similar properties. Komatsu [3] studied the cases s ≥ 2 of e1/s =
[1; s(2k − 1)− 1, 1, 1 ]∞k=1 to find similar properties. Putting Pn = p3n, Qn = q3n (n ≥ 0),
P−n = Pn−1 and Q−n = −Qn−1 (n ≥ 0), then for any integer n

Pn = 2s(2n− 1)Pn−1 + Pn−2, Qn = 2s(2n− 1)Qn−1 + Qn−2,

Pn−1Qn − PnQn−1 = 2(−1)n,

Pn−2Qn − PnQn−2 = 4s(2n− 1)(−1)n−1

and some more similar properties. Though there are many properties of such leaping con-
vergents, Pn or Qn themselves have not been explicitly known. In this paper we exhibit
combinatorially explicit forms of such leaping convergents.

Consider the continued fraction expansion of α = [1; ak + b, c, d ]∞k=1, where a and b are
integers so that every ak + b is a positive integer for k = 1, 2, . . . , and c and d are positive
integers. It is known [2, Theorem 1] that if we put Pn = p3n and Qn = q3n (n ≥ 0), then for
n ≥ 2 we have the recurrence relations

Pn = SnPn−1 + Pn−2,

Qn = SnQn−1 + Qn−2 ,

where Sn = (cd + 1)(an + b) + c + d. However, none of P̂n = p3n+1, Q̂n = q3n+1, P̃n = p3n+2

and Q̃n = q3n+2 satisfies such recurrence relations. But they satisfy some different types
of relation. It is impossible to express pn or qn in a closed form in a general way because
2(an + b + 1) is not constant. Nevertheless, there exist general closed forms about Pn and
Qn, and even P̂n, Q̂n, P̃n and Q̃n.

2. Combinatorial Expression of Leaping Convergents

As usual, binomial coefficients are defined by

(
n

k

)
=






n(n−1)...(n−k+1)
k! , k > 0;

1, k = 0;

0, k < 0.
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Our main result is the following theorem. For simplicity, put Sn = (cd+1)(an+b)+c+d.
As usual, the empty product equals 1.

Theorem 1 Let α = [1; ak + b, c, d ]∞k=1. Then we have for n ≥ 1

p3n =

#n
2 $∑

k=0

(
n− k

k

) n−2k∏

i=1

Sk+i + (cd− c + 1)

%n
2 &−1∑

k=0

(
n− k − 1

k

) n−2k−1∏

i=1

Sk+i+1 ,

p3n−1 =

#n
2 $∑

k=0

((
n− k − 1

k − 1

)
+

c(a(k + 1) + b + 1)

Sk+1

(
n− k − 1

k

)) n−2k∏

i=1

Sk+i

+

%n
2 &−1∑

k=0

(Sn−k − a(n− 2k − 1))

(
n− k − 1

k

)
S−1

k+1

n−2k−1∏

i=1

Sk+i ,

p3n−2 =

%n
2 &−1∑

k=0

(a(k + 1) + b + 1)

(
n− k − 1

k

) n−2k−1∏

i=1

Sk+i+1

+

#n
2 $−1∑

k=0

((n− k − 1)ad− d + 1)

(
n− k − 2

k

) n−2k−2∏

i=1

Sk+i+1

and

q3n =

#n
2 $∑

k=0

(
n− k

k

) n−2k∏

i=1

Sk+i − c

%n
2 &−1∑

k=0

(
n− k − 1

k

) n−2k−1∏

i=1

Sk+i+1 ,

q3n−1 =

%n
2 &−1∑

k=0

(c(a(k + 1) + b) + 1)

(
n− k − 1

k

) n−2k−1∏

i=1

Sk+i+1

− a

#n
2 $−1∑

k=0

(n− k − 1)

(
n− k − 2

k

) n−2k−2∏

i=1

Sk+i+1 ,

q3n−2 =

#n
2 $∑

k=0

((
n− k − 1

k − 1

)
+

a(k + 1) + b + c

Sk+1

(
n− k − 1

k

)) n−2k∏

i=1

Sk+i

−
%n

2 &−1∑

k=0

(cSn−k − ad(n− 2k − 1))

(
n− k − 1

k

)
S−1

k+1

n−2k−1∏

i=1

Sk+i .

The 0-th convergent 1 may not be so important and some expressions may be awkward for
this result. However, putting c = d = 1 in Theorem 1, we have the following corresponding
results between the p’s and q’s.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A21 4

Corollary 1 Let α = [1; ak + b, 1, 1 ]∞k=1. Then we have, for n ≥ 1,

p3n =

#n
2 $∑

k=0

2n−2k

(
n− k

k

) n−2k∏

i=1

(a(k + i) + b + 1)

+

%n
2 &−1∑

k=0

2n−2k−1

(
n− k − 1

k

) n−2k−1∏

i=1

(a(k + i + 1) + b + 1),

p3n−1 =

#n
2 $∑

k=0

2n−2k−1

((
n− k

k

)
+

(
n− k − 1

k − 1

)) n−2k∏

i=1

(a(k + i) + b + 1)

+ (a(n + 1) + 2(b + 1))

%n
2 &−1∑

k=0

2n−2k−2

(
n− k − 1

k

) n−2k−2∏

i=1

(a(k + i + 1) + b + 1),

p3n−2 =

%n
2 &−1∑

k=0

2n−2k−1

(
n− k − 1

k

) n−2k∏

i=1

(a(k + i) + b + 1)

+ a

#n
2 $−1∑

k=0

2n−2k−2(n− k − 1)

(
n− k − 2

k

) n−2k−2∏

i=1

(a(k + i + 1) + b + 1)

and

q3n =

#n
2 $∑

k=0

2n−2k

(
n− k

k

) n−2k∏

i=1

(a(k + i) + b + 1)

−
%n

2 &−1∑

k=0

2n−2k−1

(
n− k − 1

k

) n−2k−1∏

i=1

(a(k + i + 1) + b + 1),

q3n−1 =

%n
2 &−1∑

k=0

2n−2k−1

(
n− k − 1

k

) n−2k∏

i=1

(a(k + i) + b + 1)

− a

#n
2 $−1∑

k=0

2n−2k−2(n− k − 1)

(
n− k − 2

k

) n−2k−2∏

i=1

(a(k + i + 1) + b + 1),

q3n−2 =

#n
2 $∑

k=0

2n−2k−1

((
n− k

k

)
+

(
n− k − 1

k − 1

)) n−2k∏

i=1

(a(k + i) + b + 1)

− (a(n + 1) + 2(b + 1))

%n
2 &−1∑

k=0

2n−2k−2

(
n− k − 1

k

) n−2k−2∏

i=1

(a(k + i + 1) + b + 1).
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3. Examples

Put a = 2s and b = −s − 1 in Corollary 1. Then we have the continued fraction expansion
e1/s = [1; s(2k − 1)− 1, 1, 1]∞k=1 (s ≥ 2). Let pn/qn be its n-th convergent. In addition, let
p∗n/q

∗
n be the n-th convergent of the continued fraction expansion of e = [2; 1, 2k, 1]∞k=1. Then,

for n ≥ 1, we have

p3n = p∗3n−2 =
n∑

k=0

(2n− k)!

k!(n− k)!
sn−k, q3n = q∗3n−2 =

n∑

k=0

(−1)k (2n− k)!

k!(n− k)!
sn−k,

p3n−1 = p∗3n−3 = n
n∑

k=0

(2n− k − 1)!

k!(n− k)!
sn−k, q3n−1 = q∗3n−3 =

n−1∑

k=0

(−1)k (2n− k − 1)!

k!(n− k − 1)!
sn−k,

p3n−2 = p∗3n−4 =
n−1∑

k=0

(2n− k − 1)!

k!(n− k − 1)!
sn−k, q3n−2 = q∗3n−4 = n

n∑

k=0

(−1)k (2n− k − 1)!

k!(n− k)!
sn−k.

Note that all the six formulas for p∗3n−2, p∗3n−3, p∗3n−4, q∗3n−2, q∗3n−3 and q∗3n−4 correspond to
s = 1 in the continued fraction expansion of e.

Put a = c = d = 0 and b = 1 in Theorem 1. Then by Sn = 1 we have

Qn =

#n
2 $∑

k=0

(
n− k

k

)
.

In fact, Qn = Fn+1 (n ≥ 0), where Fn is the n-th Fibonacci number (see, e.g., [4, Theo-
rem 12.4]). This is equivalent to the fact that the denominator of the n-th convergent of
[1; 1, 1, 1, . . . ] = [1; 1, 0, 0 ] corresponds to Fn.

4. Proof of Theorem 1

We shall prove the results involving the q’s by showing that the three recurrence relations

q3n = dq3n−1 + q3n−2

q3n+1 = (a(n + 1) + b)q3n + q3n−1

q3n+2 = cq3n+1 + q3n

are valid, provided that the identities from the theorem for the q’s on the right sides are
valid. Proof involving the p’s can be done similarly. Note the addition formula

(
m

l

)
+

(
m

l − 1

)
=

(
m + 1

l

)
(l : integer)

and the symmetry identity
(

m

l

)
=

(
m

m− l

)
(m ≥ 0, l : integers) .
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For simplicity, put K = a(k + 1) + b. It is easy to see that q0 = 1, q1 = a + b and
q2 = c(a + b) + 1. Suppose that the identities for q3n−2 and q3n−1 are valid for a positive
integer n. Then we shall prove that q3n = dq3n−1 + q3n−2. This follows from

d · (cK + 1)

(
n− k − 1

k

)
Sk+2 · · · Sn−k − d · a(n− k − 1)

(
n− k − 2

k

)
Sk+2 · · · Sn−k−1

+

(
n− k − 1

k − 1

)
Sk+1 · · · Sn−k + (K + c)

(
n− k − 1

k

)
Sk+2 · · · Sn−k

− c

(
n− k − 1

k

)
Sk+2 · · · Sn−k + ad(n− 2k − 1)

(
n− k − 1

k

)
Sk+2 · · · Sn−k−1

=

(
n− k − 1

k

)
Sk+1 · · · Sn−k +

(
n− k − 1

k − 1

)
Sk+1 · · · Sn−k

− c

(
n− k − 1

k

)
Sk+2 · · · Sn−k

=

(
n− k

k

)
Sk+1 · · · Sn−k − c

(
n− k − 1

k

)
Sk+2 · · · Sn−k .

To see this, notice that if n is odd, then for k =
⌈

n
2

⌉
− 1 we have ad(n− 2k− 1)

(
n−k−1

k

)
= 0 .

If n is even, then for k =
⌊

n
2

⌋
we have

((
n− k − 1

k − 1

)
+

a(k + 1) + b + c

Sk+1

(
n− k − 1

k

)) n−2k∏

i=1

Sk+i =

(
n− k

k

) n−2k∏

i=1

Sk+i = 1 .

Hence, we have the relation q3n = dq3n−1 + q3n−2.

Suppose that the identities for q3n−1 and q3n are valid for a positive integer n. We shall
prove that q3n+1 = (a(n + 1) + b)q3n + q3n−1. We can see that

(a(n + 1) + b)
#n

2 $∑

k=0

(
n− k

k

) n−2k∏

i=1

Sk+i =
#n

2 $∑

k=0

K

Sk+1

(
n− k

k

) n−2k+1∏

i=1

Sk+i + a

#n
2 $∑

k=0

k

(
n− k

k

) n−2k∏

i=1

Sk+i

+
#n

2 $∑

k=0

a(c + d)(n− 2k)
(

n− k

k

)
S−1

k+1

n−2k∏

i=1

Sk+i

=
#n

2 $∑

k=0

K

Sk+1

(
n− k

k

) n−2k+1∏

i=1

Sk+i

+ a

#n
2 $−1∑

k=0

(n− k − 1)
(

n− k − 2
k

) n−2k−2∏

i=1

Sk+i+1

+
#n

2 $∑

k=0

ca(n− k)
(

n− k − 1
k

)
S−1

k+1

n−2k∏

i=1

Sk+i

+
%n−1

2 &∑

k=0

ad(n− 2k)
(

n− k

k

)
S−1

k+1

n−2k∏

i=1

Sk+i
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and

− (a(n + 1) + b)c
%n

2 &−1∑

k=0

(
n− k − 1

k

) n−2k−1∏

i=1

Sk+i+1 +
%n

2 &−1∑

k=0

(cK + 1)
(

n− k − 1
k

) n−2k−1∏

i=1

Sk+i+1

= −
%n

2 &−1∑

k=0

ca(n− k)
(

n− k − 1
k

) n−2k−1∏

i=1

Sk+i+1 +
#n+1

2 $∑

k=0

(
n− k

k − 1

) n−2k+1∏

i=1

Sk+i .

Hence, if n is odd, then

(a(n + 1) + b)q3n + q3n−1 =

#n+1
2 $∑

k=0

(
n− k

k − 1

) n−2k+1∏

i=1

Sk+i +

#n
2 $∑

k=0

K

Sk+1

(
n− k

k

) n−2k+1∏

i=1

Sk+i

+

%n−1
2 &∑

k=0

ad(n− 2k)

(
n− k

k

)
S−1

k+1

n−2k∏

i=1

Sk+i

= q3n+1,

since K
(

n−k
k

)
= 0 for k =

⌊
n+1

2

⌋
. If n is even, then by ca(n − k)

(
n−k−1

k

)
= 0 for k =

⌊
n
2

⌋
, in

a similar way we obtain
(a(n + 1) + b)q3n + q3n−1 = q3n+1 .

Suppose that the identities for q3n and q3n+1 are valid for a positive integer n. Then we
shall prove that q3n+2 = cq3n+1 + q3n. Since

c

#n+1
2 $∑

k=0

((
n− k

k − 1

)
+

K

Sk+1

(
n− k

k

)) n−2k+1∏

i=1

Sk+i +

#n
2 $∑

k=0

(
n− k

k

) n−2k∏

i=1

Sk+i

=

#n+1
2 $−1∑

k=0

c

(
n− k − 1

k

) n−2k−1∏

i=1

Sk+i+1 +

#n+1
2 $∑

k=0

cK

(
n− k

k

) n−2k∏

i=1

Sk+i+1

+

%n+1
2 &−1∑

k=0

(
n− k

k

) n−2k∏

i=1

Sk+i+1 −
#n

2 $∑

k=0

(cd + 1)a(n− 2k)

(
n− k

k

) n−2k−1∏

i=1

Sk+i+1

and

c

%n+1
2 &−1∑

k=0

ad(n− 2k)

(
n− k

k

) n−2k−1∏

i=1

Sk+i+1 − c

%n
2 &−1∑

k=0

(
n− k − 1

k

) n−2k−1∏

i=1

Sk+i+1

= cd

#n
2 $∑

k=0

a(n− 2k)

(
n− k

k

) n−2k−1∏

i=1

Sk+i+1 − c

#n+1
2 $−1∑

k=0

(
n− k − 1

k

) n−2k−1∏

i=1

Sk+i+1 ,

we have cq3n+1 + q3n = q3n+2. Notice that if n is odd, then cK
(

n−k
k

)
= 0 for k =

⌊
n+1

2

⌋
; if n

is even, then (cd + 1)a(n− 2k)
(

n−k
k

)
= 0 for k =

⌊
n
2

⌋
.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A21 8

5. Some More Recurrence Relations

We start by remarking that P̂n = p3n+1, Q̂n = q3n+1, P̃n = p3n+2 and Q̃n = q3n+2 do not
satisfy any recurrence relations of the type Pn = SnPn−1 + Pn−2. They do, however, satisfy
some different types of relations. In fact, such relations also hold for a more general continued
fraction of [1;T1(k), T2(k), T3(k)]∞k=1.

Theorem 2 Let α = [1;T1(k), T2(k), T3(k) ]∞k=1, where each Ti(k) (i = 1, 2, 3) takes a positive
integer for k = 1, 2, . . . . Then for every integer n ≥ 2 we have

(T3(n− 1)T1(n) + 1)p3n+1 = U(n)p3n−2 + (T3(n)T1(n + 1) + 1)p3n−5 ,

(T3(n− 1)T1(n) + 1)q3n+1 = U(n)q3n−2 + (T3(n)T1(n + 1) + 1)q3n−5 ,

where U(n) = (T3(n−1)T1(n)+1)((T2(n)T3(n)+1)T1(n+1)+T2(n))+T3(n−1)(T3(n)T1(n+
1) + 1), and

(T1(n)T2(n) + 1)p3n+2 = V (n)p3n−1 + (T1(n + 1)T2(n + 1) + 1)p3n−4 ,

(T1(n)T2(n) + 1)q3n+2 = V (n)q3n−1 + (T1(n + 1)T2(n + 1) + 1)q3n−4 ,

where V (n) = (T1(n)T2(n) + 1)(T3(n)(T1(n + 1)T2(n + 1) + 1) + T2(n + 1)) + T1(n)(T1(n +
1)T2(n + 1) + 1).

Remark. If T1(n) = an + b, T2(n) = c, and T3(n) = d, then

U(n) = a2d(cd + 1)n2 + a((a + 2b)d(cd + 1) + d2 + 2cd + 1)n

+ b(a + b)d(cd + 1) + a(d2 + cd + 1) + b(d2 + 2cd + 1) + c + d ,

U(n + 1) = a2d(cd + 1)n2 + a((3a + 2b)d(cd + 1) + d2 + 2cd + 1)n

+ (a + b)(2a + b)d(cd + 1) + a(2d2 + 3cd + 2) + b(d2 + 2cd + 1) + c + d ,

V (n) = a2c(cd + 1)n2 + a((a + 2b)c(cd + 1) + c2 + 2cd + 1)n

+ b(a + b)c(cd + 1) + acd + b(c2 + 2cd + 1) + c + d ,

V (n + 1) = a2c(cd + 1)n2 + a((3a + 2b)c(cd + 1) + c2 + 2cd + 1)n

+ (a + b)(2a + b)c(cd + 1) + a(c2 + 3cd + 1) + b(c2 + 2cd + 1) + c + d .

Proof of Theorem 2. Since
(

p3n+1 p3n

q3n+1 q3n

)
=

(
p3n−2 p3n−3

q3n−2 q3n−3

)(
T2(n) 1

1 0

)(
T3(n) 1

1 0

)(
T1(n + 1) 1

1 0

)
,

by comparing the (1, 1) element, we have

p3n+1 = ((T2(n)T3(n) + 1)T1(n + 1) + T2(n))p3n−2 + (T3(n)T(n + 1) + 1)p3n−3 . (1)

The identity involving the q’s is similar and omitted.
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Since

(
p3n−2 p3n−3

q3n−2 q3n−3

)
=

(
p3n−5 p3n−6

q3n−5 q3n−6

)(
T2(n− 1) 1

1 0

)(
T3(n− 1) 1

1 0

)(
T1(n) 1

1 0

)

=

(
p3n−5 p3n−6

q3n−5 q3n−6

)(
(T2(n− 1)T3(n− 1) + 1)T1(n) + T2(n− 1) T2(n− 1)T3(n− 1) + 1

T3(n− 1)T1(n) + 1 T3(n− 1)

)
,

by

(
p3n−5 p3n−6

q3n−5 q3n−6

)

=

(
p3n−2 p3n−3

q3n−2 q3n−3

)(
−T3(n− 1) T2(n− 1)T3(n− 1) + 1

T3(n− 1)T1(n) + 1 −(T2(n− 1)T3(n− 1) + 1)T1(n)− T2(n− 1)

)
,

we have
p3n−5 = −T3(n− 1)p3n−2 + (T3(n− 1)T1(n) + 1)p3n−3 . (2)

Substituting (1) and (2) into

(T3(n− 1)T1(n) + 1)p3n+1 = U(n)p3n−2 + (T3(n)T1(n + 1) + 1)p3n−5

and comparing the coefficient of p3n−2, we get U(n) = (T3(n − 1)T1(n) + 1)((T2(n)T3(n) +
1)T1(n + 1) + T2(n)) + T3(n− 1)(T3(n)T1(n + 1) + 1). Notice that the coefficient of p3n−3 is
cancelled.

In a similar manner, substituting p3n+2 = (T3(n)(T1(n + 1)T2(n + 1) + 1) + T2(n +
1))p3n−1 + (T1(n + 1)T (n + 2) + 1)p3n−2 and p3n−4 = −T1(n)p3n−1 + (T1(n)T2(n) + 1)p3n−2

into (T1(n)T2(n) + 1)p3n+2 = V (n)p3n−1 + (T1(n + 1)T2(n + 1) + 1)p3n−4 and comparing the
coefficient of p3n−1, we get V (n) = (T1(n)T2(n) + 1)(T3(n)(T1(n + 1)T2(n + 1) + 1) + T2(n +
1)) + T1(n)(T1(n + 1)T2(n + 1) + 1).

Comments. A further generalization on the leaping convergent was mentioned in [2]. It
seems possible to obtain the explicit forms for [1;T (k), c, d ]∞k=1 in Theorem 1,
[1;T1(k), T2(k), T3(k), T4(k), T5(k) ]∞k=1 in Theorems 1 and 2, and so on. Unfortunately, for

example q3n =
∑#n

2 $
k=0

(
n−k

k

)∏n−2k
i=1 Sk+i − c

∑%n
2 &−1

k=0

(
n−k−1

k

)∏n−2k−1
i=1 Sk+i+1 does not hold if

the general T (k) replaces ak + b with Sn = (cd + 1)T (n) + c + d in Theorem 1. We are
currently preparing such results.
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