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Abstract

A set X in a semigroup G has the Erdős-Turán property ET if, for any basis A of X, the
representation function rA is ubounded, where rA(x) counts the number of representations
of x as a product two elements in A. We show that, under some conditions, operations on
binary vectors whose value at each coordinate depends only on neighbouring coordinates of
the factors give rise to semigroups with the ET–property. In particular countable powers of
semigroups with no mutually inverse elements have the ET–property. As a consequence, for
each k there is N(k) such that, for every finite subset X of a group G with X ∩X−1 = {1},
the representation function of every basis of XN ⊂ GN , N ≥ N(k), is not bounded by k.
This is in contrast with the known fact that each p–elementary group admits a basis of the
whole group whose representation function is bounded by an absolute constant.

1. Introduction

Let (G, ∗) be a set with a binary operation and X ⊂ G. A subset A ⊂ X is a basis of X if
X ⊂ A ∗A. When X is an infinite set, A is an asymptotic basis if X \ (A ∗A) is finite.

For g ∈ G we denote by rA(g) the number of pairs (a, a′) ∈ A × A such that g = a ∗ a′.
The function rA is the representation function of A.
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Given a positive integer k, we say that X has the k-Erdős-Turán property ET (k) if, for
any basis A of X, there is an element x ∈ X with rA(x) ≥ k. We say that X has the
Erdős-Turán property ET if it has ET (k) for every k ∈ N.

A famous conjecture of Erdős and Turán [5] formulated in 1942 states that the set of
positive integers with addition has the ET property. The conjecture was proved to be true
for the class of so-called d-bounded additive bases of N, see [10]. However it is still wide
open in its general formulation. Erdős showed that the function rA(n) can have logarithmic
growth. Ruzsa [12] gives a construction of a basis A for which the number of representations is
bounded in the square mean. These results indicate the difficulties involved in the conjecture
and leads to the consideration of the problem in other semigroups.

The situation for the integers with multiplication is different. Erdős [1] proved in 1964
that (N, ·) does have the ET property. Nešeťril and Rödl [9] gave a simple proof of this
result by using Ramsey Theorem. Puš [11] extended this result by showing that an abelian
semigroup with an infinite set of primes and a finite number of units has the ET property.

On the negative side, it is not difficult to show that the group of integers with addition
has basis with unique representation (up to commutativity), a result which can be extended
to any abelian free group. Nathanson [8] even showed that the direct product of a countable
semigroup with an infinite abelian group G such that {12g; g ∈ G} is infinite, admits
an asymptotic basis whose representation function can be arbitrarily prescribed. Ruzsa
[12] shows that, for any prime p such that 2 is a square, there are bases of Zp × Zp whose
representation function is bounded by 18. This result has been recently extended by Haddad
and Helou [6] to the additive group of F×F for any finite field F of odd order. These authors
also show [7] that there is an absolute constant C such that no cyclic group has the property
ET (k) for k > C. In particular, the p–elementary groups with p > 2 do not have the
ET (k)–property for k > 18C.

In this paper we place the Ramsey argument of [9] in a natural broader setting by con-
sidering operations in the set of binary vectors. We show that locally bounded operations,
a notion explained in Section 2, on binary vectors of length N do have the ET (k) property
for each positive integer k and large enough N . This result allows one to show that several
classes of semigroups have the ET property. Among these there are the class of direct prod-
ucts of semigroups with no mutually inverse elements, the class of finite or cofinite sets of a
countable set with union, or the class {(Nk, +), k ∈ N} of powers of N with componentwise
addition.

As a consequence of these results, combined with the negative results for abelian groups
mentioned above, we can formulate the following statement:

Theorem 1 Let G be a group of prime order p > 2 and k a positive integer. Let R ⊂ G
such that R ∩ (−R) = {0}. There is N(k) such that RN ⊂ GN has the ET (k) property for
each N ≥ N(k), while GN has a basis A with representation function bounded by 18C.
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Theorem 1 shows that there are abelian groups which admit bases with bounded representa-
tion function, while containing asymmetric subsets with the ET property. The Erdős–Turán
conjecture says that this is the case for the group of integers.

2. Locally Bounded Operations on Binary Vectors

Let BN = {0, 1}N denote the set of all binary vectors of length N . We denote by s(x) the
support of vector x ∈ BN , that is, the set of nonzero coordinates of x. We denote by BN
the set of infinite binary sequences with finite support.

Given a nonnegative integer r we denote by Ir = [−r, r] the integer interval of length
2r + 1 centered at 0. The r–neighborhood of a subset U ⊂ [1, N ] is defined as the set
(U)r = (

⋃
i∈U(i + Ir)) ∩ [1, N ]. For a vector x ∈ BN we denote by (x)U = (xi; i ∈ U) the

vector of length |U | of the entries of x in U .

Let α : N0 → N0 be a function. A binary operation ‘∗’ defined in BN is said to be α–locally
bounded if, for every three vectors x, x′, y, and every i, 1 ≤ i ≤ N , the following conditions
hold:

if (x)(i)r
= (x′)(i)r

then also (x ∗ y)i = (x′ ∗ y)i, (1)

if (x)(i)r
= (0, · · · , 0) then (x ∗ y)i = (y ∗ x)i, (2)

s(x ∗ y) ⊂ (s(x) ∪ s(y))r and s(x) ∪ s(y) ⊂ (s(x ∗ y))r. (3)

where r = α(|s(x∗ y)|). Condition (1) says that the i–th coordinate of x∗ y depends only on
the i-th coordinate of y and the coordinates of x in the r–neighborhood of i. Condition (3)
specifies that a nonzero entry can occur in x ∗ y only in the r–neighborhood of the supports
of x or y, and also that such nonzero entries must occur in a way that their r–neighborhoods
cover the support of x and y; in particular the support of x ∗ y is bounded from above and
from below, through the function α, by the supports of x and y. These two conditions are the
essential properties of a locally bounded operation. Finally (2) states that the zero vector
commutes ‘locally’ with every vector.

Theorem 2 Let k be a positive integer and α : N0 → N0 a function. There is N(k,α) such
that (BN , ∗) has the ET (k)–property for every α–locally bounded operation ‘∗’ on BN and
all N ≥ N(k,α).

Proof. Given k, let t = 2+log2 k + 1, and set r = α(t). Define N = N(k,α) = (5r +
1)(R(2t(t + 1), t, 2t(2r+1)) + 2), where R(m, t, l) denotes the Ramsey number which ensures
the existence of an homogeneous subset of [1, R(m, t, l)] of cardinality m all of whose t-subsets
are monochromatic for any coloring of the t-subsets with l colors.
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Let A be a basis of (BN , ∗).

Take the subset Y ⊂ [1, N ] of multiples of 5r if r ≥ 1 and Y = [1, N ] if r = 0. Define a
coloring c of the t-subsets of Y as follows. Given a t–subset X = {i1 < i2 < · · · < it}, let x
be the vector with the support X. Choose a pair y, z ∈ A such that x = y ∗ z. By (3) we
have s(x) ⊂ (s(y) ∪ s(z))r. Since two consecutive elements in s(x) are at least at distance
4r + 1, we can choose one of y and z, say y, such that s(y) intersects at least t/2 of the
disjoint intervals (i1)r, (i2)r, . . . , (it)r. Color X by the binary vector of length rt given by

c(X) = ((y)(i1)r
, (y)(i2)r

, . . . , (y)(it)r
).

By (3) again, we have s(y) ⊂ (s(x))r, so that this coloring gives an encoding of y except
that we do not keep track of the position of its support in [1, N ].

Since A is a basis, c is a coloring of all t-subsets of Y and it uses at most 2t(2r+1) colors.
By the definition of N , there is a subset Z ⊂ Y of cardinality |Z| = 2t(t + 1) all of whose
t-subsets have the same color u = (u1, u2, . . . , ut(2r+1)).

Let u(1) = (u1, . . . , ur), u(2) = (ur+1, . . . u2r), . . . , u(t) = (u(t−1)r+1, . . . utr). By the construc-
tion of the coloring, at least t/2 of the vectors u(1), u(2), . . . , u(t) have nonempty support. Let
u(i1), u(i2), . . . , u(is) be these vectors.

Choose a subset J = {j1 < j2 < · · · < j2s} ⊂ Z of cardinality 2s such that there are at
least t elements of Z between two consecutive elements of J , and at least t elements of Z
before j1 and t after j2s. Denote by Ji = {j2i−1, j2i}, 1 ≤ i ≤ s. Recall that, by the choice of
Y , every two consecutive elements in J are at distance at least t(4r + 1).

Let K = {k1 < · · · < ks} be a s-subset of J obtained by picking one element in each Ji.
Since there are t elements of Z between any two consecutive elements in J , this set can be
completed to a t-subset by inserting an element from Z \ J in each position i such that u(i)

is the zero vector. In other words, we construct a t-set K ′ = {k′1, · · · < k′t} ⊂ Z such that
k′il = kl for l = 1, . . . s.

Since Z is an homogeneous set, the vector a = a(K) ∈ BN whose support is contained in
(K)r and

(a)(K)r
= (u(i1), u(i2), . . . , u(is))

belongs to the basis A. By the same argument, the similarly defined vector a(J \ K) also
belongs to the basis. Denote by b(K) the vector which coincides with a(K) on the r–
neighborhood of K and with a(J\K) in the r–neighborhood of J\K and has zero coordinates
elsewhere (this is a correct definition as in our situation these r–neighborhoods are pairwise
disjoint.) We have

(b(K))(J)r
= (u(i1), u(i1), u(i2), u(i2), . . . , u(is), u(is)).

By (3), the support of a(K) ∗ a(J \ K) is contained in the r–neighborhood of s(b(K)) =

s(a(K)) ∪ s(a(J \ K)). This r–neighborhood is a subset of ((J)r)r. Since two consecutive
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elements in J are at least at distance 4r + 1, the set (s(b(K)))r is again the disjoint union
of the r–neighborhoods of each element in s(b(K)).

Let K ′ ⊂ J be another choice of a s–subset with exactly one element in each Ji. The
vectors a(K) and a(K ′) differ in the r–neighborhood of the symmetric difference K∆K ′. On
the other hand, b(K) = b(K ′). By (1) and (2), for each coordinate i in the r–neighborhood
of (K ′∆K)r we have ((a(K ′) ∗ a(J \K ′))i = ((a(J \K) ∗ a(K))i = (a(K) ∗ (a(J \K))i, while

for the remaining coordinates in ((J)r)r, we have ((a(K ′)∗a(J \K ′))i = ((a(K)∗a(J \K))i.
Therefore

a(K ′) ∗ a(J \ K ′) = a(K) ∗ a(J \ K).

There are 2s−1 choices leading to different pairs of vectors {a(K), a(J \ K)}. Hence, for
u = a(K) ∗ a(J \ K), we have rA(u) ≥ 2t/2−1 ≥ k. This completes the proof. !

3. Semigroups with the Erdős–Turán Property

Let (G, ∗) be a semigroup with a distinguished idempotent element e ∈ G which commutes
with every element in G. We say that a subset R ⊂ G is antisymmetric if e ∈ R and the
equation x ∗ y = e holds for x, y ∈ R if and only if x = y = e. We will consider the direct
product GN . By the support of an vector g ∈ Gn we mean the set of coordinates of g
which are different from e. We denote by GN the set of infinite sequences of elements of G
with finite support, where the product is defined componentwise. As a direct application of
Theorem 2 we have the following result.

Theorem 3 Let (G, ∗) be a semigroup and e ∈ G an idempotent element which commutes
with every element in G. Let R be a finite antisymmetric set of a semigroup with |R| > 1. For
each positive integer k there is N(k) such that RN has the ET (k) property for all N ≥ N(k).

In particular, RN has the ET property.

Proof. Define an encoding φ of the elements of R by binary vectors of length m = +log2 |R|,
such that φ(e) = (0, · · · , 0) and φ(x) = (0, . . . , 0, 1) for some element x -= e in R. Let
B′

Nm = (φ(R))N ⊂ BNm and define an operation in B′
Nm according to the operation in G,

that is, for x, y ∈ B′
Nm,

(x ∗ y)[(i−1)m+1,im] = φ(φ−1((x)[(i−1)m+1,im]) ∗ φ−1((y)[(i−1)m+1,im])), 1 ≤ i ≤ N.

In this way we have a locally bounded operation in B′
Nm with α(t) = mt. Indeed, condition

(1) is verified by definition, condition (3) follows from the asymmetry of R and (2) holds
since e commutes with every element in G. We can now apply the proof of Theorem 2 even
if the operation is not defined for all vectors in BNm: all vectors whose support lies in the
set Y ⊂ [1, Nm] of coordinates multiple of 5r in that proof do belong to φ({e, x})N ⊂ B′

Nm,
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and we only use the fact that each of these vectors belong to A ∗ A for any basis A, which
is the case in our present situation. This shows that RN has the ET (k) property for N ≥
(5mt + 1)(R(2t2, t, 2t(2mt+1)) + 2) where t = +log2 k + 1,.

The result follows for RN since each of its bases contains a basis of RN for every N . !

The positive part of Theorem 1 follows from Theorem 3 by taking an antisymmetric set
in Z/pZ.

Let G be an infinite class of semigroups. We say that G has the ET–property if, for every
k, all but a finite number of members in G have the ET (k)–property. As a specialization of
Theorem 3 we have the following examples of semigroups with the Erdős-Turán property.

Corollary 1 The following classes have the ET property.

1. {(PN ,∨), N ∈ N} and (PN,∨), where P is a finite semilattice with supremum and
minimum elements.

2. The family of finite (or cofinite) subsets of a countable set X with respect to union,
(2X ,∪), and with respect to intersection, (2X ,∩).

3. {([0,m]N , +), N ∈ N} and ([0,m]N, +), where [0,m] is the interval of integers 0 ≤
i ≤ m and the sum is componentwise.

4. {(NN , +), N ∈ N} and (NN, +), where the sum is componentwise.

Proof. For {(PN ,∨), N ∈ N} and for (PN,∨), the conditions of Theorem 3 are satisfied
with R = P and e the minimum element of P .

In particular, for P = {0, 1} with the usual supremum function, (P k,∨) corresponds to the

family of subsets of [1, N ] with union and (PN,∨) to the family of finite subsets of an infinite
countable set. By taking complements we get the result for cofinite sets with intersection.
To prove (2) it remains to show that the class of finite subsets of N with intersection does

have the ET–property. Let A be a basis of (2N,∩) and X a nonempty set in A. Since for
each integer n the set X ∪ {n} must be obtained as the intersection of two sets in A, there
are infinitely many sets in A containing X and, for each such set Y , X itself can be written
as X ∩ Y .

Part (3) follows directly from Theorem 3 with R = [0,m]. Finally, (4) follows from (3)
since every basis of (Nk, +) contains a basis of [0,m]k for each m ≥ 1. !

Note that the multiplicative semigroup of the positive integers can be viewed as (NN, +)
by considering a vector (xi, i ∈ N) with finite support as the integer

∏
i∈N pxi

i where p1, p2, . . .
is the sequence of prime numbers. Thus Corollary 1 (4) includes the result that (N, ·) has
the ET property.
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4. Final Remarks

The condition in Theorem 3 that the set R is antisymmetric is essential for the proof.
Although we were always more interested in the positive results (i.e., structures with the
ET property) we add a few examples in the opposite direction. We say that a basis A of
an abelian semigroup (G,+) is a unique representation basis if every element g ∈ G can be
uniquely represented in A + A (up to commutativity.) A simple greedy algorithm produces

a unique representation basis of GN for certain groups. Here we need the group assumption
since Proposition 1 below does not hold for semigroups in general.

Proposition 1 Let (G,+) be a countable abelian group and a ∈ G \ {0} such that 4a -= 0.

Let R ⊂ G containing a,−a and 0. Then RN has a unique representation basis.

Proof. Take a linear ordering in R and consider the following ordering in RN: x ≤ y if and
only if either max s(x) < max s(y) or max s(x) = max s(y) = m and x is smaller than y in
lexicographic order.

Construct recursively a basis A as follows. Let A0 = {0}. For each i > 0, let g be
the minimum element which is not in Ai + Ai. Let mi the largest element in the support of
elements in (Ai+Ai)∪{g}. Let ga coincide with g except that the (mi+1)–th coordinate of ga

is a. Let all the coordinates of gb be 0 except (gb)mi+1 = −a. Now define Ai+1 = Ai∪{ga, gb}.

We have g = ga + gb ∈ Ai+1 ∗ Ai+1. Moreover, if every element in Ai ∗ Ai can be uniquely
expressed, then the same is true in Ai+1 ∗Ai+1, since each sum involving one of the two new
elements has either a, −a, 2a or −2a in the (mi + 1)-th coordinate. Therefore, A = ∪i∈NAi

is a unique representation basis. !

A similar argument as in the above proof shows that finitely generated abelian free groups
do not have the ET–property. On the other hand, the problem for free semigroups is as
hard as for additive bases of positive integers.

Proposition 2 Let X be a finite set. The free semigroup FS(X) generated by X has the
ET–property if and only if (N, +) has the ET–property.

Proof. For the if part, note that any basis A of FS(X) contains a basis of the semigroup
generated by a single element, which is isomorphic to (N, +).

Suppose now that FS(X) has the ET–property. For every basis A ⊂ N consider the set
A′ of words in N whose lengths belong to A, A′ = {w ∈ F (X) : |w| ∈ A}. This is clearly
a basis of FS(X). If w = x1 ∗ y1 = · · · = xk ∗ yk are k different representations of a word
w ∈ FS(X) in elements of the basis A′, then |x1| + |y1| = · · · = |xk| + |yk| are k different
representations of |w| in elements of A. This shows the only if part. !
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We have dealt with bases of order two. More generally, for an integer h ≥ 2, a subset
A ⊂ X is a basis of X of order h if X ⊂ A ∗A ∗ · · · ∗A︸ ︷︷ ︸

h

= Ah. Accordingly we say that X

has the ETh(k) property if, for every basis of order h, there is an element in X with at least
k representations in Ah. If X has ETh(k) for every k ∈ N then we say that it has the ETh

property. The proof of Theorem 2 can be easily extended to prove the following statement.

Theorem 4 Let h ≥ 2 and k be positive integers and α : N0 → N0 an arbitrary function.
There is N(h, k,α) such that (BN , ∗) has the ETh(k)–property for every α–locally bounded
operation ‘∗’ on BN and all N ≥ N(h, k,α). In particular, RN has the ETh(k)–property
for every antisymmetric set R with respect to e in a semigroup G, where e is an idempotent
element commuting with all elements in R, and all N large enough.

In connection with the Erdős-Newman problem (cf. [3]) we may ask the following question.
Let A be a basis with unbounded representation function and let A = A1 ∪ · · · ∪ Ar be a
finite partition of A. Is it true that one of the parts still has unbounded representation
function? The answer is negative in general. It is shown in [10] that there are bases of Z
with unbounded representation function which can be split into two B1

2 sequences (every
element can be uniquely written in each of the parts). It is perhaps true that the question
has a positive answer for semigroups with the ET property. Again, the proof of Theorem 2
can be adapted to prove the following.

Theorem 5 Let ‘∗’ be a locally bounded operation on BN. Let A be a basis of BN. For
every finite partition of A one of the parts has unbounded representation function.
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