
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A29

Partizan Geography on Kn ×K2

R. J. Nowakowski1

Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
rjn@mathstat.dal.ca

A. A. Siegel
Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada

siegel@mathstat.dal.ca

Received: 1/9/06, Accepted: 7/1/06

Abstract

We give the values, temperatures and a guide to play partizan geography on a n× 2 board
where Left can move along the rows and Right along the column. Clearly, Left has an
advantage for n > 2, but has to play carefully to fully utilize this advantage.

1. Introduction

In this game, Left moves the token (O) to any empty cell on the same row and Right moves
it to any empty cell in the same column (roles are reversed in the negative game) and no
cell can be visited twice—visited cells are indicated by an X. Before reading the rest of the
paper, the reader is invited to discover who wins, and how, in the following sum?

X X X X X X X
O X O X X O X

The game called Kotzig’s Nim in [1] and Modular Nim in [2] consists of a directed cycle
of length n with the vertices labeled 0 through n − 1, a token placed initially on vertex 0,
and a set of integers called the move set. There are two players, who alternate moves, where
the last player to move wins; a move consists of moving the token from the vertex i on which
it currently resides to vertex i + m mod n, where m is a member of the move set. However,
the coin can only land on a vertex once, thus ensuring that the game is finite. Most of the
known results concern themselves with move sets of small cardinality and consisting of small
numbers (see p. 515 of [1], and [2]).

1This author wishes to thank the NSERC for partial financial support.
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Obviously, this game can be extended to more general directed graphs, the move set
being indicated by directed edges, for clarity. This has become known as Geography, [3, 4],
after the children’s game of the same name. In [2], it was shown that deciding who wins in
Geography is P-space complete. In [6, 5], the class of graphs was restricted to the cartesian
product of two directed cycles.

All these versions are impartial, i.e. both players have the same moves. In this paper,
we consider the partizan version played on the Cartesian product of Kn and K2. Recall that
the cartesian product of graphs G and H, G!H, has vertex set V (G)× V (H) and there is
an edge from (i, j) to (k, l) if i is adjacent to k and j = l or if j is adjacent to l and i = k.

We will visualize this graph as a 2 by n rectangular board with rows labeled 0, 1 from
top to bottom and the columns are numbered 0, 1, . . . , (n− 1) from left to right.

Our starting board is
0 1 . . . n− 1

1
0 O

In the partizan version, from this starting position of (0, 0), Right can only move to (0, 1)
and Left to any position (x, 0) where x ∈ {1, . . . , n − 1}. Equivalently, on our rectangular
board, Left is allowed move horizontally within the same row to any open cell while Right
is only allowed to to move up or down within the same column and no cell can be visited
twice.

After Right’s initial move on the opening board, Right will always have a response to a
Left move because the cells on a column can be paired off. In other words, Right moving
first moves to a game of value 0. After a Left move though, Right moves to a game whose
value depends on the parity as well as then number of cells that can be paired off—Right,
after playing the paired cells, would like to finish in the column in which Left doesn’t have
a move. However, if Right allows Left two consecutive moves before responding, Left has
gained a move so there are threats that have to be taken into account when evaluating a
position. The first few values are:

n 1 2 3 4 5 6 7
value of Kn !K2 −1 ∗ {1

2 | 0} {1 ∗ | 0} {3
2 | 1 || 0} {2 ∗ | 1 || 0} {5

2 | 2 || 1 ||| 0}
(Mean, Temp.) (0, 0) (1

4 ,
1
4) (1

2 ,
1
2) (5

8 ,
5
8) (3

4 ,
3
4) (13

16 ,
13
16)

This pattern continues. In Theorem 2 (F), we show that, with k = %n−1
2 &, the starting

position has Mean and Temperature 1− 1
2k if n is even and 1− 3

2k+1 if n is odd. In fact, in
Theorem 2, we give the strategy and a ‘players-guide’ to the game. In Theorem 7, we give
the exact values and in Corollary 8, we give a more detailed interpretation of these values.
The proof of Theorem 2 follows from Theorem 7 and Corollary 8.

This work is an extension of results found in [7]. The authors would like to acknowledge
the use and usefulness of CGSuite [8] for this paper.
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2. Basic Strategy

In order to more easily discuss positions in the game, we must first develop a simple notation
to describe a board position. We adopt the convention that the token will always be on the
bottom row. We use an ordered triple (x, y, z) to represent a board in which:

(1) There are x cells open in the bottom row that do not have top row positions available.

(2) There are y columns that have cells open in both the bottom and top rows.

(3) There are z cells open in the top row that do not have bottom row positions available
from them.

(4) (i) if the token occupies one of the x cells, this board will be denoted by B(x, y, z).
Note: by definition then x > 0 and also as a consequence, only Left can move.

(ii) if the current position is in the y cells, this board will be denoted by A(x, y, z).
Note: by definition y > 0 and Right can move.

For example, the notation B(3, 0, 0) represents each of the following two K2 !K4 board
positions:

0 1 2 3 0 1 2 3
1 X X X X 1 X X X X
0 O X 0 X O

which are of course, isomorphic positions. Also The following two K2 !K4 boards, which
are isomorphic, would be represented by the notation A(2, 2, 0):

0 1 2 3 0 1 2 3
1 X X 1 X X
0 O 0 O

Using this notation, it is now easy to describe the options of the games.

Lemma 1 Given a position (x, y, z):

B(x, y, z) =
{

B(x− 1, y, z) , A(x− 1, y, z)
∣∣∣

}
(1)

A(x, y, z) =
{

B(x, y − 1, z + 1) , A(x, y − 1, z + 1)
∣∣∣B(z + 1, y − 1, x)

}
(2)

provided the options exist.

Theorem 2 (Strategy) The value of A(x, y, z) is:
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(A) If z ≥ y − 2 and x > y − 2, then

A(x, y, z) = {y + x− 2 | y + z − 1} = y + m + {x− 2−m | z − 1−m}

where m = min{x, z} and Left’s best move is to B(x, y − 1, z + 1);

(B) If z ≥ y − 2 and x ≤ y − 2, then

A(x, y, z) = {y + x− 2 |x + z} = y + x− 2 + {0 | z − y + 2}

and Left’s moves are incomparable;

(C) If z < y − 2 and x > y − 2, then A(x, y, z) = y + z − 1 + H where H has mean and
temperature x−y+1

2 and Left’s moves are incomparable.

(D) If z < y − 2 and x ≤ y − 2, then Left’s best move is to A(x, y − 1, z + 1) and

(i) if 2x < y + z then A(x, y, z) = x + z + H where, putting k = %y−z−1
2 &, H has

mean and temperature 1− 1
2k if y− z is even; and mean and temperature 1− 3

2k+1

if y − z is odd;

(ii) if 2x ≥ y + z, then A(x, y, z) = x + z + H where H has mean and temperature
1− 1

2y−x−1 .

The value of B(x, y, z) is:

(E) If z < y, then B(x, y, z) = x + z − 1;

(F) If z ≥ y, then B(x, y, z) = y + x− 1.

In parts (A) and (B) of the following theorem, the game value reduces to numbers for
some values of x and z.

In our opening example, the game in our new notation is A(3, 2, 1)−A(3, 1, 2)−A(1, 1, 1)
which has value {3 | 2} − 2 ∗ −1

2 = {1
2 ∗ | − 1

2∗}. The game is a first player win and both
should move in A(3, 2, 1), Left to B(3, 2, 2) and Right to B(3, 0, 3).

As a general heuristic, a player should play in the game with highest temperature. In
G = A(3, 12, 4) + A(7, 12, 1) − A(9, 15, 6), G is fuzzy with 0, i.e. a first player win, G has
mean 29

32 and a temperature of 15
16 . The individual summands have temperatures 7

8 ,
15
16 and

29
32 respectively. The only winning move for Right is to A(3, 12, 4) + 8− A(9, 15, 6) which is
less than 0 and has a mean of − 1

32 . Left is less constrained, he has winning moves in both
A(7, 12, 1) and −A(9, 15, 6) but playing in −A(9, 15, 6) results in a strictly greater game than
playing in A(7, 12, 1).
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3. Evaluation of Positions

In order to evaluate the game, we will first look at some basic positions.

Lemma 3 For x > 0, B(x, 0, z) = x− 1.

Proof. If x = 1, then B(x, 0, z) = B(1, 0, z) = { | } = 0.

Using induction,

B(x, 0, z) =
{
B(x− 1, 0, z)

∣∣ }
=

{
(x− 1)− 1

∣∣ }
=

{
x− 2

∣∣ }
= x− 1.

!

Lemma 4 For x > 0, A(x, 1, z) = {x− 1 | z}.

Proof. From Lemma 1 A(x, 1, z) =
{
B(x, 0, z +1)

∣∣B(z +1, 0, x)
}
. From Lemma 3, we know

that B(x, 0, z) = x− 1 and B(z + 1, 0, x) = z. Thus, A(x, 1, z) = {x− 1 | z}. !

Since {x− 1|z} ≤ x this proves

Corollary 5 A(x, 1, z) ≤ x.

Lemma 6 For x > 0, B(x, 1, z) = x.

Proof. B(x, 1, z) =
{
B(x− 1, 1, z), A(x− 1, 1, z)

∣∣ }
. From Lemma 4, we know that A(x−

1, 1, z) = {x − 2 | z} ≤ x − 1. By induction, B(x − 1, 1, z) = x − 1. Therefore, B(x, 1, z) =
{x− 1 | } = x.

!

In order to go any further, we need to introduce some new notation to describe the
unusual values that we see in this game.

Notation 1 Let a and c be integers and g any game, then

〈
a + i,

〈
g
〉 ∣∣∣ c + i

〉k

i=0
=

{
a,

{
a + 1,

{
. . .

{
a + k, g

∣∣ c + k
} ∣∣∣ . . .

} ∣∣∣∣ c + 1

} ∣∣∣∣∣ c
}

,

〈
a,

〈
g
〉 ∣∣∣ c + i

〉k

i=0
=

{
a,

{
a,

{
. . .

{
a, g

∣∣ c + k
} ∣∣∣ . . .

} ∣∣∣∣ c + 1

} ∣∣∣∣∣ c
}

,

〈〈
g
〉 ∣∣∣ c + i

〉k

i=0
=

{{{
. . .

{
g

∣∣ c + k
} ∣∣∣ . . .

} ∣∣∣∣ c + 1

} ∣∣∣∣∣ c
}

,
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and similarly, if the index i is not present on the right side, then

〈
a + i,

〈
g
〉 ∣∣∣ c

〉k

i=0
=

{
a,

{
a + 1,

{
. . .

{
a + k, g

∣∣ c
} ∣∣∣ . . .

} ∣∣∣∣ c
} ∣∣∣∣∣ c

}
.

Typical games positions in the usual and in the new notation are:

A(17, 17, 9) = {26, {27, {28, {29 | 25} | 25} | 25} | 25}
= 〈26 + i, 〈29 | 25〉 | 25 〉2i=0

A(5, 10, 3) = {{{{10 | 11} | 10} | 9} | 8}
= 〈〈10 | 11〉 | 8 + i 〉2i=0

A(12, 15, 3) = {{{17, {18, {19, {20 | 17} | 17} | 17} | 17} | 16} | 15}
= 〈 〈 〈17 + i, 〈20 | 17〉 | 17 〉2i=0 〉 | 15 + j 〉1j=0.

In the last case g = {17, {18, {19, {20 | 17} | 17} | 17} | 17} = 〈17 + i, 〈20 | 17〉 | 17 〉2i=0.

We are now ready to find the value of a game.

Theorem 7 The values of a general position in Partizan Geography played on Kn !K2 are
as follows.

The value of A(x, y, z) is:

(A) If z ≥ y − 2 and x > y − 2, then

A(x, y, z) = {y + x− 2 | y + z − 1} =






y + x− 1 if z ≥ x + 1

y + x− 3
2 if z = x

y + x− 2∗ if z = x− 1

{y + x− 2 | y + z − 1} if z < x− 1.

(B) If z ≥ y − 2 and x ≤ y − 2, then

A(x, y, z) = {y + x− 2 |x + z} =






y + x− 1 if z > y − 1

y + x− 3
2 if z = y − 1

y + x− 2∗ if z = y − 2

(C) If z < y − 2 and x > y − 2, then

A(x, y, z) =
〈
x + z + i,

〈
y + x− k − 2 | y + z − 1

〉 ∣∣∣ y + z − 1
〉k−1

i=0
,

where k = y−z−2
2 if y − z is even and k = y−z−1

2 if y − z is odd;
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(D) If z < y − 2 and x ≤ y − 2, then

(i) if 2x < y + z then

A(x, y, z) =
〈〈

x + z + k + g
〉 ∣∣∣x + z + i

〉k−1

i=0

where k = y−z−2
2 , g = ∗ if (y − z) is even and k = y−z−1

2 , g = −1
2 if (y − z) is odd;

(ii) if 2x ≥ y + z, then

A(x, y, z) =

〈〈〈
y + z − 1 + i,

〈
2x− k − 1 | y + z − 1

〉 ∣∣∣ y + z − 1
〉k−1

i=0

〉 ∣∣∣∣∣x + z + j

〉y−x−2

j=0

where k = 2x−y−z
2 if (y + z) is even and k = 2x−y−z+1

2 if (y + z) is odd.

The value of B(x, y, z) is:

(E) If z < y, then
B(x, y, z) = x + z − 1;

(F) If z ≥ y, then
B(x, y, z) = y + x− 1.

Proof. Since evaluating A(x, y, z) is more complicated, we present the arguments for B(x, y, z)
first.

Let G = B(x, y, z). Then G =
{
B(x− 1, y, z), A(x− 1, y, z)

∣∣∣
}

.

Case (E): Let y ≤ z. In y + x− 1−B(x, y, z), Left playing second only plays the integers
and never in the B(x, y, z) component. Right, therefore only has x + y − 1 moves and so
loses going first. Left moving first either has no move or plays in y +x− 1 to y +(x− 1)− 1,
and Right replies moving to y + (x− 1)− 1−B(x− 1, y, z) which is a second player win by
induction.

Case (F): Let y > z. In z+x−1−B(x, y, z), Left moving first can only play in z+x−1 and
Right responds to z +(x− 1)− 1−B(x− 1, y, z) which is 0 by induction. Right moving first
could move to z+x−1−B(x−1, y, z) but Left responds to z+(x−1)−1−B(x−1, y, z) = 0.

Suppose, therefore, that Right moves to z + x − 1 − A(x − 1, y, z), Left responds to
z + x− 1−B(z + 1, y − 1, x− 1). If y − 1 > x− 1 then

z + x− 1−B(z + 1, y − 1, x− 1) = z + x− 1− (z + 1 + x− 2) = 0

and Left has won. If y− 1 ≤ x− 1 then in z + x− 1−B(z + 1, y− 1, x− 1) Left never plays
in the B(z + 1, y− 1, x− 1) component and so Right has y− 1 + z + 1− 1 = z + y− 1 moves
and z + y − 1 ≤ z + x− 1 and so again Left has won.
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Let G = A(x, y, z). The options from G are given as the following:

G =
{
B(x, y − 1, z + 1), A(x, y − 1, z + 1)

∣∣B(z + 1, y − 1, x)
}
.

Case (A): Assume z ≥ y − 2 and x > y − 2. By induction, B(x, y − 1, z + 1) = y + x− 2
since z + 1 ≥ y − 1, and B(z + 1, y − 1, x) = y + z − 1 since x ≥ y − 1, giving

G =
{
y + x− 2, A(x, y − 1, z + 1)

∣∣ y + z − 1
}
.

Since z + 1 ≥ (y − 1) − 2 and x > (y − 1) − 2, then A(x, y − 1, z + 1) still falls under case
(A). By induction, then, this is

A(x, y − 1, z + 1) = {y + x− 3 | y + z − 1}

which gives us
G =

{
y + x− 2, {y + x− 3 | y + z − 1}

∣∣ y + z − 1
}
.

Since {y +x− 3 | y + z− 1} ≤ y +x− 2, the option to A(x, y− 1, z +1) is dominated. Thus,
for case (A),

G = {y + x− 2 | y + z − 1}.

Case (B): Assume z ≥ y − 2 and x ≤ y − 2. By induction, B(x, y − 1, z + 1) = y + x− 2
since z + 1 ≥ y − 1, and B(z + 1, y − 1, x) = x + z since x < y − 1, giving

G =
{
y + x− 2, A(x, y − 1, z + 1)

∣∣x + z
}
.

We have that z + 1 ≥ (y − 1) − 2 but it is possible for (i) x = y − 2 > (y − 1) − 2 or (ii)
x ≤ (y − 1)− 2, then A(x, y − 1, z + 1) may fall under either case (A) or (B). By induction,
we will evaluate each case.

(i) If x = y − 2 > (y − 1)− 2, i.e. case (A), then A(x, y − 1, z + 1) = {y + x− 3|y + z − 1}
which gives us

G =
{
y + x− 2, {y + x− 3 | y + z − 1}

∣∣x + z
}
.

Since {y + x − 3 | y + z − 1} ≤ y + x − 2, this option is dominated and therefore G =
{y + x− 2 |x + z}.

(ii) If x ≤ (y−1)−2, i.e case (B), then, by induction, A(x, y−1, z+1) = {y+x−3 |x+z+1}
which gives us

G =
{
y + x− 2, {y + x− 3 |x + z − 1}

∣∣x + z
}
.

Since {y + x − 3 |x + z + 1} ≤ y + x − 2, this option is dominated or equal. Therefore,
G = {y + x− 2 |x + z}.

Therefore, the move to A(x, y − 1, z + 1) is dominated and

G = {y + x− 2 |x + z} =






y + x− 1 if z > y − 1

y + x− 3
2 if z = y − 1

y + x− 2∗ if z = y − 2



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A29 9

Case (C): Assume z < y− 2 and x > y− 2. Then, by induction, B(x, y− 1, z + 1) = x + z
since z + 1 < y − 1, and B(z + 1, y − 1, x) = y + (z + 1)− 1 since x ≥ y − 1, giving

G =
{
x + z, A(x, y − 1, z + 1)

∣∣ y + z − 1
}
.

We know that x > (y− 1)− 2, but it is possible that for either (i) z + 1 < (y− 1)− 2 or (ii)
z + 1 ≥ (y − 1)− 2 if z + 1 = y − 2 or z + 1 = y − 3.

(i) If z+1 = y−2 or z+1 = y−3, i.e. y−z equals 3 and 4, respectively, then A(x, y−1, z+1)
falls under case (A) and so, by induction, this is

A(x, y − 1, z + 1) = {y + x− 3 | y + z − 1},

and, since the two Left options are incomparable, giving

G =
{
x + z, {y + x− 3 | y + z − 1}

∣∣ y + z − 1
}

which we can rewrite as

G =
〈
x + z + i,

〈
y + x− k − 2 | y + z − 1

〉 ∣∣∣ y + z − 1
〉k−1

i=0

where k = y−z−2
2 when y − z = 4 and k = y−z−1

2 when y − z = 3.

(ii) If z+1 < (y−1)−2, then A(x, y−1, z+1) still falls under case (C) and so, by induction,
this is

A(x, y − 1, z + 1) =
〈
x + z + 1 + i,

〈
y + x− k − 3 | y + z − 1

〉 ∣∣∣ y + z − 1
〉k−1

i=0
,

where k = y−z−4
2 if y− z is even and k = y−z−3

2 if y− z is odd. Let w = k + 1, or k = w− 1,
so that we can recast this as

A(x, y − 1, z + 1) =
〈
x + z + 1 + i,

〈
y + x− w − 2 | y + z − 1

〉 ∣∣∣ y + z − 1
〉w−2

i=0
,

where w = y−z−2
2 if y−z is even and w = y−z−1

2 if y−z is odd. Thus, since both Left options
of G are incomparable, we obtain

G =

{
x + z,

〈
x + z + 1 + i,

〈
y + x− w − 2 | y + z − 1

〉 ∣∣∣ y + z − 1
〉w−2

i=0

∣∣∣∣ y + z − 1

}
,

which, in our modified notation, becomes

G =
〈
x + z + i,

〈
y + x− w − 2 | y + z − 1

〉 ∣∣∣ y + z − 1
〉w−1

i=0

with w = y−z−2
2 if y − z is even and w = y−z−1

2 if y − z is odd.

Case (D): Assume z < y− 2 and x ≤ y− 2. By induction, B(x, y− 1, z + 1) = x + z since
z + 1 < y − 1, and B(z + 1, y − 1, x) = x + z since x < y − 1, giving

G =
{
x + z, A(x, y − 1, z + 1)

∣∣x + z
}
.
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It is possible that for either (i) z + 1 < (y − 1)− 2 (i.e. 2x < y + z) or (ii) x > (y − 1)− 2
or for both to happen at once (i.e. 2x ≥ y + z).

(i): Assume 2x < y + z. Then A(x, y − 1, z + 1) is either in case (B) or case (D).

If A(x, y − 1, z + 1) is in case (B), then x ≤ y − 3 and z + 1 ≥ y − 3, i.e. z = y − 4 or
z = y − 3. Suppose that z = y − 3. Then, by induction,

G =
{
x + z, {y + x− 3 |x + z + 1} |x + z

}
=

{
z + x +

1

2
|x + z

}

which we can re-write as

G =

〈〈
x +

z

2
+

y

2
− 1

〉 ∣∣∣x + z + i

〉 y−3−z
2

i=0

Similarly, if z = y − 4 then

G = {z + x + 1 ∗ |x + z} =

〈〈
x +

z

2
+

y

2
− 1 + ∗

〉 ∣∣∣x + z + i

〉 y−4−z
2

i=0

If A(x, y − 1, z + 1) is in case (D), then z < y − 3 and x ≤ y − 3. Since

G =
{
B(x, y − 1, z + 1), A(x, y − 1, z + 1)

∣∣B(z + 1, y − 1, x)
}

and z + 1 < y − 1 and x < y − 1, by induction,

G =






{
x + z,

〈〈
x + z+1

2 + y−1
2 − 1

〉 ∣∣x + z + i
〉 y−1−3−z−1

2

i=0

∣∣∣x + z
}

if y − z is odd

{
x + z,

〈〈
x + z+1

2 + y−1
2 − 1 + ∗

〉 ∣∣x + z + i
〉 y−1−4−z−1

2

i=0

∣∣∣x + z
}

if y − z is even.

For Left, the move to B(x, y − 1, z + 1) = x + z is dominated, therefore

G =






{〈〈
x + z

2 + y
2 − 1

〉 ∣∣x + z + i
〉 y−3−z

2

i=0

∣∣∣x + z
}

if y − z is odd

{〈〈
x + z

2 + y
2 − 1 + ∗

〉 ∣∣x + z + i
〉 y−4−z

2

i=0

∣∣∣x + z
}

if y − z is even

(ii): Assume 2x ≥ y + z. Then A(x, y− 1, z + 1) is either in case (A), case (C) or case (D).

If it is in case (A), then z ≥ y − 3 and x > y − 3. By induction,

G =
{
x + z, {y + x− 3 | y + z − 1}

∣∣x + z
}
.
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Since y − 3 ≤ z < y − 2, then z = y − 3. Likewise, since y − 3 < x ≤ y − 2, then
x = y − 2 = z + 1. Thus, x + z = y + z − 2 and y + x− 3 = y + z − 2 = 2x− 1 so that

G =
{
y + z − 2, {y + z − 2 | y + z − 1}

∣∣ y + z − 1
}
,

in which the left option to y + z − 2 is dominated by {y + z − 2 | y + z − 1}. And since
y + z − 2 = 2x− 1, G becomes

G =
{
{2x− 1 | y + z − 1}

∣∣x + z
}
.

We can rewrite this as

G =

〈〈〈
y + z − 1 + i,

〈
2x− k − 1 | y + z − 1

〉 ∣∣∣ y + z − 1
〉k−1

i=0

〉 ∣∣∣∣∣x + z + j

〉y−x−2

j=0

where k = 0 and y − x− 2 = 0.

If it is in case (C), then z < y − 3 and x > y − 3. Since z + 1 < y − 1 and x ≥ y − 1, by
induction,

G =

{
x + z,

〈
x + z + 1 + i,

〈
y + x− k − 3 | y + z − 1

〉 ∣∣∣ y + z − 1
〉k−1

i=0

∣∣∣∣x + z

}
,

where k = y−z−4
2 if y − z is even and k = y−z−3

2 if y − z is odd. Since y − 3 < x ≤ y − 2,
then x = y − 2. Thus, x + z = y + z − 2 and y + x− k − 3 = 2x− k − 1 and so

G =

{
y + z − 2,

〈
y + z − 1 + i,

〈
2x− k − 1 | y + z − 1

〉 ∣∣∣ y + z − 1
〉k−1

i=0

∣∣∣∣x + z

}
,

where k = y−z−4
2 = 2x−y−z

2 if y − z is even and k = y−z−3
2 = 2x−y−z+1

2 if y − z is odd. The
left option to y + z− 2 is dominated since the other option is at least (y + z− 1)∗. Thus, we
have

G =

{〈
y + z − 1 + i,

〈
2x− k − 1 | y + z − 1

〉 ∣∣∣ y + z − 1
〉k−1

i=0

∣∣∣∣x + z

}
,

which we can rewrite as

G =

〈〈
y + z − 1 + i,

〈
2x− k − 1 | y + z − 1

〉 ∣∣∣ y + z − 1
〉k−1

i=0

∣∣∣∣x + z

〉y−x−2

j=0

in which k = 2x−y−z
2 if y − z is even and k = 2x−y−z+1

2 if y − z is odd and y − x− 2 = 0.

If it is in case (D), then z < y − 3 and x ≤ y − 3. By induction,

G =

{
x + z,

〈〈〈
y + z − 1 + i,

〈
2x− k − 1 | y + z − 1

〉 ∣∣∣ y + z − 1
〉k−1

i=0

〉 ∣∣∣∣∣x + z + 1 + j

〉y−x−3

j=0

∣∣∣∣∣x + z

}

where k = 2x−y−z
2 if (y + z) is even and k = 2x−y−z+1

2 if (y + z) is odd.

Note, that in all cases , the move to the move to B(x, y − 1, z + 1), is dominated. !
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Corollary 8 (C) If z < y − 2 and x > y − 2, then

A(x, y, z) = y + z − 1 +
〈
x− y + 1 + i,

〈
x− z + 1− k − 2 | 0

〉 ∣∣∣ 0
〉k−1

i=0
,

where k = y−z−2
2 if y − z is even and k = y−z−1

2 if y − z is odd where the second term
has mean and temperature x−y+1

2 .

(D) If z < y − 2 and x ≤ y − 2, then

(i) if 2x < y + z then

A(x, y, z) = x + z +
〈〈

k + g
〉 ∣∣∣ i

〉k−1

i=0

where k = y−z−2
2 , g = ∗ if (y − z) is even where the second term has mean and

temperature are 1− 1
2k ; and k = y−z−1

2 , g = −1
2 if (y− z) is odd where the second

term has mean and temperature are 1− 3
2k+1 ;

(ii) if 2x ≥ y + z, then

A(x, y, z) = x + z +

〈〈〈
y − x− 1 + i,

〈
x− z − k − 1 | y − x− 1

〉 ∣∣∣ y − x− 1
〉k−1

i=0

〉 ∣∣∣∣∣ j
〉y−x−2

j=0

where k = 2x−y−z
2 if (y + z) is even and k = 2x−y−z+1

2 if (y + z) is odd, where
the second term has mean and temperature 1− 1

2y−x−1 .

Proof. The values are obtained by the number translation principle.

In case (C), recall that G =
〈
x−y+1+i,

〈
x−z+1−k−2 | 0

〉 ∣∣∣ 0
〉k−1

i=0
is a game of the form

{8, {9, {10 | 0} | 0} | 0}. By induction, the game H =
〈
x−y+1+i,

〈
x−z+1−k−2 | 0

〉 ∣∣∣ 0
〉k−1

i=1

has temperature x−y+2
2 . At temperature t = x−y+1

2 , the values in the expansion of Gt =
{x − y + 1 + i − t, Ht − t | t} are, in sequence from the left, x − y + 1 + i − i(x−y+1

2 )
for the Left ‘options’ and (2 − i)x−y+1

2 for the Right. No interior game has frozen since
x− y + 1 + i− i(x−y+1

2 ) > (2− i)x−y+1
2 , and the first term in Gt is x− y + 1− (x−y+1

2 ) which
is larger than all other terms in Ht − t. Therefore, the option to Ht − t is dominated and
Gt = {x − y + 1 + i − t | t} = x−y+1

2 ∗ for t = x−y+1
2 . Therefore the mean and temperatures

are both x−y+1
2 .

In case (D)(i), recall that the game G =
〈〈

k + g
〉 ∣∣∣ i

〉k−1

i=0
is a game of the form

{3 ∗ | 2 || 1 ||| 0} or { 5
2 ∗ | 2 || 1 ||| 0}. Moreover,

〈〈
k + g

〉 ∣∣∣ i
〉k−1

i=0
=

{〈〈
k + g

〉 ∣∣∣ i
〉k−1

i=1

∣∣∣ 0
}

=
{〈

1 +
〈
k + g − 1

〉 ∣∣∣ j
〉k−2

i=0

∣∣∣ 0
}
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If y− z is even then the game is of the first form, G =
{〈

1 +
〈
k + g− 1

〉 ∣∣∣ j
〉k−2

i=0

∣∣∣ 0
}

and

by induction when t = 1− 1
2k then

Gt =
{

1 +
(
1− 1

2k

)
− t

∣∣ t
}

=
{

1
∣∣ 1− 1

2k

}

and for s > 0

Gt+s =
{

1− s
∣∣ 1− 1

2k
+ s

}

which freezes when t + s = 1− 1
2k+1 .

Similarly, it can be shown that when y − z is odd then the mean and temperature are
1− 3

2k+1 .

In case (D)(ii), recall that the game

G =

〈〈〈
y − x− 1 + i,

〈
x− z − k − 1 | y − x− 1

〉 ∣∣∣ y − x− 1
〉k−1

i=0

〉 ∣∣∣∣∣ j
〉y−x−2

j=0

is a game of the form {{{2, {3, {3 | 2}|2} | 2}|1} | 0}. Moreover,

〈〈〈
y − x− 1 + i,

〈
x− z − k − 1 | y − x− 1

〉 ∣∣∣ y − x− 1
〉k−1

i=0

〉∣∣∣∣∣j
〉y−x−2

j=0

=

{〈〈〈
y − x− 1 + i,

〈
x− z − k − 1 | y − x− 1

〉 ∣∣∣ y − x− 1
〉k−1

i=0

〉 ∣∣∣∣∣ j
〉y−x−2

j=1

∣∣∣∣ 0

}
,

so that G = {H | 0} where by induction, H has mean and temperature 1− 1
2y−x−2 . Therefore,

with t = 1− 1
2y−x−2 and s > 0,

Gt+s = {Ht − (t + s) | t + s}

=
{

1− 1

2y−x−2
−

(
1− 1

2y−x−2
+ s

) ∣∣ 1− 1

2y−x−2
+ s

}

=
{

1− s
∣∣ 1− 1

2y−x−2
+ s

}

so therefore the mean and temperature of G are 1− 1
2y−x−1 . !
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