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Abstract

Sun has conjectured that if k congruence classes are disjoint, then necessarily two of the
moduli have greatest common divisor at least as large as k. We prove this conjecture for
k ≤ 20.

1. Introduction

In May of 2003, Prof. Sun1 proposed a conjecture on the number theory listserver2.

Conjecture 1 (Disjoint Congruence Classes Conjecture). If k ≥ 2 congruence classes
ai (mod mi) are disjoint, then there exist i < j with gcd(mi,mj) ≥ k.

The set of congruence classes {1 (mod k), 2 (mod k), . . . , k (mod k)} demonstrate that,
if true, the DCCC is best possible.

The contrapositive of the k = 2 case is a familiar special case of the Chinese remainder
theorem: if two congruence classes have relatively prime moduli, then they intersect. Prof.
Graham3, who first brought this problem to my attention, pointed out that the k = 3 case
follows easily from the pigeonhole principle, as we now explain.

Suppose that a1 mod m1, a2 mod m2, a3 mod m3 is a counter-example: they are disjoint
and gcd(mi,mj) < 3 for all i < j. If gcd(mi,mj) = 1, then by the Chinese remainder
theorem ai (mod mi) and aj (mod mj) intersect. Thus, gcd(mi,mj) = 2 for all i < j; in

1Zhi-Wei Sun, Department of Mathematics, Nanjing University, zwsun@nju.edu.cn
2http://listserv.nodak.edu/archives/nmbrthry.html
3Ronald Graham, Department of Computer Science and Engineering, University of California, San Diego,

graham@ucsd.edu
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particular, all mi are even. By the pigeonhole principle, two of the ai’s must have the same
parity, say a1 ≡ a2 (mod 2). Since gcd(m1,m2) = 2, obviously gcd(m1

2 , m2
2 ) = 1. If a1 and

a2 are both even, then by the Chinese remainder theorem we can find x in the intersection
of

a1

2
(mod

m1

2
) and

a2

2
(mod

m2

2
)

and consequently 2x is in the intersection of a1 (mod m1) and a2 (mod m2). If a1 and a2

are both odd, then we can find x in the intersection of

a1 − 1

2
(mod

m1

2
) and

a2 − 1

2
(mod

m2

2
).

But then 2x + 1 is in the intersection of a1 (mod m1) and a2 (mod m2).

The following criterion is at the heart of the last paragraph.

Proposition 2. The congruence classes ai (mod mi) and aj (mod mj) are disjoint if and
only if gcd(mi,mj) ! ai − aj.

Prof. Graham also noted that the k = 4 case was similar but with more considerations,
and considered it likely that k = 5 was similarly tractable. We now state our main theorem.

Theorem 3. The DCCC holds for k ≤ 20. Moreover, a counterexample to the DCCC with
minimal k does not have k ∈ {24, 30}.

We close the introduction with a stronger conjecture of Prof. Sun [3].

Conjecture 4. Suppose that A1, . . . , Ak are disjoint left-cosets of H1, . . . , Hk in the group
G. Then gcd([G : Hi], [G : Hj]) ≥ k for some i < j.

2. A Disjointness Criterion

The following criterion is stated in [1] without proof.

Lemma 5. If
!∑

i=1

1

gcd(mi,M)
> 1, where M is any multiple of LCM{gcd(mi,mj) : 1 ≤ i <

j ≤ !}, then the congruence classes ai mod mi (with 1 ≤ i ≤ k) are not disjoint.

The usefulness of this criterion lies in the fact that it makes no reference to the ai.

Can there be seven disjoint congruence classes with moduli 20, 15, 12, 6, 6, 6, 6? Lemma 5
does not exclude it directly, but it does exclude the possibility that there are six disjoint
congruence classes with moduli 15, 12, 6, 6, 6, 6. It is plausible that if every subset of
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{m1, . . . ,mk} passes the above test, then it is possible to choose a1, . . . , ak so that a1 mod
m1, . . . , ak mod mk are disjoint, and Huhn & Megyesi [1] conjectured this. However, Z.-W.
Sun [2] notes that the moduli 10, 15, 36, 42, 66 pass the above test (as does every subset of
the moduli), but these are not the moduli of disjoint congruence classes.

Proof. The class ai mod mi intersects each of the M/ gcd(mi,M) classes ai + jmi (mod M)
(for 0 ≤ j < M/gcd(mi,M)); that is, the class ai mod mi is actually M/ gcd(mi,M) classes
modulo M . Since by hypothesis

∑!
i=1 M/ gcd(mi,M) > M , the pigeonhole principle implies

that two of the modulo-M congruence classes must intersect. In other words, there are
integers α,β, γ, i, j such that

ai + αmi = aj + βmj + γM.

Since gcd(mi,mj) | M , there are integers δ, ε such that δmi + εmj = M . Thus

ai + (α− δγ)mi = aj + (β + εγ)mj,

and we see that ai mod mi and aj mod mj intersect.

3. Without Loss of Generality

We suppose that a minimal counterexample exists, and use that to determine a sequence
m1, . . . ,mk (as described in the lemma below) that has particular properties (in particular,
we have an explicit upper bound on mi). While there are infinitely many sets of k congruence
classes, there are only finitely many such mi sequences, and in fact we show that for k ≤ 20
there are none. We note that the existence of such an mi sequence would not disprove Sun’s
Disjoint Congruence Classes Conjecture, but that nonexistence would imply his conjecture.

Set Lk := LCM{1, 2, . . . , k − 1}.

k 3 4 5 6 7 8 9 10 11 12 13 14 15
Lk 2 6 12 60 60 420 840 2520 2520 27720 27720 360360 360360

Lemma 6. Suppose that k ≥ 2 is the least integer such that there are k disjoint congruence
classes ai (mod mi) with gcd(mi,mj) < k for i < j (i.e., a counterexample to the DCCC).
Further, suppose that ai (mod mi) (1 ≤ i ≤ k) has minimal

∑
i mi. Set

N := LCM{gcd(mi,mj) : 1 ≤ i < j ≤ k}.

Then k ≥ 4, and for all i

1. mi | N , and N | Lk, and N = LCM{m1,m2, . . . ,mk};
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2. 1 < gcd(mi,mj) < k for all j &= i;

3. If a prime power q divides mi, then there is j &= i with q | mj.

4. mi is not a prime power;

5. At least three of the m’s are multiples of k − 1;

6. If only three of the m’s are multiples of k − 1, then two others are multiples of k − 2;

7. For every {h1, . . . , h!} ⊆ {m1, . . . ,mk}, and every multiple M of
LCM{gcd(hi, hj) : 1 ≤ i < j ≤ !},

!∑

i=1

1

gcd(hi,M)
≤ 1.

8. If 7 ≤ k ≤ 30, and p ≥ k/2 is a prime that divides some m, then it divides exactly two
of the m’s.

Proof. We noted in the introduction the reasons why k &≤ 3.

In this paragraph, we prove the three statements in item 1. Suppose that pr is a prime
power that divides mi but not N . By the definition of N , we see that pr ! mj for j &= i.
Thus gcd(mi,mj) = gcd(mi/p,mj), and by Proposition 2, the classes ai (mod mi/p) and
aj (mod mj) are disjoint. Thus, we can replace ai (mod mi) in our counterexample to the
DCCC with ai (mod mi/p), obtaining a counterexample with smaller

∑
m. We began with

minimal
∑

m, so we conclude that there is no prime power dividing mi but not N . Since
N is defined to be the least common multiple of a subset of {1, 2, . . . , k− 1}, it is clear that
N | Lk. Moreover, since N is the least common multiple of divisors of the mi, and the mi

divide N , it is also now immediate that N = LCM{m1, . . . ,mk}.

That gcd(mi,mj) < k is by hypothesis; that gcd(mi,mj) > 1 follows from the chinese
remainder theorem. This proves item 2.

Any prime power that divides some mi also divides N since N = LCM{m1, . . . ,mk}.
But any prime power that divides N = LCM{gcd(mi,mj) : i &= j} must divide two of the
m’s. This proves item 3.

Items 4, 5, and 6 are based on the minimality of k. Suppose that m1 = pr, a prime
power. Since gcd(m1,mj) > 1, we know that p | mj for every j. By item 3, there is m2

that is also a multiple of pr. Since gcd(m1,m2) < k, we see that p < k, whence
⌈
k/p

⌉
≥ 2.

By Proposition 2, gcd(mi,mj) ! aj − ai for every 1 ≤ i < j ≤ k. And by the pigeonhole
principle, there are at least

⌈
k/p

⌉
of the a’s that are congruent to one another modulo p,

say (after renumbering)
a1 ≡ a2 ≡ · · · ≡ a!k/p" (mod p).
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Consequently,

gcd

(
mi

p
,
mj

p

)
! aj − ai

p

for every 1 ≤ i < j ≤ (k/p). This implies, again by Proposition 2, that

0 (mod
m1

p
),

a2 − a1

p
(mod

m2

p
), . . . ,

a!k/p" − a1

p
(mod

m!k/p"

p
)

are also disjoint. Since k is minimal, there must be 1 ≤ i < j ≤ (k/p) with

gcd

(
mi

p
,
mj

p

)
≥

⌈
k

p

⌉
,

whence gcd(mi,mj) ≥ (k/p)p ≥ k, contradicting the existence of a counterexample with k
classes. This proves item 4.

Suppose that only m1 and m2 are multiples of k−1. Then ai (mod mi) (with 2 ≤ i ≤ k)
is a collection of k − 1 disjoint congruence classes whose moduli have gcds strictly less than
k − 1. This contradicts the minimality of k, and proves item 5.

Suppose that only m1,m2, and m3 are multiples of k − 1. Then ai (mod mi) (with
3 ≤ i ≤ k) are k − 2 disjoint congruence classes whose moduli have gcds strictly less than k
(because we started with a counterexample). Moreover, the gcds are strictly less than k− 1
because none of m4, . . . ,mk are multiples of k − 1. If there are not two of m3, . . . ,mk that
are multiples of k− 2, then we have even more: a counterexample with k− 2 sequences. By
the minimality of k, then, two of m3, . . . ,mk must be multiples of k− 2. If there are exactly
two, then it could be that m3 is one of them. To see that is not the case, we renumber m2

and m3 to conclude that both m2 and m3 are multiples of k − 2. But then both k − 1 and
k − 2 divide gcd(m2,m3), so that it must be at least k. This proves item 6, and that k ≥ 5.

Item 7 is a restatement of Lemma 5 for subsets.

Now suppose that p and k are as hypothesized in item 8, and suppose that m1, . . . ,m!

are multiples of p, while m!+1, . . . ,mk are not multiples of p. Note that ! ≥ 2 by item 3, and
by item 2 necessarily p < k. Suppose that there are r primes less than k; since k ≤ 30 we
know that r ≤ 10. Assume, by way of contradiction, that ! ≥ 3.

Set
Pi := {q : q prime, q | mi} \ {p},

and recall that by Lemma 6 (item 4) the cardinality of Pi is at least 1 for every i ≤ !, and
at least 2 for i > !. Moreover, since gcd(mi,mj) < k ≤ 2p the Pi (for 1 ≤ i ≤ !) are disjoint.

Now define for ! < i ≤ k the !-tuple

ωi :=

(
min {P1 ∩ Pi}, min{P2 ∩ Pi}, . . . , min{P! ∩ Pi}}

)
,
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which is an element of P1× · · ·×P!. If ωi = ωj (with ! < i < j ≤ k), then gcd(mi,mj) is at
least the product of the primes in ωi; since ! ≥ 3 this product must be at least 2·3·5 = 30 ≥ k.
By the pigeonhole principle, this certainly happens if

k − ! >
∣∣P1 × · · ·× P!

∣∣ =
!∏

i=1

|Pi|.

Since |Pi| ≥ 1 and
∑!

i=1 |Pi| ≤ r − 1 (because the Pi are disjoint for i ≤ !, and there are r
primes less than k including p), we can easily bound the size of

∏!
i=1 |Pi| in terms of r and

!:

!

r

max{
∏!

i=1 |Pi|} 3 4 5 6 7 8 9
4 1 0 0 0 0 0 0
5 2 1 0 0 0 0 0
6 4 2 1 0 0 0 0
7 8 4 2 1 0 0 0
8 12 8 4 2 1 0 0
9 18 16 8 4 2 1 0
10 27 24 16 8 4 2 1

This table shows that for 4 ≤ r ≤ 10, necessarily k − ! > |Range(ω)|, and so two m’s have
gcd at least 30 ≥ k, with the exception of r = 10, k = 30, ! = 3.

In the case of r = 10, k = 30, ! = 3, each of the 27 possible values of ω must actually
occur: |P1| = |P2| = |P3| = 3. Thus two of the four primes 17, 19, 23, 29 are in separate
Pi’s (1 ≤ i ≤ 3), and so must both be in three of the ωi’s (4 ≤ i ≤ 30). But then the two
corresponding m’s will have gcd at least 17 · 19 > 30.

4. Casework

4.1. The Cases 3 ≤ k ≤ 6

These cases can be handled in a variety of ways. We handle them here using only 1 < mi | Lk,
1 < gcd(mi,mj) < k, and that mi cannot be a prime power.

k = 3. The divisors of L3 = 2 are 1 and 2. That mi = 1 is impossible since gcd(mi,mj) > 1,
and that mi = 2 is impossible since mi cannot be a prime power.

k = 4. The divisors of L4 = 6 are 1, 2, 3, and 6. Since mi cannot be a prime power (or 1),
every mi = 6. But gcd(mi,mj) < k < 6, so this too is impossible.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A30 7

k = 5. The divisors of L5 = 12 are 1, 2, 3, 4, 6, and 12. Since mi cannot be a prime power
(or 1), every mi is either 6 or 12. But gcd(mi,mj) < k < 6, so this too is impossible.

k = 6. The only allowed divisors of L6 = 60 are 6, 10, 12, 15, 20, 30, and 60. Since gcd(mi,mj) <
6, the mi must be distinct. By the pigeonhole principle, two of the m’s must be multiples of
10, whence gcd(mi,mj) ≥ 10.

4.2. The Cases 6 ≤ k ≤ 10

While looking through the cases below, I find it helpful to imagine the complete graph on k
vertices with vertices labeled with m1,m2, . . . ,mk, and edges labeled with gcd(mi,mj).

With k = 7, the assignments m1 = 20, m2 = 15, m3 = 12, m4 = m5 = m6 = m7 = 6
satisfy all of the conditions given in Lemma 6 except item 7, and also passes the test of
Lemma 5. Thus, for k ≥ 7 the arguments are necessarily more involved.

k = 7. We have N | L7 = 60. Suppose that none of the m’s are multiples of 5, so that we
can take M := 12, and at most one gcd(mi,M) is 12, with other six gcd(mi,M) being ≤ 6.
In this case,

7∑

i=1

1

gcd(mi, 12)
≥ 1

12
+ 6

1

6
> 1.

Now suppose that some m is a multiple of 5, and by item 3, at least two of the m’s are
multiples of 5. We know that no m is exactly 5 (a prime), so that the two (or more) of
the m’s that are multiples of 5 are in {10, 15, 20, 30, 60}. Since gcd(mi,mj) ≤ 6 the only
possibilities are “10 and 15” or “15 and 20”. Delete the congruence class that gives m being
either 10 or 20, and the six classes remaining fail to have the condition given in item 7 with
M = 12:

∑

6 classes

1

gcd(mi, 12)
≥ 1

gcd(15, 12)
+

1

gcd(12, 12)
+ 4

1

gcd(6, 12)
> 1.

k = 8. Here, items 5 and 8 are not consistent. For clarity, we reprove here this special case
of item 8, proved in full above.

By item 5, we may assume that m1,m2,m3 are multiples of 7 and divisors of L8 = 22·3·5·7.
No m is exactly 7, so the remaining possibilities for (m1,m2,m3) are (2 · 7, 3 · 7, 5 · 7) and
(4 · 7, 3 · 7, 5 · 7). In particular, there are not four m’s that are multiples of 7. Item 6 now
implies that there are two m’s, say m4 and m5, that are multiples of k − 2 = 6, and one
of those is not a multiple of 5 (or else gcd(m4,m5) = 30). Thus, either gcd(m4,m3) or
gcd(m5,m3) is 1.

k = 9. At least three of the m’s are multiples of 8 and divisors of L9 = 23 · 3 · 5 · 7. Since
mi &= 8 (a prime power), the three multiples of 8 are 3 · 8, 5 · 8, 7 · 8, and there isn’t a fourth.
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Since there isn’t a fourth multiple of 8, there must be two other m’s that are multiples of
k − 2 = 7, one of which is relatively prime to 5, and both are odd since gcd(mi, 7 · 8) ≤ 8.
Thus there is one that is relatively prime to 5 · 8, a contradiction.

k = 10. At least three of the m’s are multiples of 9 and divisors of L10 = 23 · 32 · 5 · 7. Since
mi &= 9 (a prime power) the three multiples of 9 are (m1,m2,m3) = (2r ·9, 5 ·9, 7 ·9) (for some
r ≥ 1), and there isn’t a fourth m that is a multiple of 9. Since there isn’t a fourth multiple
of 9, there must be two other m’s, say m4 and m5, that are multiples of 8, one of which is
relatively prime to 5, and so a multiple of 3 since gcd(mi,m5) > 1. Say m4 is the multiple
of 3 · 8, and m5 is not a multiple of 3 since gcd(m4,m5) < 10. Since gcd(m2,m5) > 1 and
gcd(m3,m5) > 1, we have m5 = 8 · 5 · 7. Since gcd(m1,m4) < 10 and gcd(m4,m5) = 8, we
have m4 = 3 · 8. And since m1 &= 9 and gcd(m1,m4) < 10, we find that m1 = 2r · 9 = 2 · 9.

We have m1 = 2 · 32,m2 = 5 · 32,m3 = 7 · 32,m4 = 23 · 3,m5 = 23 · 5 · 7. Suppose that
there is another m that is a multiple of 7. Since gcd(m,m1) > 1, either 2 | m or 3 | m.
But then either gcd(m,m5) = 14 ≥ k or gcd(m,m3) = 21 ≥ k. Likewise, no other m is a
multiple of 5. Thus the other m’s are divisors of 23 · 32, but not multiples of 8 or 9 or prime
powers: the possibilities are 4, 6, 12. No other m can be a multiple of 12 because m4 = 24,
so m6, · · · ,m10 are at most 6. Deleting m5, we take M = 23 · 32 and

∑

i#=5

1

gcd(mi,M)
≥ 1

18
+

1

9
+

1

9
+

1

24
+

1

8
+ 5

1

6
> 1.

4.3. The Cases k ∈ {8,12,14,18,20,24,30}

For k ∈ {8, 12, 14, 18, 20, 24, 30}, the prime k− 1 must divide at least 3 of the m’s by item 5.
By item 8, however, only 0 or 2 of the m’s can be multiples of a prime as large as k/2.

4.4. The Cases k ≤ 19

Let G be a (possibly empty) list of positive integers and let potentials be a (possibly empty)
list of positive integers. Define a function Grow[G,potentials] that will return True if it is
possible to augment G with elements of potentials to get a set of size k (a global variable)
such that each pair of elements has gcd strictly between 1 and k, and every subset of it passes
the test of Lemma 5. Otherwise it will return False. We give in Figure 1 a Mathematica
program that accomplishes this.
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GCDList[G_] := Union[Flatten[Table[GCD[G[[i]], G[[j]]],

{i, 1, Length[G]-1},

{j, i+1, Length[G]} ]]];

LemmaTest[G_]:= Block[

{gcdlist = GCDList[G],

M },

M = LCM @@ gcdlist;

( (Last[gcdlist] < k) &&

(First[gcdlist] > 1) &&

(Plus @@ (1/ (GCD[M,#]& /@ G) ) <= 1)

) ];

Grow[G_, potentials_] :=

If[Length[G] == k,

{passed, counter} = {True, Length[Subsets[G, {3, k}]]};

While[passed && counter > 0,

passed = LemmaTest @@ Subsets[G, {3, k}, {counter}];

counter-- ];

passed,

Or @@ Table[Grow[Append[ G, potentials[[i]] ],

Select[potentials,

( (# >= potentials[[i]]) &&

LemmaTest[Join[G, {potentials[[i]], #}]]

)& ]],

{i, Length[potentials]} ]];

Figure 1: Mathematica code to look for counter-examples.

We can prove that there is no counter-example with k ≤ 19 sequences by executing the
following Mathematica loop

Or @@ Table[L = LCM @@ Range[k-1];

candidates = Select[Divisors[L],

(Length[FactorInteger[#]] > 1)&];

Grow[ {}, candidates ],

{k, 2, 19} ]

and observing that the output is False. This required slightly less than a week to run on
the authors humble desktop PC.
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