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Abstract

Let [n] = {0, 1, . . . , n}. A subset S of [n] is symmetric if S = g− S for a natural number g. We
show that, for every f : [n] → [2n] with the restriction 1 ≤ f(i + 1) − f(i) ≤ 2 for all i < n,
there is some S ⊂ [n] such that |S| ≥ 2 lnn − O(1), with the property that both S and f(S)
are symmetric. We prove this result by finding a lower bound for the length of a symmetric
pattern whose abelian occurrences are encountered in all binary words of length n. We also
show that if M is such that for every f : [n]→ [2n] as above, there is at least one S ⊂ [n] with
|S| ≥ M and both S and f(S) symmetric, then M ≤ (7 + o(1))

√
n. This result is based on

the construction of appropriate Sidon B2-sequences. In another interpretation, our results can
be formulated as lower and upper bounds for M such that every path of length n along basis
vectors of a two-dimensional lattice contains an M -point centrally symmetric set.

1. Introduction

Let [n] = {0, 1, 2, . . . , n}, with 0 included for our convenience. We consider injective order-
preserving transformations f : [n]→ [2n] with restriction f(i + 1)− f(i) ≤ 2 for all i < n. We
wonder to which extent such transformations can violate the regular structure of [n]. Namely,
suppose that P is a regularity property of a set of integers, say, one of being an arithmetic
progression. We then wish to know the maximum M = M(n) such that, for every f as above,
at least one set S ⊆ [n] with |S| ≥ M has property P and its image f(S) still has the same
property.

In the case of arithmetic progressions, it is easy to observe an equivalent reformulation of
the question. Let V = {v0, . . . , vn} be a sequence of points in the grid Z2 with each difference
vi+1−vi being either a = (1, 1) or b = (1, 2). Now the question is what is the maximum M such
that every V contains an M -term arithmetic progression of vectors. To see the equivalence of
the two problems, it suffices to view a set V as the graph of a map f . Clearly, f preserves an
arithmetic progression S ⊆ [n] iff { (x, f(x)) : x ∈ S} is an arithmetic progression in V . Notice
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that the specification of differences a and b is actually irrelevant — those could be any other
pair of non-collinear vectors as well, say, a = (1, 0) and b = (0, 1).

As the choice of the initial point v0 does not affect anything, a set V is characterized by the
sequence of differences v1 − v0, . . . , vn − vn−1, which can be regarded as a word w(V ) of length
n over alphabet {a, b}. In this way we arrive at yet another reformulation of the problem under
consideration. We call an arbitrary sequence of variables a pattern. An abelian occurrence of a
pattern in a word is a subword obtainable from the pattern by substituting nonempty words in
place of variables so that words replacing the same variable may differ only in order of letters
(see Section 2 for more details). It is not hard to observe a one-to-one correspondence between
(m + 1)-term arithmetic progressions in V and abelian occurrences of the pattern xm in w(V ).
Thus, the value of M(n) is the maximum number M such that every word of length n over the
binary alphabet has an abelian occurrence of xM−1.

Dekking [11] constructs an infinite word in the binary alphabet without abelian occurrences
of x4. It immediately follows [21, theorem 6.13] that M(n) ≤ 4, i.e. 5-term arithmetic progres-
sions can all be destroyed by some transformation f .

This motivates an extension of property P. A set S ⊆ Zk such that S = g − S for a lattice
point g ∈ Zk is called symmetric (with respect to the center at rational point 1

2g). From now
on the property P extended to being symmetric will be our main concern. Given V ⊆ Zk, let
MS(V ) denote the maximum cardinality of a symmetric subset of V .

A pattern is symmetric if it reads the same backward as forward, like xyx. With notation
introduced above, we again have a one-to-one correspondence between sets S ⊆ [n] whose
symmetry is preserved by f , symmetric subsets of the graph V of f , and abelian occurrences
of symmetric patterns in the word w(V ). Correspondingly, we have the following equivalences
whose proof is given in more detail in Section 2.

Lemma 1.1 The statements below are equivalent.

1. M(n) = minf :[n]→[2n] maxS⊆[n] { |S| : both S and f(S) are symmetric}, where the mini-

mum is taken over all f with

1 ≤ f(i + 1)− f(i) ≤ 2 for i < n. (1)

2. M(n) is the minimum of MS(V ) over all subsets V = {v0, v1, . . . , vn} of Z2 with each

vi+1 − vi equal to either a or b, where a and b are arbitrarily fixed non-collinear vectors.

3. M(n) is the maximum M such that every word of length n over the binary alphabet has

abelian occurrence of a symmetric pattern of length at least M − 1.

In contrast to the case of arithmetic progressions, M(n) now grows with n, that is, no f is
able to destroy symmetric subsets so well as arithmetic progressions. To show this, consider an
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infinite sequence of symmetric patterns

P1 = x,
P2 = xyx,
P3 = xyxzxyx,
P4 = xyxzxyxuxyxzxyx,
...

(2)

where Pi+1 is the result of inserting a new variable between two copies of Pi. In combinatorics
of words, members of this sequence are called sesquipowers or Zimin’s patterns. Coudrain and
Schützenberger [10] proved that each Pi must occur in all long enough words over a finite alpha-
bet. Here we mean literal rather than abelian occurrence, i.e. the same variable is substituted
everywhere by the same word. The unavoidability of sesquipowers immediately implies that
M(n) goes to the infinity with n increasing. However, this argument gives a very small lower
bound for M(n), actually, a kind of the inverse tower function (see Lemma 2.3).

In Section 3 we prove a better lower bound M(n) = Ω(lnn) based on estimation of how
long symmetric pattern is represented by an abelian occurrence in every binary word of length
n. Similarly to the O-notation, we write Ω(h(n)) to refer to a function of n that everywhere
exceeds c · h(n) for a positive constant c.

In Section 4 we prove upper bound M(n) = O(
√

n). As the main technical tool we use
B2-sequences introduced by Sidon and investigated by many authors (see [21, section 4.1] for
survey and references). A set X of integers is called a B2-sequence if for any integer g the
equation x + y = g has at most one solution in X with x ≤ y. In other words, a B2-sequence
X is a highly asymmetric set characterized by MS(X) ≤ 2. There are several constructions
[24, 6, 13, 14, 9, 7, 19] of dense B2-sequences in [n]. We employ a fairly simple and explicit
construction of [19], making use of an additional uniformity property of it.

We conclude the paper with discussion of open problems in Section 5.

Related work. The van der Waerden theorem can be restated so that every infinite subse-
quence v0, v1, . . . of N with vi+1 − vi = O(1) contains arbitrarily long arithmetic progressions
(see [8]). As Dekking’s result shows, a similar statement in Z2 is false. However, Ramsey and
Gerver [23] prove that every infinite sequence v0, v1, . . . in Z2 with bounded distances ||vi+1−vi||
between any two successive points contains arbitrarily large subsets of collinear points. Pomer-
ance [22] shows this holds true even under the weaker assumption that

lim inf
n→∞

1
n

n∑
i=1

||vi+1 − vi|| <∞. (3)

These results can be viewed as two-dimensional analogs of the van der Waerden theorem and its
density version of Szemerédi, with collinear subsets instead of arithmetic progressions. In this
respect our result on behavior of M(n), in view of item 2 of Lemma 1.1, can serve as yet another
two-dimensional analog of van der Waerden’s theorem, with arithmetic progressions replaced
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by symmetric subsets. The multi-dimensional analog of Szemerédi’s theorem is also true as
shown by Banakh [5], who observed that condition (3) guarantees the existence of arbitrarily
long symmetric subsequences in an infinite sequence v0, v1, . . . of points in Zk, k ≥ 1. It should
be noted that in the case of k = 2 the latter result strengthes the claim that M(n) → ∞ but
provides no satisfactory lower bound for M(n).

Banakh and Protasov [3, 4] prove that the minimal number of colors required for coloring
the n-dimensional integer grid Zn avoiding infinite symmetric monochromatic subsets is n + 1.
Unavoidable symmetries in words are investigated by Fouché [16].

2. Preliminaries

In this section we prove Lemma 1.1 and then show that M(n)→∞ as n→∞. Recall that
throughout the paper MS(V ) denotes the cardinality of the largest symmetric subset of V .

The proof of the equivalence of statements 1 and 2 of Lemma 1.1 in the case that

a = (1, 1), b = (1, 2) (4)

follows arguments outlined in the introduction for arithmetic progressions. With a function
f we associate its graph V = {v0, . . . , vn}, where vi = (i, f(i)). The bounds (1) imply that
vi+1 − vi ∈ {a, b}. Vice versa, any set V = {v0, . . . , vn} in Z2 with the latter condition can be
viewed as the graph of a function f of the prescribed kind. A set S ⊆ [n] and its image f(S)
are both symmetric iff S′ = { (i, f(i)) : i ∈ S} is a symmetric subset of V . This completes the
proof in the case (4).

The case of arbitrary non-collinear a and b reduces to the case (4). Really, consider two
sets V = {v0, . . . , vn} and V ′ = {v′0, . . . , v′n} in Z2 with all vi+1 − vi ∈ {(1, 1), (1, 2)} and
v′i+1 − v′i ∈ {a, b}, where a and b are non-collinear. Let φ be the affine transformation of Z2

into itself that takes v0 to v′0, (1, 1) to a, and (1, 2) to b. Then φ establishes a one-to-one
correspondence between V and V ′ that matches symmetric subsets in V and symmetric subsets
in V ′. It follows that MS(V ) = MS(V ′), thereby proving the equivalence of statements 1 and
2.

Before proving the equivalence of statements 2 and 3, let us recall the relevant notions of the
formal language theory. A pattern is a word over the alphabet of variables {x1, x2, . . .}. Pattern
xi1xi2 . . . xil is symmetric if ij = il+1−j for all j ≤ l. Let A = {a1, . . . , am} be a finite alphabet.
The number of occurrences of letter ai in a word w over A is denoted by |w|ai . A commutative
index of w is the tuple 〈|w|a1 , . . . , |w|am〉. A subword u of a word w is an occurrence of a
pattern P = xi1 . . . xil if u can be obtained from P by substituting nonempty words in place of
each variable, where the same variable is everywhere replaced with the same word. If the same
variable may be replaced by (possibly distinct) words with the same commutative index, u is
called an abelian occurrence of P .

Example. In word a1a1a2a1a2a1a3, subwords a1a1, a1a2a1a2, and a2a1a2a1 are occurrences
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of pattern x1x1. In addition, a1a1a2a1a2a1 is an abelian occurrence of the same pattern.

Given a sequence of vectors V = {v0, v1, . . . , vn} in Zk with all vi − vi−1 in a finite set
A ⊂ Zk, we associate with V the sequence w(V ) of differences v1 − v0, v2 − v1, . . . , vk − vk−1

which will be viewed as a word of length n over alphabet A.

Lemma 2.1

1. If w(V ) has an abelian occurrence of a symmetric pattern of length l, then MS(V ) ≥ l+1.

2. Conversely, suppose that A is a linearly independent set of vectors. Then w(V ) has an

abelian occurrence of a symmetric pattern of length at least MS(V )− 1.

Proof. 1. Recall that word w(V ) is a sequence of vectors v1 − v0, . . . , vn − vn−1. Given a
subword u = vi+1 − vi . . . vj − vj−1, i < j, we call vi the initial point and vj the terminal point
of u. Let u = u1 . . . ul be an abelian occurrence of a symmetric pattern P of length l, where us
is substituted in place of s-th variable of P . Let vis−1 and vis be the initial and terminal points
of us. Then the set {vi0 , . . . , vil} is symmetric. This can be shown by easy induction. Really,
assume that vi1 and vil−1

are symmetric with respect to the center 1
2g, that is, vi1 + vil−1

= g.
As u1 and ul differ only in order of their letters, we have vi1 − vi0 = vil − vil−1

. Consequently,
vi0 and vil are symmetric with respect to 1

2g too.

2. Let l = MS(V ) and vi0 , . . . , vil be a symmetric subsequence of V . Denote a subword of
w(V ) whose initial and terminal points are vis−1 and vis by us. Then u = ui . . . ul is an abelian
occurrence of a symmetric pattern of length l. It suffices to show that commutative indices of
words us and ul+1−s are the same. Those are uniquely determined by expansions of vectors
vis − vis−1 and vil+1−s − vil−s in basis A. It remains to notice that the last two vectors are equal
by symmetricalness of {vi0 , . . . , vil}. ¤

The equivalence of statements 2 and 3 of Lemma 1.1 now follows directly from Lemma 2.1.
The proof of Lemma 1.1 is complete.

Proposition 2.2 M(n)→∞ as n→∞.

At this point we prefer the statement 3 of Lemma 1.1. Let Lnon−abel(n) be the maximal l

such that every word of length n over the binary alphabet has an occurrence of a symmetric
pattern of length at least l. As M(n) > Lnon−abel(n), it suffices to show that Lnon−abel(n)→∞
for n → ∞. The latter follows from a result of Coudrain and Schützenberger [10] which we
state below in a form convenient for our purposes.

Lemma 2.3 ([10]) If Lnon−abel(n) ≥ l, then Lnon−abel((n + 1)(2n + 1)) ≥ 2l + 1.
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Proof. Assume that every binary word of length n has occurrence of a symmetric pattern
P of length l. Any binary word of length (n + 1)(2n + 1) contains two identical subwords of
length n separated by a nonempty word. Thus, there is an occurrence of the symmetric pattern
PxP , where x is a new variable absent in P . ¤

Notice that the above argument ensures that each pattern Pi of the sequence (2) occurs in
any long enough binary word.

3. Lower Bound

The proof of Proposition 2.2 based on Lemma 2.3 gives us an extremely small lower bound
for M(n) that is even smaller than the inverse tower function. In this section we improve it to
M(n) ≥ 2 lnn − O(1). We first prove an auxiliary fact. Notice that whenever below we refer
to the number of subwords of a word, we distinguish all occurrences of a subword, that is, a
subword is counted each time it occurs in the word.

Lemma 3.1 Given a word w, let ν(w) denote the number of pairs {u1, u2}, where u1 and u2

are disjoint subwords of w with the same commutative index. Let N(n) be the minimum of

ν(w) over all binary words w of length n. Then

N(n) ≥ (lnn−O(1))n2/4.

Proof. Consider a binary word w of length n and estimate the value ν(w) from below.
Expand ν(w) to the sum

∑
t νt(w), where the t-th term counts pairs of subwords with length t.

Let σt(i) denote the number of subwords of w with length t and commutative index 〈i, t − i〉.
As the total number of subwords of length t is equal to n + 1 − t, notice the equality σt(0) +
σt(1)+ . . .+σt(t) = n+1−t. As a subword of length t can overlap with at most 2t−1 subwords
of the same length, we have

νt(w) ≥ 1
2

t∑
i=0

σt(i)(σt(i)− (2t− 1)).

Taking into account that

t∑
i=0

σt(i)2 ≥ (t + 1)

(∑t
i=0 σt(i)
t + 1

)2

,

we conclude that

νt(w) ≥ 1
2

(
(t + 1)

(
n + 1− t

t + 1

)2

− (2t− 1)(n + 1− t)

)

=
(n + 2)2

2(t + 1)
− (t +

1
2
)(n + 1) + t2 − 1

2
.
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Let us sum these inequalities over t from 1 to s, dropping the last term t2− 1
2 in the right hand

side (anyway it would give us no gain). Summing the first term in the right hand side, we take
into account that

∑s
t=1 1/t− ln s approaches Euler’s constant as s increases. Therefore,

s∑
t=1

νt(w) ≥ 1
2
(ln s−O(1))(n + 2)2 − s(s + 2)

2
(n + 1).

Setting s = d√n e, we obtain the proclaimed bound for ν(w) and hence for N(n). ¤

Theorem 3.2 M(n) ≥ 2 lnn−O(1).

Proof. We adhere to the statement 2 of Lemma 1.1. Let V = {v0, v1, . . . , vn} be a set of
points in Z2 with vi+1 − vi ∈ {a, b}. Denote G =

{
1
2(vi + vj) : 0 ≤ i ≤ j ≤ n

}
, the set of all

potential centers of symmetry. Let mg denote the “multiplicity” of an element g in G, that is,
the number of pairs (i, j) such that g = 1

2(vi + vj) and i ≤ j. Clearly,∑
g∈G

mg = (n + 1)(n + 2)/2.

Furthermore, let N denote the total number of quadruples

(vl, vi, vj , vk) with l < i ≤ j < k and vi − vl = vk − vj . (5)

Clearly,

N ≤
∑
g∈G

(
mg

2

)
(actually, the linear independence of a and b implies the equality here). It follows that

N <
1
2

∑
g∈G

m2
g ≤

1
2

(
max
g∈G

mg

)∑
g∈G

mg =
1
4
n2

(
1 + O(

1
n

)
)

max
g∈G

mg. (6)

Recall that with the set V we associate a word w(V ) over alphabet {a, b}. It is easy to
observe a one-to-one correspondence between quadruples (5) in V and pairs of disjoint subwords
u1 and u2 with the same commutative index in w(V ). By Lemma 3.1 we have

N ≥ (lnn−O(1))n2/4.

Together with (6), this gives
max
g∈G

mg ≥ lnn−O(1).

It remains to observe that, for every center g ∈ G, the set V contains a subset that is symmetric
with respect to g and has at least 2mg − 1 elements. ¤
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4. Upper Bound

In this section we prove an upper bound for M(n).

Theorem 4.1 M(n) ≤ (7 + o(1))
√

n.

We use a two-dimensional geometric interpretation of M(n) given by statement 2 of Lemma
1.1. We will construct a set V = {v0, v1, . . . , vn} of points in Z2 such that each difference
vi+1 − vi is either (1, 0) or (0, 1) and MS(V ) ≤ (7 + o(1))

√
n.

Our construction will be completely determined by two sets of integers X = {x1, . . . , xq}
and Y = {y1, . . . , yq} listed in the ascending order. Given X and Y , consider a sequence of
points in Z2

(x1, y1), (x2, y1), (x2, y2), (x3, y2), (x3, y3), . . . , (xq, yq) (7)

We define V by V = V1 ∪ V2, where

V1 =
q⋃
i=1

{ (xi, y) : yi−1 < y ≤ yi} and V2 =
q−1⋃
i=1

{ (x, yi) : xi < x ≤ xi+1}

(we set y0 = y1 − 1 for convenience). Thus, (7) are “corner” points of V , at which difference
vi+1 − vi changes its value from (1, 0) to (0, 1) or vice versa. Clearly, V consists of xq + yq +
1− x1 − y1 points.

Given a set Z = {z1, . . . , zq} of integers listed in the ascending order, define D(Z) =
max1≤i<q(zi+1 − zi).

Lemma 4.2 Suppose that V has been constructed based on q-element sets X and Y as de-

scribed above. Then

MS(V ) < MS(X)D(Y ) + MS(Y )D(X) + 2q. (8)

Proof. Let S be the maximum subset of V symmetric with respect to center 1
2g, i.e.

S = V ∩ (g − V ). Clearly,

S = (V1 ∩ g − V1) ∪ (V2 ∩ g − V2) ∪ (V1 ∩ g − V2) ∪ (V2 ∩ g − V1).

Let us estimate the cardinality of each member of the union.

V1 ∩ g − V1 is a symmetric subset of V1. As the projection of V1 ∩ g − V1 onto the first
coordinate is symmetric too, the cardinality of this projection does not exceed MS(X). As any
cut of V1 by vertical line (i.e. along the second coordinate) containes at most D(Y ) points, we
have |V1 ∩ g − V1| ≤MS(X)D(Y ). Similarly, |V2 ∩ g − V2| ≤MS(Y )D(X).

Observe now that all points of V1 differ in the second coordinate and have only q values for
the first coordinate, while all points of V2 differ in the first coordinate and have only q values
for the second coordinate. As a consequence, both V1 ∩ g− V2 and V2 ∩ g− V1 have less than q

points. The bound (8) follows. ¤
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We now need to choose X and Y so as to make the right hand side of (8) as small as possible.
The idea is to use a B2-sequence X = Y , which gives us the best possible MS(X) = MS(Y ) = 2.
It easily follows from [13] that D(X) ≥ q(1− o(1)) for any B2-sequence X = {x1, . . . , xq}. We
use a construction of [19] that provides us with D(X) ≤ (3 + o(1))q.

Lemma 4.3 (Krückeberg [19]) For any prime q there is a sequence of integers X = {x1, . . . , xq}
with MS(X) = 2 and D(X) < 3q. Moreover, x1 = 0 and xq = 2q2 − 2q − 1.

We include the proof of this lemma given in [19], because it contains a simple explicit
construction of the needed B2-sequences, thereby making our construction of V explicit too.

Proof. Set xi+1 = 2qi− (i2 mod q) for 0 ≤ i < q, where expression i2 mod q stands for the
least non-negative residue of i2 modulo q. Obviously, q < xi+1 − xi < 3q. To show that X is a
B2-sequence, assume that xi + xj = xi′ + xj′ , i ≤ j, i′ ≤ j′. It is easy to derive from this that{

i + j = i′ + j′ (mod q)
i2 + j2 = (i′)2 + (j′)2 (mod q)

Since in the field Fq a system of kind {
i + j = a

i2 + j2 = b

can have only a unique solution i, j with i ≤ j, we conclude that i = i′ and j = j′. ¤

Let us summarize our construction of the set V = {v0, v1, . . . , vn}. Let q be the prime
next to (

√
n + 3 + 1)/2 and X be the B2-set given by Lemma 4.3. Applying the construction

described in the beginning of the section with Y = X, we obtain a set V ′ = {v0, v1, . . . , vn, . . .}
of 4q2 − 4q − 1 ≥ n + 1 points in Z2. Leaving aside some last elements of V ′, we get the set
V . By Lemma 4.2, MS(V ) ≤ MS(V ′) < 14q. Since the prime next to m does not exceed
m + O(mα), where 0 < α < 1 ([18], see also [2, pp. 225, 256] for references on the best current
values of α), we have MS(V ) ≤ (7 + o(1))

√
n. The proof of Theorem 4.1 is complete.

Remark 4.4 The choice of Krückeberg’s B2-sequence is essentially best possible, because the
right hand side of (8) cannot be smaller than

√
2n, whatever sets X and Y are. Let us prove

this fact. First, observe relation
MS(X) ≥ q/D(X). (9)

for a set of integers X = {x1, . . . , xq}. This is a consequence of inclusion X ⊆
⋃D(X)−1
g=0 (g +

x1 + xq −X) which implies |X ∩ (g −X)| ≥ q/D(X) for some g. By (9)

MS(X)D(Y ) + MS(Y )D(X) ≥ 2(MS(X)D(Y )MS(Y )D(X))1/2 ≥ 2q

and therefore the right hand side of (8) is at least 4q.

Further, observe that MS(V ) > max{D(X), D(Y )}. Using this, we have n = |V | − 1 ≤
q(D(X) + D(Y )) < 2q MS(V ). Therefore, the right hand side of (8) exceeds 2n/MS(V ). It
remains to notice that one of the values MS(V ) and 2n/MS(V ) is at least

√
2n.
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Remark 4.5 Consider a random set V = {v0, v1, . . . , vn} in Z2 with vi+1 − vi ∈ {a, b} for
non-collinear a and b. We mean that the underlying word w(V) is uniformly distributed on
{a, b}n. The mean value of MS(V) could serve as an upper bound for M(n). Unfortunately,
this probabilistic argument cannot give anything better that the constructive bound of Theorem
4.1 by the following reason.

Just for simplicity assume that n = 2m is even. Let s denote the cardinality of the maximum
subset of V symmetric with respect to the center at the medium point vm. Consider now two
independent sequences ξ1, . . . , ξm and ζ1, . . . , ζm of unbiased Bernoulli trials, that is, all ξi and
ζj are mutually independent random variables that take on equiprobable values 0 and 1. Denote
the number of k such that

∑k
i=1 ξi =

∑k
i=1 ζi by t. In coding a = 0 and b = 1, it becomes clear

that s = 2t + 1. Estimate the expectation of t from below.

Let pk = P
[∑k

i=1 ξi =
∑k

i=1 ζi

]
. By linearity of mathematical expectation, E [t] =

∑m
k=1 pk.

Using Chernoff’s bound, we have

pk =
k∑
l=0

P

[
k∑
i=1

ξi = l

]2

>
∑

k/2−
√
k≤l≤k/2+

√
k

P

[
k∑
i=1

ξi = l

]2

≥

(2
√

k − 1)

P
[
k/2−

√
k ≤

∑k
i=1 ξi ≤ k/2 +

√
k
]

2
√

k + 1

2

≥ (1− 2 exp(−2))2

2
√

k + 7
.

Therefore, E [t] = Ω
(∑m

k=1 1/
√

k
)

= Ω(
√

m). As E [s] = 2E [t] + 1, we conclude that the mean

value of MS(V) is Ω(
√

n).

In conclusion we discuss one more aspect of the upper bound proven in this section. Given
n, we have constructed a set {v0, v1, . . . , vn} with

MS({v0, v1, . . . , vn}) = O(
√

n). (10)

Question 4.6 Is it possible to construct an infinite set {v0, v1, v2 . . .} such that (10) is true for
all n?

We could achieve this goal with the same construction, if we had an infinite B2-sequence
X = {x1, x2, . . .} with D({x1, . . . , xq}) = O(q) for all q. However, the latter condition implies
|X ∩ [m]| = Ω(

√
m) for all m, whereas no B2-sequence satisfies this condition by a result of

Erdős. Erdős proves that there is a constant c such that for any infinite B2-sequence X the
inequality |X ∩ [m]| ≤ c

√
m/ lnm is true for infinitely many m (see [15]). The best known

construction of [1] gives |X ∩ [m]| = Ω
(
(m lnm)1/3

)
. Nevertheless, we are able at least to

approach (10) with an infinite V .

Proposition 4.7 There is an infinite sequence V = {v0, v1, v2, . . .} with each difference vi+1−vi
either (1, 0) or (0, 1) and such that

MS({v0, v1, . . . , vn}) = n1/2+O(1/ ln lnn) (11)
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for all n.

Proof. We apply the straightforward infinite version of the construction described in the
beginning of this section with X = Y = {1, 4, 9, 16, . . .}, the set of integer squares. By Lemma
4.2, for any integer q and n = 2q2 − 2

MS({v0, v1, . . . , vn}) < 2MS({1, 4, . . . , q2})D({1, 4, . . . , q2}) + 2q.

We obviously have D({1, 4, . . . , q2}) = 2q − 1 and, by Lemma 4.8 below,

MS({1, 4, . . . , q2}) = qO(1/ ln ln q).

This proves (11) for all n = 2q2 − 2. Equality (11) is true for any other n as well, because the
next to n number of kind 2q2 − 2 does not exceed n +

√
(n + 2)/2 + 1 = n(1 + o(1)). ¤

The following lemma in other terms estimates the number of representations of an integer as
a sum of two squares. Though this estimate easily follows from the well-known number-theoretic
facts, we give a proof for the sake of completeness.

Lemma 4.8 MS({1, 4, . . . , q2}) = qO(1/ ln ln q).

Proof. It is easy to see that the maximum subset of {1, 4, . . . , q2} symmetric with respect
to 1

2g has as many elements as the number of solutions of equation z1 + z2 = g in {1, 4, . . . , q2}.
The Jacobi theorem (see e.g. [12, theorem 65]) says that if g = 2km with odd m, then the total
number of integer solutions of the equation x2 + y2 = g is equal to 4E, where E is the excess of
the number of divisors t ≡ 1 (mod 4) of m over the number of divisors t ≡ 3 (mod 4) of m. We
use the bound E ≤ d(m), where d(m) denotes the total number of positive divisors of m. It is
known that d(m) = mO(1/ ln lnm) ([25], see also [20] for the best currently known constant in the
exponent). As m ≤ g and it makes sense to consider only g < 2q2, we have d(m) = qO(1/ ln ln q).
Summarizing, we obtain MS({1, 4, . . . , q2}) ≤ 4E ≤ 4d(m) = qO(1/ ln ln q). ¤

5. Concluding Remarks And Open Problems

5.1 The Main Problem

The main problem left open is to make closer the exponential gap between our bounds

2 lnn−O(1) ≤M(n) ≤ (7 + o(1))
√

n.

Remark 4.4 shows that our method for upper bounding M(n) cannot do it better. As for
possibilities to improve our lower bound, it is a question if one can improve the intermediate
lower bound of Lemma 3.1.
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5.2 An Observation

It turns out that if we impose some (strong at first sight) restrictions on the structure of
V ⊆ Z2, then the minimal possible value of MS(V ) will not change much. We first prove the
following auxiliary fact.

Lemma 5.1 Let V , U , and A be finite subsets of Zk. Suppose that for any u ∈ U there is

v ∈ V with u− v ∈ A. Then MS(V ) ≥MS(U)/|A|2.

Proof. Fix a correspondence φ : U → V such that u − φ(u) ∈ A for all u. Let S be a
symmetric subset of U containing MS(U) elements. Among all MS(U) ordered pairs (u1, u2) of
symmetric points of S, let us consider those for which the pair (u1−φ(u1), u2−φ(u2)) is the same.
We can pick up at least MS(U)/|A|2 such pairs. The corresponding pairs (φ(u1), φ(u2)) are
clearly pairwise distinct and, moreover, have a common center g+ 1

2(φ(u1)−u1)+ 1
2(φ(u2)−u2),

where g is the center of symmetry of S. Therefore, they form a symmetric subset of V with at
least MS(U)/|A|2 elements. ¤

As before, let a and b be arbitrary but fixed non-collinear vectors in Z2. Define M ′(n) to
be the minimum of MS(U) over all subsets U = {u0, v1, . . . , un} of Z2 with each difference
ui+1 − ui in {a, b} and such that the underlying word w(U) does not contain subwords aa and
bbb.

Proposition 5.2 1
9M ′(2n− 1) ≤M(n) ≤M ′(n).

Proof. The second inequality is trivial. To prove the first one, consider a set V =
{v0, v1, . . . , vn} of points of Z2 with each vi+1 − vi either (1, 1) or (1, 2). Extend V to U =
{u0, u1, . . .} inserting a new point vi+(1, 0) between vi and vi+1 with vi+1−vi = (1, 1) and two
new points vi + (1, 0) and vi+1 − (0, 1) between vi and vi+1 with vi+1 − vi = (1, 2). Notice that
for any uj there is vi with uj−vi ∈ {(0, 0), (1, 0), (0,−1)}. By Lemma 5.1, MS(V ) ≥MS(U)/9.
In its turn MS(U) ≥M ′(2n− 1), because difference between any two successive points of U is
either a = (1, 0) or b = (0, 1), and word w(U) is free of subwords a2 and b3 and has length at
least 2n− 1. The proposition follows. ¤

Similarly with item 3 of Lemma 1.1, M ′(n) could be alternatively defined as the maximum
m such that every binary word of length n without squares of one letter and cubes of another
letter has abelian occurrence of a symmetric pattern of length at least m − 1. Proposition
5.2 shows that the function M(n) and its restricted version M ′(n) have the same order of
magnitude.

Question 5.3 Can prohibition of a2 and b3 help? Is estimating M ′(n) somehow easier than
estimating M(n)?
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5.3 Higher Dimensions

The function M(n), if considered from the geometric point of view in accordance with item
2 of Lemma 1.1, admits a natural generalization. Given A ⊂ Zk, define

Mk,A(n) = min
{

MS({v0, v1, . . . , vn}) : vi ∈ Zk, vi+1 − vi ∈ A
}

.

Remark 5.4 We assume that V = {v0, v1, . . . , vn} is an (n + 1)-element set, or a sequence
without self-crossing. Nevertheless, if we allow self-crossing and consider V to be multiset,
then everything that is claimed below holds true under the suitable definition of a symmetric
multisubset.

If A ⊂ Zk is a linearly independent system of k vectors, then Mk,A(n) does not depend on
the particular choice of A. In this case we will drop subscript A and write simply Mk(n). In
this notation M(n) = M2(n).

Define also Lk(n) to be the maximal l such that every word of length n over k letter alphabet
has an abelian occurrence of a symmetric pattern of length at least l. The proof of Lemma 1.1
can be directly extended to show that

Mk(n) = Lk(n) + 1,

Mk,A(n) ≥ L|A|(n) + 1 = M|A|(n). (12)

Let us focus on the case of difference set Ac = {v : 0 < ‖v‖ ≤ c}, where the norm ‖ · ‖ on
Zk is defined by ‖(z1, . . . , zk)‖ =

∑k
i=1 |zi|. As long as we are concerned with asymptotics in

n and consider parameters k and c fixed, we may restrict our attention to the difference set
A1, consisting of k unit vectors of the standard basis and k more opposite vectors. We will not
loose much, because

Mk,A1(n)
(2c + 1)2k

≤Mk,Ac(n) ≤Mk,A1(n).

The first inequality follows from Lemma 5.1 (given a set V = {v0, v1, . . . , vn} with difference set
Ac, we extend it to a set U with difference set A1 inserting intermediate points between vi and
vi+1 whenever ‖vi+1 − vi‖ > 1, and then relate MS(V ) with MS(U)). To facilitate notation,
denote M±

k (n) = Mk,A1(n). Notice relations

M2k(n) ≤M±
k (n) ≤Mk(n),

where the first inequality is true by (12).

If k > 2, all that we can say is that

Mk(n)→∞ as n→∞. (13)

This fact is a consequence of inequalities Mk(n) > Lk(n) > Lnon−abelk (n), where Lnon−abelk (n)
generalizes the function Lnon−abel(n) introduced in Section 2 to the k-letter alphabet. Similarly
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with Lemma 2.3, if Lnon−abelk (n) ≥ l, then Lnon−abelk ((n + 1)(kn + 1)) ≥ 2l + 1. This results
in a lower bound for Mk(n) that tends to the infinity but more slowly than the inverse tower
function.

Question 5.5 Prove better (than the inverse tower function) lower bounds for M3(n) and
M±

2 (n).

Question 5.6 For k > 2 prove a better (than O(
√

n)) upper bound for Mk(n).

Question 5.7 Try to prove a better (than O(
√

n)) upper bound for M±
2 (n).

5.4 Odd Vs. Even Cardinality

Dekking [11] proves that in the binary alphabet there is an infinite word without abelian
occurences of pattern x4 and that in the ternary alphabet there is an infinite word without
abelian occurences of pattern x3. Kera̋nen [17] reports a (computer aided) proof that in the 4-
letter alphabet there is an infinite word free of abelian occurences of pattern x2. The latter result
implies that there is an infinite sequence of points in Z4 with differences between consequtive
points only (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1) and without symmetric subsets of
odd cardinality (excepting singletons). At the same time by (13) it must contain arbitrarily
long symmetric subsets of even cardinality.
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