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Abstract

In this paper, we establish several modular relations involving two functions analogous to the
Rogers-Ramanujan functions. These relations are analogous to Ramanujan’s famous forty
identities for the Rogers-Ramanujan functions. Also, by the notion of colored partitions, we
extract partition theoretic interpretations from some of our relations.

—Dedicated to Professor Ron Graham

1. Introduction

Throughout the paper, we assume |¢| < 1 and for positive integers n, we use the standard
notation

(a;q)n == 1:[(1 —ag’) and (a;q)e = [J(1 - ag").

The famous Rogers-Ramanujan identities ([20], [16], [17, pp. 214-215]) are

2
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and
© n(n+1) 1
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G(q) and H(q) are known as the Rogers-Ramanujan functions. Ramanujan [19] found forty
modular relations for G(¢q) and H(q), which are called “Ramanujan’s forty identities.” In
1921, Darling [10] proved one of the identities in the Proceedings of London Mathematical
Society. In the same issue of the journal, Rogers [21] established ten of the forty identities,
including the one proved by Darling. In 1933, Watson [24] proved eight of the identities, two
of which had been previously established by Rogers. In 1977, Bressoud [7], in his doctoral
thesis, proved fifteen more. In 1989, Biagioli [5] proved eight of the remaining nine identities
by invoking the theory of modular forms. Recently, Berndt et. al. [4] have found proofs of
thirty-five of the identities in the spirit of Ramanujan’s mathematics. For the remaining five
identities, they also offered heuristic arguments showing that both sides of the identity have
the same asymptotic expansions as ¢ — 1.

Two identities analogous to (1) and (2) are the so-called Gollnitz-Gordon identities [11],
[12], given by

eGP e 1
S()=2 @)t (G )5 )07 ) ®)

n=0

and

T(g) = Y D e : g
= (@) (0% ¢%)oc (0" ¢%) oo (@ ¢%) o

S(q) and T'(q) are known as the Gollnitz-Gordon functions. Huang [15] and Chen and Huang
[9] found twenty-one modular relations involving only the Gollnitz-Gordon functions, nine
relations involving both the Rogers-Ramanujan and Gollnitz-Gordon functions, and one new
relation for the Rogers-Ramanujan functions. They used the methods of Rogers [21] , Watson
[24], and Bressoud [7] to derive the relations. They also extracted partition theoretic results
from some of the relations. Baruah, Bora, and Saikia [2] also found new proofs for the
relations which involve only the Gollnitz-Gordon functions by using Schroter’s formulas and
some theta-function identities found in Ramanujan’s notebooks [18]. In the process, they
also found some new relations. In [13] - [14], H. Hahn defined the septic analogues, A(q),
B(q), and C(q) below, of the Rogers-Ramanujan functions, and L.J. Slater [22] established
the following identities:

e 7" (4740 (6% 470 (0% ¢") e

Aq) —; (% @*)n(—=4; @)2n (4% ¢*) oo ’ ©)
N gt (475400 (0% 47) o0 (075 47

Bla) _; (4% ¢%)n(—4; @)on (4% ¢%)oc ’ ©)

and
2n(n+1)

N q (07540 (@:07) (0% 4 ) e
Cl)=2, (% ®)n(—0; Q)2nt1 (0% %) s ' (7)
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Hahn found several modular relations involving only A(q), B(q), and C(q), as well as relations
which are connected with the Rogers-Ramanujan and Gollnitz-Gordon functions.

More recently, the authors [1] established many modular relations involving the following
nonic analogues of the Rogers-Ramanujan functions and other analogous functions defined
above:

_ i q q 3nq _ (0400 ¢") (0% ") ®)
— ( @ q*)an+1 (7% ¢*) oo ’

_ i ¢ 9) 3n (1—¢"") _ (¢14°)0(d":4")0 (% ¢")x )
—( (4% ¢*)anta (4% ¢*)oo ’

S q 9) 3n+1q PO (450%)00(6% 6%) 0 (475 47) e (10)
n(@% ¢*)2n 11 (7% ¢*)oc ’

n:()

where the three equalities are also due to Slater [22].

In this paper, we consider the following two analogous functions of the Rogers-Ramanujan
functions:

i —% (1 — """ (4100000 (0" 6o a1

= (45 @)2n+2 (¢; @)oo ’
i 1 ¢*)1 L+ 00" (@%4"%)(0736%) (056 12)
=0 (45 9)2n (4 @)oo ’

also established in [22]. By applying various results on Ramanujan’s theta-functions and
methods of Blecksmith et al. [6] and Bressoud [7], we find several modular relations for X (q)
and Y (¢q). Some of these relations are connected with the Rogers-Ramanujan functions and
their analogues defined in (1)-(10).

In Section 2, we present some definitions and preliminary results. In Section 3, we present
the modular relations involving X (¢) and Y (¢) and other analogous Rogers-Ramanujan-type
functions. In Sections 4-7, we present proofs of the modular relations. In our last section,
we apply some of the modular relations to the theory of partitions.

2. Definitions and Preliminary Results

Ramanujan’s general theta-function is

fla,b) = Z @ ED2pn=/2 gl < 1. (13)

n=—oo
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In the following lemma, we state a basic identity satisfied by f(a,b).

Lemma 2.1 [3, p. 34, Entry 18(iv)] If n is an integer, then

f(a,b) = a2 =072 £ (g (ab)™ b(ab) ™). (14)
We state Jacobi’s famous triple product identity in our next lemma.

Lemma 2.2 [3, p. 35, Entry 19] We have

fla,b) = (—a; ab) oo (—b; ab) oo (ab; ab) . (15)
In the next lemma, we state three important special cases of f(a,b).

Lemma 2.3 [3, p. 36, Entry 22] If |¢| < 1, then

_ B 2 ()@ 0P
¢(q) = flg.q) =1+2 ;q Pl P (16)
o 8 NS a2 _ (@16
U(q) = fa.¢%) = nz:% q = P (17)
f(=q) = f(=q,=¢") = > _(=1)"q" @ V24 Y (=" = (g9)ee,  (18)
and N -
X(q) == (=¢;¢°)oo- (19)

The product representations in (16)-(18) arise from (15). Also, note that if ¢ = €™, then
¢(q) = 93(0,7), where ¥3(z, 7) denotes the classical theta-function in standard notation [25,
p. 464]. Again, if ¢ = €2™7 then f(—q) = e ™/'25(), where n(7) denotes the classical
Dedekind eta-function. The last equality in (18) is a statement of Euler’s famous pentagonal
number theorem.

Invoking (15) and (18) in (11) and (12), we readily arrive at the following result.

Lemma 2.4 We have

and Y(q) = m—~1L2 (20)

Throughout the remainder of the paper, we shall use f,, to denote f(—¢™). The following
lemma is a consequence of (15) and Entry 24 of [3, p. 39).
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Lemma 2.5 We have

_ 5
1 N R B
¢( q) - f27 w( q) - f2 ’ f<Q> - f1f47 and X(Q) - f1f4‘

The following three lemmas, from [3], will be useful.

Lemma 2.6 We have
f(aa b) + f<_a’7 _b> = 2f<a3b7 abg)'

and

f(a,b) — f(—a, —b) = 2af(b/a,a’b*).

Lemma 2.7 We have
(q) = f(¢®,¢°) + q(d”).

Lemma 2.8 We have

We state one more lemma, which is from [23].

Lemma 2.9 For |ab| < 1,

f(=b% —a®b)

f3(ab?, a*b) — bf?(a,a’b’) = o )

f*(—ab).

3. Modular Relations for X(¢) and Y (q)

5

(23)

(24)

(25)

(26)

In this section, we present a list of modular relations involving some combinations of X (q) ,
Y (q), and other analogous Rogers-Ramanujan-type functions. For simplicity, for a positive
integer n, we set X, := X(¢"), Y, := Y(¢"), G, := G(¢"), H, := H(q"), S, = S(q"),
T, = T(¢"), A, = A(q"), B, == B(q"), C, == C(q"), D, :== D(q"), E, := E(q"), and
F, := F(q"). We also note that more relations can easily be obtained by replacing g by —¢



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2)

in each of the following relations:

Yi+q¢Xi =

Yi—q¢Xi =
X 1Yy +¢XoY, =

XY+ ¢ XY, =

}/‘13 3x3

YiYs + Q3X1X2 =

X1Y3

Y +4°X; =¢

YiYs 4+ ¢° X, X5 =

X1 Y5+ ¢*XgY) =

XoY7 4 °X7Yy =

X1V +¢"X Y =

ViV + ¢ X1 Xy =

Y1 Yoo + ¢*' X1 Xop =

P X7Ys + qX5Yr =

Y1Yas + ¢ X1 X5 = ¢

— X3, =

yia

fifd

f4f6

f3 13 1t

fifs

Fuf2 fo s

f313 flafis’

fif

Fifsf?

fofsfs  fofas

nhfs Thf

fofly  fufshsfe

Fifsfife " fifofsfa

fo 17 e f18

f18f2f3 f1

ﬂhﬁ__gﬁﬁuﬁdm

f1f2f10 f1f5f6f30

f32+q2f3f12f24f72

fs T hiffsfus

f1f56+qf6f21f24f84

fofe U hfifiafe

f4f44+ 3f3f12f33f132

Fofor U Fifofates

fifs _ s fsbinlifis

f1f14 f1f6f14f84

f5f16 f3f12f60f240

AERE AN
f15f21f60f84 _ f1f4f35f140
ffefnfsn  fofsfefro
12f3f12f105f420 f5f7f20f28

fifefssfoo fifiofiafss

(2007),

#A05

6
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The identities (44)-(47) involve quotients of the functions X (¢) and Y'(q):
Yis — *(forfros)/(fisfsa) — @ Xas  fifafiofis
Vs —q(fofse)/(fafis) — *Xs  fafsfsfao’
X531 — ¢" (fis fooSfos far2)/ (fs faofa1 fise) + ¢*° Xa1Ys  fifiss
Y1Yis5 4+ ¢52(f3 fr2 faes fseo) / (f1fo fis5 fos0) + @90 X1 Xu55 — fofar
X7Ya9 — @*(for faafsr faas)/ (frfoo fazfia) + 0 XagYr  fifa03
Y1Ya03 + ¢%8( f3 f12fe00 f2436) / (f1.f6 f203 f1218) + 2% X1 X035 frfoo
X1Yors — qgl(f1f12f825f3300>/(f1f6f275f1650) + q274X275Y1 _ Ji1fos
Xi1Yos — Q(f33f75f132f300)/(f11f25f66f150) + " Xo5Y1) f1f275'

7

The following identities are relations involving some combinations of X (¢) and Y (¢q) with

the Rogers-Ramanujan functions G(q) and H(q):

G7Gs + ¢°H7 Hy

fo

YoYr + @ (fofor foafsa)/(fofr frafiz) + @ Xo X7 fs

GoGi6 + ¢*HoHg

fof1e

Y3Yio + 63 (fof% fraa) )/ (f3frofisfr2) + 45 X3 X2 fafio|

GsGar + ¢"HyHoy

f3f18

Y3Yis + q7(fofsefs0f216)/ (faf i fr) + ¢* X3 Xis  fsfor

The following identities are relations involving some combinations of X (¢) and Y (q) with

the Gollnitz-Gordon functions S(q) and T'(q):

YY1+ ¢ (fsfoa)/([ifo) + X Xs  fifs
SuSo + @3 TuT, B fafie’
Yis — @(fasfiso)/(fisfoo) — " Xas  fifafsfeo
S1551 + ¢®¥TsTh  fofsfiafa’
X1Yas — ¢ (fsfrafoofore)/ (frfefos frss) + a®*Y1Xos  fafizforfime
11523 — qT535:  fafsfiefisa
Yos Y1 + ¢ (fs frafros frs0) / (f1fe fos fao0) + ¢ X1 Xos _ Jsfiaf20/76
S19Ts — q"S5Thg B fifrofssfos’
V1Yo + " (fsfrofasrfrazs) [ (fifo friofria) + 2 X1 X119 fofinfosfes
S17T7 — ¢°Ti7S7 B Jif1af3a 110
X5Y19 — ¢°(f15 foof57 f228)/ (f5.f10 a0 f114) + ¢"0Y5X 19 _ J1fao5 f380
So551 + ¢*¥TosTh faf5f19fro0’
X3Yo1 — q5<f9f36f63f252)/(f3f18f21f126) + Y3 Xy . Jifafe3fos2
Se351 + ¢**Te3Th  fofsfarfize’
XoYir — q(for 1 fsafoon) [ (frfrzfao fro2) + @OV Xar  fufafire faze
S119T1 — ¢ 51T B fofrfizfass

Y

Y

(48)
(49)

(50)

(57)

(58)
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The following identities are relations involving some combinations of X (¢) and Y (¢q) with
the septic analogues A(q), B(q), and C(q):

V5Ya + ¢*(frafrs fasfoo) / (fafs faafa0) + 4" X5 X4 ~ Ja2/f10

- : 59

AsA16 + ¢3B5Big + ¢°C5C16 fafs (59)

Y1Yos + ¢*(f5 fi2fo0afr1176) / (f1f6 fos [5ss) + 7 X1 Xos _ fiafir2 (60)
As6Cr — Q5B56A7 + q2205637 f1fos '

The following identities are relations involving some combinations of X (¢) and Y (¢q) with
the nonic analogues D(q), E(q), and F(q):

V1Yo + q(fafor)/(fifo) + P XiXo  fafou

- , 61
Di1Ds +q+ ¢°E1Es + ¢OF1 I3 fif (61
X1Ys0 — ¢"°(f3.f12.f150f600) / (f1.fs f50 f300) + ¢"Y1X50 _ Jau S5 (62)
DosEs — q — "' Egs By + ¢ Fo5 Ds fifso
4. Proofs of (28), (29), and (32)
Proof of (28): Putting a = g and b = ¢* in (23) and (24), we find that
Fa:a*) + f(=a.—*) = 2f (", q") (63)
and
f(a,¢%) = f(=¢,—4") = 24 (a.4"), (64)
respectively. Subtracting (64) from (63), and then replacing ¢ by —¢, we find that
f(=a".—d") +af(=q,—¢") = f(a,—¢*) = f(a), (65)
where the last equality follows from (18).
Dividing both sides of (65) by f(—q), we arrive at
0 a7 11
fea =) flee—a) _ a) (66)
f(=a) f(=q) f(=q)
Employing (20) and (22) in (66), we easily arrive at (28).
Proof of (29): Adding (63) and (64), and then replacing ¢ by —¢, we obtain
¢(q°
f(=",=d") —af(=a,~¢"") = f(-¢,¢*) = x((q))’ (67)

where the last equality follows from (26).
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Employing (20), (21), and (22) in (67), we easily deduce (29).
Alternative proof. From [3, Entry 31, Corollary(ii)], we have
f@®,¢) + @ f(@*.a) = ¥(q) — qv(d”). (68)
Replacing ¢®, by —¢, and employing (25), (26), (20) in (68), we easily arrive at (29).
Proof of (32): Setting a = q and b = ¢® in (27), we obtain

d(—q°)
U(q®)

P(@°d) =P g.q") = P (=q"). (69)

Replacing ¢, by —¢, in (69), we find that

d(—q°)
V(—¢)

P =)+ (¢, —¢") = P (=q"). (70)

Using (22) and (20) in (70), we easily arrive at (32).

5. Proofs of (33) - (35)

To present proofs of (33) - (35), we use a formula of R. Bleckmith, J. Brillhart, and I. Gerst
[6, Theorem 2], providing a representation for a product of two theta functions as a sum of
m products of pair of theta functions, under certain conditions. This formula generalizes
formulas of H. Schréter [3, p. 65-72]. Define, for € € {0,1} and |ab| < 1,

[e.o]

flab) = 37 (~1)7(ab)" (a/b)". (71)

n=—oo

Theorem 5.1 Let a, b, ¢, and d denote positive numbers with |ab|, |ed| < 1. Suppose that
there exist positive integers «, 3, and m such that

(ab)? = (cd)m—eb), (72)
Let €1, €5 € {0,1}, and define 61, 62 € {0,1} by
0 =€ —aey(mod 2) and b = Pey + pea(mod 2), (73)

respectively, where p =m — af3. Then if R denotes any complete residue system modulo m,

(a<cd)a(a+12r)/2 b<cd)a(a+1+27‘)/2 >

co ’ de

fel ((Z, b)f€2 (C, d) _ Z(_1)e2rcr(r+1)/2dr(r71)/2f6l

reR
« ((b/a)ﬁ/2(cd)p(m+1—2r)/2 (aﬁ)ﬁ/2<cd)p(m+1+2r)/2)
52 .

P ’ dp

(74)
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Proof of (33): We apply Theorem 5.1 with the parameters e; =1, ¢, =0, a =b=¢*, c = 1,
d=q,a=2, =1, m=06. Consequently, we find that

26(—q >w< ) =2{f(=d",—¢") f(=¢"", —¢"")
(=) (=4") + ¢’ f(=q.—a") f(=a*, =" }. (75)
Now, using (20) and (22), we deduce (33).
In a similar way, we prove the identities (34) and (35). To prove (34), we apply Theorem
5.1 with the parameterse; =1, e =0, a=1,b=¢°,c=q,d=¢*>,a =1, =1, m = 4 and

to prove (35), we again apply Theorem 5.1 with the parameters ¢; =1, ¢ =0 a =b = ¢*®
c=q¢,d=1,a=3,3=1 m=6.

6. Proofs of (30), (31), and (36) - (43)

We will apply the method given by Bressoud in his thesis [7]. Here, we use f,, instead of P,,
and the variable ¢ instead of z, which stands for ¢* in [7]. The letters «, 8, m, n, p always
denote positive integers, and m must be odd. Following Bressoud [7], we define

(q(p+1—2n)a; qua)oo (q(p—1+2n)a; q2pa)

(pm) _ { (12n2—12n+3—p<p—1>/2>/<12p>a} %
9" = 1q . (76)
Jo (qa; qQa)oo

Proposition 6.1 [7, Proposition 5.8] We have

gt(lp,n) _ giép,—nﬂ)’ and g(()ézvm) _ Q((fn p) and g(()p,n) _ _g((lpyp—nﬂ)' (77)
Proposition 6.2 [7, Proposition 5.9] We have

gt =1, (78)

—1la f4oz a o f4a o
gl = MIREESG), and g = g RRT(), (79)

where S(q) and T'(q) are as defined in (3) and (4), respectively.

Proposition 6.3 We have

g((l(s,l) —5a/12Y J{fza (80)
—Q fOlfo

god = e, (81)

2(6,3) 70(/12X f2a (82)

@ f12a



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A05 11

Proof. Take p =6, and n =1 in (76). Then

(6,1) _ q—5a/12 (2”400 (d"; 400 (0% ¢
« (qa; q2o¢)(q12a, q12a)oo

Employing (15) and (20) in (83), we readily deduce (80). Similarly we can prove (81) and
(82).

g (83)

Theorem 6.4 [7, Proposition 5.4] For odd p > 1,

(p—1)/2
Gagmp = 20° T f(—¢*) f(—4?) Z g glpGmn=mt1/2) (84)

Lemma 6.5 [7, Corollary 5.5 and 5.6] If ¢o g.mp s defined by (84), then

gba,ﬂ,m,l - 07 (85)
and
Gaprz = 2¢O (—g*) f(—4°). (86)
Lemma 6.6 [7, Lemma 6.5] We have
Gap1s = 20T f (=) (=" {G(@)G(q™) + ¢ PP H (¢")H (¢*)}. (87)

Lemma 6.7 [13, Lemma 6.6] We have

%7@177 =2q(“+5)/56f(—q2a)f(—q2ﬂ){AﬂAa + q(a+ﬂ)/7BﬁBa + q(3a+35)/7050a}, (88)
Gapsr =2¢ZT0f () f(—* ) {ACq — ¢ T2 B A, + T2 7Cy B Y. (89)

Lemma 6.8 [1] We have

<Z5a,,8,1,9 :2q(a+ﬂ)/72f(—q3°‘)f(—q:)’ﬁ){DaDg + q(a+ﬁ)/9 + q(a+ﬁ)/3EaEﬁ

+ OB E Fy). (90)
P59 =245V f(=**) f(=* W DpEo — 47727 — "B B,
+ ¢ B D, ). (91)

Theorem 6.9 [7, Proposition 5.10] For even p,

/2
_ 2q(2p 1)(a+p)/24 Zg(pn ap ;mn—((m—1)/2)) f2paf2p,8faf,8 ) (92)

¢a ,B,m.p f2a f2,8

n=1



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007),

Lemma 6.10 [7, Corollary 5.11] If a and 3 are even positive integers, then

_ o (arpye ] (CCV (=) f(=a*?) [(=¢"?)
Pupa =2 =) (=) |

Lemma 6.11 [15, Lemma 5.1] We have

¢a,5,174 - fafﬁ
Do 534 = Qq(9a+ﬁ)/32{S(qﬂﬂ)T(qa/?) _ q(ﬁ—a)/25(qa/2)T(qﬁ/2)}%_
8,3, o f5

Theorem 6.12 |7, Proposition 5.10]

ba,p52 = 2q(a+ﬁ)/gm'
o f?anﬁ

Proof. Applying equation (92) with m =5 and p = 2, we have

24(e+A)/84(25) (2.3 Jaafapfafs .
=5 e Joa fo

Now, using (77) and (78) in (97), we obtain the result.

¢a,,6,5,2 -

Proposition 6.13

¢aﬂ16_2qa+5/24f fﬂ {YY _'_anrﬂ /3f3af36f12af126+qa+5)X Xﬂ}

fafﬁfﬁaf(%ﬁ
bapse = 2q(9a+ﬁ)/24 Js/30. 120 {Yg . qﬁ/g f3pf128 _ qﬁXg} ‘
6o fates
busss — 2L f, {qa XY, - gara)ysfsatsahoatios | s ﬂya} '
fafﬁfﬁaf66

Proof. Applying equation (92) with m = 1 and p = 6, we have

(a+,@)/24{ (6,1) (6,1)_+_g(62) (62)+g( 9(63 } flzafmﬁfaf@

ba,p1,6 = 24 9,9 g
L0 =B 5 = =a f2af25

167 -

[ (07 « o Oé.f fOéf
24 +ﬁ)/32{5(q5/2)5(q /2) + ¢ +ﬁ)/4T(q’6/2)T( /2)}f2 26Ja)B

#A05 12

(93)

(96)

(97)

(101)

Now, using (80), (81), (82), in (101), we obtain the result after simplification. The equation
(99) and (100) can be proved in a similar way by applying equation (77) with m = 3 and 5,

respectively, and p = 6.
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Theorem 6.14 [7, Corollary 7.3] Let «;, (i, m;, pi, be positive integers, for i = 1,2, with
my, my odd. Let My := (aym? + 31)/p1 and Ny := (aem3 + (32)/pa. If the conditions

)\1 = )\2, Oélﬁl = CYQﬁQ, and army = :I:Oégmg(mOd )\1)

hOld7 then ¢a17ﬂ1,m17p1 - ¢042,527m2,102'

We next give proofs of several of the modular relations from Section 3.
Proof of (30): From [13, Proposition 6.23], we have

¢p+1,4p2,5,p+5 = ¢p,4p(p+1),17p7 (102)

where p is a positive integer. Setting p = 1 in (102), we easily arrive at (30) with the help
of (100) and (85).

Proof of (31): If p is even, then from [15, Proposition 6.3], we note that
P6,4p+10,p+3,p+4 = P2,12p+30,1,2- (103)
Setting p = 2 in (103), we obtain (31) by employing (100) and (93).
Proof of (36): If p in an integer greater than 1, then from [15, Proposition 5.4], we have
Srp-11p =0 F(L AV (=" =), (104)
setting p = 6 in (104), we obtain (36) with the help of (98) and (22).
Proofs of (37) and (38): From Propositions 6.2 and 6.3 of [15], we have

¢2,3p+10,p+3,p+4 = (251,6p+20,1,3 (105)
and

¢4,3p+8,p+3,p+4 = ¢1,12p+32,1,3a (106)
respectively, where p is even. Setting p = 2 in (105) and (106), we readily deduce (37) and
(38), respectively, with the aid of (100) and (86).
Proof of (39): From Proposition 6.15 of [13], we have

¢1,p2+10p,5,p+5 = ¢p+10,p,1,27 (107)
where p is a positive integer. We set p =1 in (107) to obtain (39) with the aid of (100) and
(93).

Alternative proof of (3.12). From [3, p. 69, (36.10)], we note that

Y)Y ")
n/2-1
mm m 271/2 —ZMm— 271/2 14 rvrm —V—Vm
_ E q" ( +1)f<q(u+2 +1)(p )’q(u 2m—1)(p ))f(q“+ +2 " 2 )’ (108)

m=0
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where p is even.

We set 4 =6, v =5 in (108), and then employ(14) to arrive at

2q0()0(q") = 2¢ { f(q.¢") f (¢, d") + @) (d®) + ¢ f (. ¢") f(¢" . ¢™")} . (109)

Replacing ¢, by —¢, and dividing both sides by f(—¢q)f(—¢'!), and using (20) and (22), we
deduce (39).

Proofs of (40) and (41): From Propositions 6.13 and 6.19 of [13], we have

O2,p(p+3),1,p+2 = Pp+3,2p,1,3 (110)

and
P22 43p1.p+1 = P2p+6,p,1,35 (111)

respectively, where p is a positive integer. We set p = 4 and 5 in (110) and (111), respectively,
to deduce (40) and (41) with the aid of (98) and (86).

Proof of (42): From Theorem 6.14, we obtain
¢7p,5p,5,6 = ¢p,35p,5,2a (112)

where p is a positive integer. We set p = 1 in (112) to deduce (42) with the help of (100)
and (96).

Proof of (43): From Theorem 6.14, we find that

Pp+1p+312 = P1p2+dp13.1p+25 (113)

where p is a positive integer. We set p =4 in (113) to deduce (43) with the aid of (98) and
(93).

7. Proofs of (44)—(62):

Proofs of (44)—(47): The following identities hold by Theorem 6.14:

D5p,9p,3,6 = Dp,45p,3,65 (114)
¢p,155p,1,6 = ¢5p,31p,5,6> (115)
¢p,203p,1,6p = ¢7p,29p,5,6p7 (116)
¢p,275p,5,6 - ¢11p,25p,5,67 (1]‘7)

where p is a positive integer. Now, we set p =1 in (114), (115), (116), and (117), and then
use (98), (99), and (100) to complete the proofs.
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Proofs of (48)—(50): The following identities hold by Theorem 6.14:

Pap(p+5).1p+4 = Ppt5.4p,15- (118)
¢6,p2+5p71,p+3 = ¢2p+10,3p,1,5- (119)
D6.p2-+5p,L,p+2 = P3p+15,.2p,1,55 (120)

where p is a positive integer. Note that (119) and (120) were deduced by Hahn [14, Proposi-
tions 3.4.11 and 3.4.21]. Setting p = 2, 3, and 4 in (118), (119), and (120), respectively, and
then employing (98) and (87) we complete the proofs.

Proofs of (51) and (52): For a positive integer p, the following identities hold by Theorem
6.14:

P16p,3p,1,4 = P32p.4p,1,65 (121)
P1ap+3pp+3 = P1ap+314- (122)

set p = 1 and 3 in (121) and (122), respectively, and then employ (98), (99), and (94) to
finish the proofs.

Proof of (53): Hahn [13, Proposition 6.20] deduced the following identity from Theorem
6.14. If p is a positive integer, then

P18p+7,2p+3,p+4 = DLEP+7,2p+1 pt2- (123)

We set p =2 in (123) to obtain
$1,23,7,6 = D1,23,54- (124)

Employing (92) and (77) in (124), we find that
20" =gy 9" + 9570 = 95”9V ) = =gy Vet + gV ) (125)
Applying (80), (81), (82), and (79) in (125), we readily arrive at (53).

Proofs of (54) and (55): In her thesis, Hahn [13, Propositions 3.4.3 and 3.4.23] deduced the
following identities from Theorem 6.14. If p is a positive integer, then

P15p+80,p,1,p+5 = P5p,3p+16,3,3p+1 (126)

Pp,2p? +27p+90,1,p+5 = Pp+6,2p2+15p,3,p+3- (127)
We set p = 11in (126) and (127), and then use (98) and (95) to arrive at the desired identities.

Proofs of (56) — (58): For p even, Huang [15, Propositions 6.8, 6.7, and 6.9] deduced that
5 4p+11,p+3,p+4 = P1,20p+55,1,45 (128)

¢3,4p+13,p+3,[’+4 = ¢1,12p+39,1,47 (129>

D7, 4p+19,p+3,p+4 = P1,28p+63,3,4- (130)



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A05 16

Setting p = 2 in (128), (129), and (130), and then using (100), (94), and (95), we readily
arrive at the desired identities.

Proof of (59): From Theorem 6.14, we find that

P10p.8p,1.6p = P16p.5p,1,7p5 (131)

where p is a positive integer. We set p = 1 in (131)to arrive at (59) with the help of (98)
and (88).

Proofs of (60) and (61): In her thsis, Hahn [14, Propositions 3.4.7 and 3.4..25] deduce that

2, 5p2+23p+24,1,p+2 = Pp+3,10p+16,5,7 (132)

and
¢p72p+1871,p+6 = ¢p+9,2p71,p+3> (133)

where p is a positive integer. Setting p = 3 in (132) and (133), and then employing (89),
(90) and (98) in the resulting identities, we readily arrive at the desired results.

Proof of (62): For a positive integer p, we can easily verify by Theorem 6.14 that

¢2p,100p,5,6 = ¢8p,25p,5,9- (134)

Setting p = 1 in (134), and then employing (100) and (91), we obtain (62).

8. Applications to the Theory of Partitions

The identities stated in Section 3 have applications to the theory of partitions. We demon-
strate this by giving combinatorial interpretations of some of these identities. For simplicity,
we adopt the standard notation

(&j; Q)oo
1

<a1>a27 T, Qg Q)oo =

J

n

and define

(55000 = (0", 0" ¢%) o0

where r and s are positive integers and r < s.

We also need the notion of colored partitions. A positive integer n has k colors if there are
k copies of n available and all of them are viewed as distinct objects. Partitions of positive
integers into parts with colors are called colored partitions. For example, if 1 is allowed to
have 2 colors, say r (red), and g (green), then all colored partitions of 2 are 2, 1, +1,, 1,41,
and 1, + 1,. We note that
1

(q“;q")%,
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is the generating function for the number of partitions of n, where all the parts are congruent
to u (mod v) and have k colors.

Theorem 8.1 Let pi(n) denote the number of partitions of n into parts congruent to +1,
+2, £4, 6 (mod 12) with +£2, 6 (mod 12) having two colors. Let pa(n) denote the number of
partitions of n into parts congruent to £2, +4, +5, 6 (mod 12) with £2, 6 (mod 12) having
two colors. Let ps(n) denote the number of partitions of n into parts congruent to £1, £3,
+5 (mod 12) with +1, £5 (mod 12) having two colors. Then, for any positive integer n > 1,
pi(n) 4+ p2(n — 1) = ps(n).

Proof. Identity (28) is equivalent to

(6" 40" ¢") N q(qli;q”)(q”;q”) _ (%)
(¢:9) (¢:9) (:0)* (g% ")

(135)
Rewriting the products of the above identity subject to the common base ¢'2, we deduce
that

1 q 1
(g H2E2E4E66, (12) + (2H2EAESE66, (12) - (g B 1355 5E, g12) (136)

The three quotients of (136) represent the generating functions for pi(n), pa(n), and ps(n),
respectively. Hence, (138) is equivalent to

Zpl n)q" +qu2 n)q" —Zpg "

where we set p;(0) = p2(0) = p3(0) = 1. Equating coefficients of ¢" on both sides yields the
desired result.

Example. The following table illustrates the case n =9 in Theorem 8.1.

p5) =7 p2(4) =4 ps(5) =11

4+1 2, + 2, O

2, +2,+1 2, + 2,4 g

2, +2,+1 24+ 24 3+ 1, +1,

24 +24+1 4 3+1,+1,

2+ 1+1+1 3+1,+1,

2, +1+1+1 L+ +1+1,+1,

I+1+1+1+1 L+1L+1+1+1
L+L+L+1,+1
L +1, +1,+1,+ 1,
L +1,+1,+1,+ 1,
1g+1,+1,+1,+ 1,
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Theorem 8.2 Let pi(n) denote the number of partitions of n into parts congruent to +2,
+3, £5, 46, £7, 9 (mod 24). Let pa(n) denote the number of partitions of n into parts
congruent to +1, +3, £6, £9, £10, 11 (mod 24). Let p3(n) denote the number of partitions
of n into parts congruent to +1, +2, 5, £7, £10, +11, (mod 24). Then, for any positive

integer n > 2, py (n) —l—pQ(n — 2) = P3<”)-

Proof. Identity (30) is equivalent to

(qlzt; q12)(q12; qu)(ql():i:7 q )(q 24 . q24) +q2 (q5:|:; q12)(q12; q12>(q2:t; q24)<q24; q24)
(¢:9)(¢% ¢*) (¢ a)(a% ¢*)
_ (@) (™)
(0%

(137)

This identity can be written as

(qli’ q12; q12)(q10i; q24) ) (qﬁ')j:7 q12; q12)(q2i; q24)
(4% ¢°)

= 1. (138)

Rewriting all the products by the common base ¢**, for examples, writing (¢**;¢'?)o as
("5 *) oo (0175 ¢*) 0o and (¢35 ¢%) oo as (05951224, ¢24) and cancelling the common terms,
we obtain

1 1 1

2 —
(q2:t,3:i:,5:|:,6:|:,7:|:,9:|:; q24) +q (qlzlz,3:|:,6:|:,9:l:,10:i:,11:|:; q24) - (ql:t,2:t,5:i:,7:|:,10:l:,11:t; q24) ’ (139)

The three quotients of (139) represent the generating functions for py(n), pa(n), and ps(n),
respectively. Hence, (139) is equivalent to

Zpl n)q" +q sz n)q" —Zpg : (140)

where we set p;(0) = p2(0) = p3(0) = 1. Equating the coeflicients of ¢" on both sides of
(140), we arrive at the desired result.

Example. The following table illustrates the case n =9 in Theorem 8.2.

p(9) =5 pa(7) =4 p3(9) =9
9 1+14+14+141+ | 242424241
141

5+2+2 341414141 |5+242

742 6+1 742

3+3+3 3+3+1 2424+24+14+1+1

3+2+242 T+1+4+1
S5+1+1+14+1
5+2+1+4+1
24241+14+1+1+1
24+14+1+14+1+14+1+1
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Theorem 8.3 Let pi(n) denote the number of partitions of n into parts congruent to +3,
+5, +6, +7, £17, 18 (mod 36) with parts congruent to £6, 18 (mod 36) having two colors.
Let py(n) denote the number of partitions of n into parts congruent to +1, +6, +£11, +13,
+15, 18 (mod 36) and parts congruent to +6, 18 (mod 36) having two colors. Let ps(n)
denote the number of partitions of n into parts congruent to £2, £3, £10, £14, £15 (mod
36) with parts congruent to +3, £15 (mod 36) having two colors. Then, for any positive
integer n > 2, p1(n) + p2(n — 2) = ps(n).

Proof. Identity (31) is equivalent to

(@55 ¢) (0" ¢"2) ("% ¢ )(q36;q36)+q2(q5i; ("% ) (%5 6%) (6% ¢%)
(¢ 9)(d* %) ( q)(q%; )
(¢ q)( ¢°)°(¢”; ¢°)(¢*; ¢*°)
) 3

(0% ®)2(6% %)% (a2 ¢*2)(¢18; ¢*8)

Rewriting all the products in (141) by the common base ¢*%, for examples, writing (¢'*, ¢'?) o

as (¢'F, ¢', ¢53%: %) oo and (¢35 ¢%) oo a3 (¢, %) 00 (¢%; ¢°) oo and cancelling the common terms,

we obtain

(141)

1 N q>
3+,54,64,6+,7+,174+,18,18. 36 1+,6+,64+,114,134+,15+,18,18. 36
(q ;%) (g ;%)
1

- . 142)
(q2i,3i,3i,101,14i,151,15i; q36) (

The three quotients of (142) represent the generating functions for p;(n), pa(n), and ps(n),
respectively. Hence, (142) is equivalent to

Zpl n)q" ~|—q22p2 ZZP3(”)qna (143)

where we set p;(0) = p2(0) = p3(0) = 1. Equating the coefficients of ¢" on both sides of
(143), we obtain the required result.

Example. The following table illustrates the case n = 16 in Theorem 8.3.
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p1(16) =6 po(14) = 8 p3(16) = 14
34+3+3+7 6, + 6, + 1+ 1 14+2
5+5+3+3 6y + 6, +1+1 1043, +3,
6, +5+5 6y +6,+ 141 10+ 3, + 3,
6, +5+5 1I1+1+1+1 10+3,+3,
6, +7+3 13+ 1 10+2+2+2
6, +7+3 6 +1+1+1+1+1+ |3, +3,+3, +3,+2+2
1+1+1
G+ 1+1+1+1+1+ |3, +3,+3, +3,+2+2
1+1+1
I+ 1+ 14+1+1+1+1+ [ 3, +3, + 3, + 3, + 2+ 2
1141+ 1414141
3y 4+ 3+ 3y +3g+2+2
g+ 3g+3y+3,+2+2
3,43, +2+2+2+2+2
3,43, +2+2+2+2+2
3,43, +2+2+2+2+42
2+42+2+2+2+2+2+2

Theorem 8.4 Let pi(n) denote the number of partitions of n into parts congruent to +1,
+4 (mod 12) having three colors, and parts congruent to 6 (mod 12) having two colors. Let
pa(n) denote the number of partitions of n into parts congruent to +4, +5 (mod 12) having
three colors, and and parts congruent to 6 (mod 12) having two colors. Let ps(n) denote the
number of partitions of n into parts congruent to £1, £3, £5 (mod 12) with £1, £5 (mod
12) having three colors. Then, for any positive integer n > 3, p1(n) + p2(n — 3) = ps3(n).

Proof. Identity (32) is equivalent to
(65 ¢12)3(¢'%; ¢12)? o (4% ¢12)3(¢'%; ¢12)? _ (% )3 (g% ¢*)?
(¢; ) (¢; ) (¢:9)%(a* ¢*) (¢ ¢"2)?
Noting that (¢% ¢%) e = (4% ¢'?)0o(¢*?; ¢*?) o, and rewriting all the products by the common

base ¢'2, and cancelling the common terms, we can rewrite (144) as

1 q3 B 1 14
(' 15 AR AL 466, 12) + (g AEAE5ESE5E6,6; ¢12) - (g1 11355555 5%, g12) (145)

(144)

The three quotients of (145) represent the generating functions for pi(n), pa(n), and ps(n),
respectively. Hence, (145) is equivalent to

Zpl n)q" +q32p2 n)q" —Zpa " (146)

where we set p;(0) = p2(0) = p3(0) = 1. Equating the coefficients of ¢" on both sides of
(146), we obtain the desired result.
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