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Abstract
We continue the analysis of higher and multiple Mahler measures using log-sine
integrals as started in “Log-sine evaluations of Mahler measures” and “Special values
of generalized log-sine integrals” by two of the authors. This motivates a detailed
study of various multiple polylogarithms and worked examples are given. Our
techniques enable the reduction of several multiple Mahler measures, and supply an
easy proof of two conjectures by Boyd.

–This paper is dedicated to the memory of John Selfridge

1. Introduction

In [7] the classical log-sine integrals and their extensions were used to develop a
variety of results relating to higher and multiple Mahler measures [10, 18]. The
utility of this approach was such that we continue the work herein. Among other

1Supported in part by the Australian Research Council and the University of Newcastle
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things, it allows us to tap into a rich analytic literature [20]. In [8] the computa-
tional underpinnings of such studies are illuminated. The use of related integrals is
currently being exploited for multi-zeta value studies [22]. Such evaluations are also
useful for physics [17]: log-sine integrals appeared for instance in the calculation of
higher terms in the ε-expansion of various Feynman diagrams [13, 16]. Of particular
importance are the log-sine integrals at the special values π/3, π/2, 2π/3, and π.
The log-sine integrals also come up in many settings in number theory and analysis:
classes of inverse binomial sums can be expressed in terms of generalized log-sine
integrals [5, 12].

The structure of this article is as follows. In Section 2 our basic tools are de-
scribed. After providing necessary results on log-sine integrals in Section 3, we turn
to relationships between random walks and Mahler measures in Section 4. In par-
ticular, we will be interested in the multiple Mahler measure µn(1 + x + y) which
has a fine hypergeometric generating function (23) and a natural trigonometric
representation (25) as a double integral.

In Section 5 we directly expand (23) and use known results from the ε-expansion
of hypergeometric functions [11, 12] to obtain µn(1 + x + y) in terms of multiple
inverse binomial sums. In the cases n = 1, 2, 3 this leads to explicit polylogarithmic
evaluations.

An alternative approach based of the double integral representation (25) is taken
up in Section 6 which considers the evaluation of the inner integral in (25). Aided
by combinatorics, we show in Theorems 17 and 26 that these can always be ex-
pressed in terms of multiple harmonic polylogarithms of weight k. Accordingly, we
demonstrate in Section 6.3 how these polylogarithms can be reduced explicitly for
low weights. In Section 7.1 we reprise from [7] the evaluation of µ2(1 + x + y).
Then in Section 7.2 we apply our general results from Section 6 to a conjectural
evaluation of µ3(1 + x + y).

In Section 8 we finish with an elementary proof of two recently established 1998
conjectures of Boyd and use these tools to obtain a new Mahler measure.

2. Preliminaries

For k functions (typically Laurent polynomials) in n variables the multiple Mahler
measure, introduced in [18], is defined as

µ(P1, P2, . . . , Pk) :=
� 1

0
· · ·

� 1

0

k�

j=1

log
��Pj

�
e
2πit1 , . . . , e

2πitn
���dt1dt2 . . .dtn.

When P = P1 = P2 = · · · = Pk this devolves to a higher Mahler measure, µk(P ),
as introduced and examined in [18]. When k = 1 both reduce to the standard
(logarithmic) Mahler measure [10].



INTEGERS: 12A (2012) 3

We also recall Jensen’s formula:
� 1

0
log

��α− e
2πi t

�� dt = log (|α| ∨ 1) , (1)

where x ∨ y = max(x, y). An easy consequence of Jensen’s formula is that for
complex constants a and b we have

µ(ax + b) = log |a| ∨ log |b|. (2)

In the following development,

Lia1,...,ak(z) :=
�

n1>···>nk>0

z
n1

n
a1
1 · · ·nak

k

denotes the generalized polylogarithm as is studied, for instance, in [5] and in [1, Ch.
3]. For example, Li2,1(z) =

�∞
k=1

zk

k2

�k−1
j=1

1
j . In particular, Lik(x) :=

�∞
n=1

xn

nk is
the polylogarithm of order k and

Tik (x) :=
∞�

n=0

(−1)n x
2n+1

(2n + 1)k

is the related inverse tangent of order k. We use the same notation for the analytic
continuations of these functions.

Moreover, multiple zeta values are denoted by

ζ(a1, . . . , ak) := Lia1,...,ak(1).

Similarly, we consider the multiple Clausen functions (Cl) and multiple Glaisher
functions (Gl) of depth k which are given by

Cla1,...,ak (θ) =
�

Im Lia1,...,ak(eiθ) if w even
Re Lia1,...,ak(eiθ) if w odd

�
, (3)

Gla1,...,ak (θ) =
�

Re Lia1,...,ak(eiθ) if w even
Im Lia1,...,ak(eiθ) if w odd

�
, (4)

where w = a1 + . . . + ak is the weight of the function. As illustrated in (7), the
Clausen and Glaisher functions alternate between being cosine and sine series with
the parity of the dimension. Of particular importance will be the case of θ = π/3
which has also been considered in [5].

Our other notation and usage is largely consistent with that in [20] and the newly
published [21], in which most of the requisite material is described. Finally, a recent
elaboration of what is meant when we speak about evaluations and “closed forms”
is to be found in [6].
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3. Log-Sine Integrals

For n = 1, 2, . . ., we consider the log-sine integrals defined by

Lsn (σ) := −
� σ

0
logn−1

����2 sin
θ

2

���� dθ (5)

and, for k = 0, 1, . . . , n− 1, their generalized versions

Ls(k)
n (σ) := −

� σ

0
θ

k logn−1−k

����2 sin
θ

2

���� dθ. (6)

This is the notation used by Lewin [19, 20]. In each case the modulus is not needed
for 0 ≤ σ ≤ 2π.

We observe that Ls1 (σ) = −σ and that Ls(0)n (σ) = Lsn (σ). In particular,

Ls2 (σ) = Cl2 (σ) :=
∞�

n=1

sin(nσ)
n2

(7)

is the Clausen function introduced in (3). Various log-sine integral evaluations may
be found in [20, §7.6 & §7.9].

3.1. Log-sine integrals at π

We first recall that the log-sine integrals at π can always be evaluated in terms of
zeta values. This is a consequence of the exponential generating function [20, Eqn.
(7.109)]

− 1
π

∞�

m=0

Lsm+1 (π)
u

m

m!
=

Γ (1 + u)
Γ2

�
1 + u

2

� =
�

u

u/2

�
. (8)

This will be revisited and put in context in Section 4. Here we only remark that, by
the very definition, log-sine integrals at π correspond to very basic multiple Mahler
measures:

µm(1 + x) = − 1
π

Lsm+1 (π) (9)

Example 1. (Values of Lsn (π)) For instance, we have Ls2 (π) = 0 as well as

−Ls3 (π) =
1
12

π3

Ls4 (π) =
3
2
π ζ(3)

−Ls5 (π) =
19
240

π5

Ls6 (π) =
45
2

π ζ(5) +
5
4

π3ζ(3)

−Ls7 (π) =
275
1344

π7 +
45
2

π ζ2(3)

Ls8 (π) =
2835

4
π ζ(7) +

315
8

π3ζ(5) +
133
32

π5ζ(3),
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and so forth. Note that these values may be conveniently obtained from (8) by a
computer algebra system as the following snippet of Maple code demonstrates:

for k to 6 do simplify(subs(x=0,diff(Pi*binomial(x,x/2),x$k))) od;.

More general log-sine evaluations with an emphasis on automatic evaluations
have been studied in [8]. ✸

For general log-sine integrals, the following computationally effective exponential
generating function was obtained in [8].

Theorem 2. (Generating function for Ls(k)
n+k+1 (π)) For 2|µ| < λ < 1 we have

�

n,k≥0

Ls(k)
n+k+1 (π)

λ
n

n!
(iµ)k

k!
= −i

�

n≥0

�
λ

n

�
(−1)n eiπ λ

2 − eiπµ

µ− λ
2 + n

. (10)

One may extract one-variable generating functions from (10). For instance,
∞�

n=0

Ls(1)n+2 (π)
λ

n

n!
=

∞�

n=0

�
λ

n

�−1 + (−1)n cos πλ
2�

n− λ
2

�2 .

The log-sine integrals at π/3 are especially useful as illustrated in [5] and are dis-
cussed at some length in [7] where other applications to Mahler measures are given.

3.2. Extensions of the Log-Sine Integrals

It is possible to extend some of these considerations to the log-sine-cosine integrals

Lscm,n (σ) := −
� σ

0
logm−1

����2 sin
θ

2

���� logn−1

����2 cos
θ

2

���� dθ. (11)

Then Lscm,1 (σ) = Lsm (σ) and Lscm,n (σ) = Lscn,m (σ). As in (9), these are related
to basic multiple Mahler measures. Namely, if we set

µm,n(1− x, 1 + x) := µ(1− x, · · · , 1− x� �� �
m

, 1 + x, · · · , 1 + x� �� �
n

) (12)

then, immediately from the definition, we obtain the following:

Theorem 3. (Evaluation of µm,n(1− x, 1 + x)) For non-negative integers m,n,

µm,n(1− x, 1 + x) = − 1
π

Lscm+1,n+1 (π) . (13)

In every case this is evaluable in terms of zeta values. Indeed, using the result in
[20, §7.9.2, (7.114)], we obtain the generating function

gs(u, v) := − 1
π

∞�

m,n=0

Lscm+1,n+1 (π)
u

m

m!
v

n

n!
=

2u+v

π

Γ
�

1+u
2

�
Γ

�
1+v
2

�

Γ
�
1 + u+v

2

� . (14)
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From the duplication formula for the gamma function this can be rewritten as

gs(u, v) =
�

u

u/2

��
v

v/2

�
Γ

�
1 + u

2

�
Γ

�
1 + v

2

�

Γ
�
1 + u+v

2

� ,

so that
gs(u, 0) =

�
u

u/2

�
= gs(u, u).

From here it is apparent that (14) is an extension of (8):

Example 4. (Values of Lscn,m (π)) For instance,

µ2,1(1− x, 1 + x) = µ1,2(1− x, 1 + x) =
1
4
ζ(3),

µ3,2(1− x, 1 + x) =
3
4
ζ(5)− 1

8
π

2
ζ(3),

µ6,3(1− x, 1 + x) =
315
4

ζ(9) +
135
32

π
2
ζ(7) +

309
128

π
4
ζ(5)− 45

256
π

6
ζ(3)− 1575

32
ζ
3(3).

As in Example 1 this can be easily obtained with a line of code in a computer
algebra system such as Mathematica or Maple. ✸

Remark 5. From gs(u,−u) = sec(πu/2) we may deduce that, for n = 0, 1, 2, . . .,

n�

k=0

(−1)k
µk,n−k(1− x, 1 + x) = |E2n|

�
π
2

�2n

(2n)!
=

4
π

L−4(2n + 1),

where E2n are the even Euler numbers: 1,−1, 5,−61, 1385 . . . . ✸

A more recondite extended log-sine integral of order three is developed in [20,
§8.4.3] from properties of the trilogarithm. It is defined by

Ls3 (θ,ω) := −
� θ

0
log

���2 sin
σ

2

��� log
����2 sin

σ + ω

2

���� dσ, (15)

so that Ls3 (θ, 0) = Ls3 (θ) . This extended log-sine integral reduces as follows:

−Ls3 (2θ, 2ω) =
1
2

Ls3 (2ω)− 1
2

Ls3 (2θ)− 1
2

Ls3 (2θ + 2ω)

− 2 Im Li3
�

sin(θ)eiω

sin(θ + ω)

�
+ θ log2

�
sin(θ)

sin(θ + ω)

�

+ log
�

sin(θ)
sin(θ + ω)

�
{Cl2 (2θ) + Cl2 (2ω)− Cl2 (2θ + 2ω)} . (16)

We note that − 1
2π Ls3 (2π,ω) = µ(1−x, 1−e

iω
x) but this is more easily evaluated

by Fourier techniques. Indeed one has:
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Proposition 6. (A dilogarithmic measure, part I [18]) For two complex numbers
u and v we have

µ(1− ux, 1− v x) =






1
2 Re Li2 (vu) , if |u| ≤ 1, |v| ≤ 1,
1
2 Re Li2

�
v
u

�
, if |u| ≥ 1, |v| ≤ 1,

1
2 Re Li2

�
1

vu

�
+ log |u| log |v|, if |u| ≥ 1, |v| ≥ 1.

(17)

This is proven much as is (77) of Proposition 29. In Lewin’s terms [20, A.2.5] for
0 < θ ≤ 2π and r ≥ 0 we may write

Re Li2
�
re

iθ
�

=: Li2 (r, θ) = −1
2

� r

0
log

�
t
2 + 1− 2t cos θ

� dt

t
, (18)

with the reflection formula

Li2 (r, θ) + Li2
�

1
r
, θ

�
= ζ(2)− 1

2
log2

r +
1
2

(π − θ)2. (19)

This leads to:

Proposition 7. (A dilogarithmic measure, part II) For complex numbers u = re
iθ

and v = se
iτ we have

µ(1− ux, 1− v x) =






1
2 Li2 (rs, θ − τ) if r ≤ 1, s ≤ 1,
1
2 Li2

�
s
r , θ + τ

�
, if r ≥ 1, s ≤ 1,

1
2 Li2

�
1
sr , θ − τ

�
+ log r log s, if r ≥ 1, s ≥ 1.

(20)

We remark that Proposition 7 and equation (19) allow for efficient numerical
computation.

4. Mahler Measures and Moments of Random Walks

The s-th moments of an n-step uniform random walk are given by

Wn(s) =
� 1

0
. . .

� 1

0

�����

n�

k=1

e
2πitk

�����

s

dt1 · · ·dtn

and their relation with Mahler measure is observed in [9]. In particular,

W
�
n(0) = µ(1 + x1 + . . . + xn−1),

with the cases 2 ≤ n ≤ 6 discussed in [7].
Higher derivatives of Wn correspond to higher Mahler measures:

W
(m)
n (0) = µm(1 + x1 + . . . + xn−1). (21)
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The evaluation W2(s) =
� s
s/2

�
thus explains and proves the generating function (8);

in other words, we find that

W
(m)
2 (0) = − 1

π
Lsm+1 (π) . (22)

As a consequence of the study of random walks in [9] we record the following
generating function for µm(1+x+y) which follows from (21) and the hypergeometric
expression for W3 in [9]. There is a corresponding expression for W4, the generating
function of µm(1 + x + y + z), in terms of a single Meijer-G function [9].

Theorem 8. (Hypergeometric form for W3(s)) For complex |s| < 2, we may write

W3(s) =
∞�

n=0

µn(1 + x + y)
s

n

n!
=
√

3
2π

3s+1 Γ(1 + s
2 )2

Γ(s + 2) 3F2

�
s+2
2 ,

s+2
2 ,

s+2
2

1, s+3
2

����
1
4

�
(23)

=
√

3
π

�
3
2

�s+1 � 1

0

z
1+s

2F1

�
1+ s

2 ,1+ s
2

1

����
z2

4

�

√
1− z2

dz. (24)

Proof. Equation (23) is proven in [9], while (24) is a consequence of (23) and [21,
Eqn. (16.5.2)].

We shall exploit Theorem 8 next, in Section 5. For integers n ≥ 1 we also have

µn(1 + x + y) =
1

4π2

� 2π

0
dθ

� 2π

0

�
Re log

�
1− 2 sin(θ)ei ω

��n dω, (25)

as follows directly from the definition and some simple trigonometry, since Re log z =
log |z|. This is the basis for the evaluations of Section 6. In particular, in Section 6
we will evaluate the inner integral in terms of multiple harmonic polylogarithms.

5. Epsilon Expansion of W3

In this section we use known results from the ε-expansion of hypergeometric func-
tions [11, 12] to obtain µn(1+x+y) in terms of multiple inverse binomial sums. We
then derive complete evaluations of µ1(1 + x + y), µ2(1 + x + y) and µ3(1 + x + y).
An alternative approach will be pursued in Sections 6 and 7.

In light of Theorem 8, the evaluation of µn(1 + x + y) is essentially reduced to
the Taylor expansion
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3F2

�
ε+2
2 ,

ε+2
2 ,

ε+2
2

1, ε+3
2

����
1
4

�
=

∞�

n=0

αnε
n
. (26)

Indeed, from (23) and Leibniz’ rule we have

µn(1 + x + y) =
√

3
2π

n�

k=0

�
n

k

�
αkβn−k (27)

where βk is defined by

3ε+1 Γ(1 + ε
2 )2

Γ(2 + ε)
=

∞�

n=0

βnε
n
. (28)

Note that βk is easy to compute as illustrated in Example 1. The expansion of
hypergeometric functions in terms of their parameters as in (26) occurs in physics
[11, 12] in the context of the evaluation of Feynman diagrams and is commonly
referred to as epsilon expansion, thus explaining the choice of variable in (26).

Remark 9. From (28) we see that the βn may be computed directly from the
coefficients γn defined by the Taylor expansion

Γ(1 + ε
2 )2

Γ(1 + ε)
=

1� ε
ε/2

� =
∞�

n=0

γnε
n
.

Appealing to (8) we find that γn is recursively determined by γ0 = 1 and

γn =
1
π

n�

k=1

Lsk+1 (π)
γn−k

k!
.

In particular, the results of Section 3.1 show that γn can always be expressed in
terms of zeta values. Accordingly, βn evaluates in terms of log 3 and zeta values. ✸

Let Sk(j) :=
�j

m=1
1

mk denote the harmonic numbers of order k. Following [12]
we abbreviate Sk := Sk(j − 1) and S̄k := Sk(2j − 1) in order to make it more
clear which results in this reference contribute to the evaluations below. As in [11,
Appendix B], we use the duplication formula (2a)2j = 4j(a)j(a + 1/2)j as well as
the expansion

(m + aε)j

(m)j
= exp

�
−

∞�

k=1

(−aε)k

k
[Sk(j + m− 1)− Sk(m− 1)]

�
, (29)
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for m a positive integer, to write

3F2

�
ε+2
2 ,

ε+2
2 ,

ε+2
2

1, ε+3
2

����
1
4

�
=

∞�

j=0

(1 + ε/2)3j
4j(j!)2(3/2 + ε/2)j

=
∞�

j=0

(1 + ε/2)4j
(j!)2(2 + ε)2j

=
∞�

j=0

2
j + 1

1
�2(j+1)

j+1

�
�
(1 + ε/2)j

j!

�4 �
(2 + ε)2j

(2j + 1)!

�−1

=
∞�

j=1

2
j

1�2j
j

� exp

� ∞�

k=1

(−ε)k

k
Ak,j

�
(30)

where

Ak,j := Sk(2j − 1)− 1− 4
Sk(j − 1)

2k
=

2j−1�

m=2

2(−1)m+1 − 1
mk

. (31)

We can now read off the terms αn of the ε-expansion (26):

Theorem 10. For n = 0, 1, 2, . . .

αn = [εn] 3F2

�
ε+2
2 ,

ε+2
2 ,

ε+2
2

1, ε+3
2

����
1
4

�
= (−1)n

∞�

j=1

2
j

1�2j
j

�
� n�

k=1

A
mk
k,j

mk!kmk
(32)

where the inner sum is over all non-negative integers m1, . . . ,mn such that m1 +
2m2 + . . . + nmn = n.

Proof. Equation (32) may be derived from (30) using, for instance, Faà di Bruno’s
formula for the n-th derivative of the composition of two functions.

Example 11. (α0, α1 and α2) In particular,

α1 = [ε] 3F2

�
ε+2
2 ,

ε+2
2 ,

ε+2
2

1, ε+3
2

����
1
4

�
= −

∞�

j=1

2
j

1�2j
j

�A1,j

= −
∞�

j=1

2
j

1�2j
j

�
�
S̄1 − 2S1 − 1

�
.

Such multiple inverse binomial sums are studied in [12]. In particular, using [12,
(2.20), (2.21)] we find

α0 =
2π

3
√

3
, (33)

α1 =
2

3
√

3

�
π − π log 3 + Ls2

�
π

3

��
. (34)
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For the second term, α2, in the ε-expansion (30) we have

[ε2] 3F2

�
ε+2
2 ,

ε+2
2 ,

ε+2
2

1, ε+3
2

����
1
4

�
=

∞�

j=1

1
j

1�2j
j

�
�
A

2
1,j + A2,j

�

=
∞�

j=1

1
j

1�2j
j

�
�
S̄2 − S2 + (S̄1 − 2S1)2 − 2S̄1 + 4S1

�
.

Using [12, (2.8),(2.22)–(2.24)] we obtain

α2 =
2

3
√

3

�
π

72
− π log 3 +

1
2
π log 3 + (1− log 3) Ls2

�
π

3

�

+
3
2

Ls3
�

π

3

�
+

3
2

Ls3
�

2π
3

�
− 3Ls3 (π)

�
. (35)

✸

These results provide us with evaluations of µ1(1 + x + y) and µ2(1 + x + y) as
given next. As expected, the result for µ1(1 + x + y) agrees with Smyth’s original
evaluation, and the result for µ2(1 + x + y) agrees with our prior evaluation in [7].
The latter evaluation will be recalled in Section 7.1.

Theorem 12. (Evaluation of µ1(1 + x + y) and µ2(1 + x + y)) We have

µ1(1 + x + y) =
1
π

Ls2
�

π

3

�
, (36)

µ2(1 + x + y) =
3
π

Ls3
�

2π
3

�
+

π
2

4
. (37)

Proof. Using Theorem 8 we obtain

µ1(1 + x + y) =
3
√

3
2π

[(log 3− 1)α0 + α1] . (38)

Combining this with equations (33) and (34) yields (36).
Again using Theorem 8 we find

µ2(1 + x + y) =
3
√

3
2π

�
(log2 3− 2 log 3 + 2− π2

12 )α0 + 2(log 3− 1)α1 + 2α2

�
(39)

and, together with equations (33), (34) and (35), arrive at

πµ2(1 + x + y) = 3Ls3
�

2π
3

�
+ 3Ls3

�
π

3

�
− 6Ls3 (π)− π

3

18

= 3Ls3
�

2π
3

�
+

π
3

4
. (40)

The last equality follows, for instance, automatically from the results in [8].
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Example 13. (α3) The evaluation of α3 is more involved and we omit some details.
Again, (30) produces

[ε3] 3F2

�
ε+2
2 ,

ε+2
2 ,

ε+2
2

1, ε+3
2

����
1
4

�
= −1

3

∞�

j=1

1
j

1�2j
j

�
�
A

3
1,j + 3A1,jA2,j + 2A3,j

�
.

Using [12, (2.25)–(2.28),(2.68)–(2.70),(2.81),(2.89)] as well as results from [8] we are
lead to

α3 =
2

3
√

3

�
5π3

108
(1− log 3) +

1
2
π log2 3− 1

6
π log3 3 +

11
9

πζ(3)

+ Cl2
�

π

3

��
5
36

π
2 − log 3 +

1
2

log2 3
�
− 3Gl2,1

�
2π
3

�
(1− log 3)

−35
6

Cl4
�

π

3

�
+ 15Cl2,1,1

�
2π
3

�
− 3Lsc2,3

�
π

3

��
. (41)

Observe the occurrence of the log-sine-cosine integral Lsc2,3

�
π
3

�
. These integrals

were defined in (11). ✸

Proceeding as in the proof of Theorem 12 we obtain:

Theorem 14. (Evaluation of µ3(1 + x + y)) We have

πµ3(1 + x + y) = 15Ls4
�

2π
3

�
− 18Lsc2,3

�
π

3

�
− 15Cl4

�
π

3

�

− 1
4
π

2 Cl2
�

π

3

�
− 17πζ(3). (42)

The log-sine-cosine integral Lsc2,3

�
π
3

�
appears to reduce further as

12Lsc2,3

�
π

3

�
?[1]
= 6Ls4

�
2π
3

�
− 4Cl4

�
π

3

�
− 7πζ(3) (43)

= 6Ls4
�

2π
3

�
− 8

9
Ls4

�
π

3

�
− 59

9
πζ(3).

This conjectural reduction also appears in [11, (A.30)] where it was found via PSLQ.
Combining this with (42), we obtain an conjectural evaluation of µ3(1 + x + y)
equivalent to (83).

On the other hand, it follows from [12, (2.18)] that

12Lsc2,3

�
π

3

�
= Ls4

�
2π
3

�
− 4Ls4

�
π

3

�
− 1

12
π log3 3

+ 24Ti4
�

1√
3

�
+ 12 log 3Ti3

�
1√
3

�
+ 3 log2 3Ti2

�
1√
3

�
. (44)
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Using the known evaluations — see for instance [7, (76),(77)] — for the inverse
tangent integrals of order two and three, we find that (43) is equivalent to

Ti4
�

1√
3

�
?[1]
=

5
24

Ls4
�

2π
3

�
+

7
54

Ls4
�

π

3

�
− 59

216
πζ(3)− 1

288
π log3 3

− 1
2

log 3Ti3
�

1√
3

�
− 1

8
log2 3Ti2

�
1√
3

�
. (45)

6. Trigonometric Analysis of µn(1 + x + y)

As promised in [7] — motivated by the development outlined above — we take the
analysis of µn(1 + x + y) for n ≥ 3 a fair distance. In light of (25) we define

ρn(α) :=
1
2π

� π

−π

�
Re log

�
1− α ei ω

��n dω (46)

for n ≥ 0 so that

µn(1 + x + y) =
1
2π

� π

−π
ρn(|2 sin θ|) dθ. (47)

We thus typically set α = |2 sin θ|. Note that ρ0(α) = 1, ρ1(α) = log(|α| ∨ 1).

Proposition 15. (Properties of ρn) Let n be a positive integer.

(a) For |α| ≤ 1 we have

ρn(α) = (−1)n
∞�

m=1

α
m

mn
ωn(m), (48)

where ωn is defined as

ωn(m) =
�

�n
j=1 kj=m

1
2π

� π

−π

n�

j=1

m

kj
cos(kjω) dω. (49)

(b) For |α| ≥ 1 we have

ρn(α) =
n�

k=0

�
n

k

�
logn−k |α| ρk

�
1
α

�
. (50)
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Proof. For (a) we use (46) to write

ρn(α) =
1
2π

� π

−π

�
Re log

�
1− αei ω

��n dω

=
1
2π

� π

−π




−
�

k≥1

α
k

k
cos(kω)






n

dω

= (−1)n
∞�

m=1

α
m

mn
ωn(m),

as asserted. We note that |ωn(m)| ≤ m
n and so the sum is convergent.

For (b) we now use (46) to write

ρn(α) =
1
2π

� π

−π
logn �

|α|
��1− α

−1ei ω
��� dω

=
1
2π

� π

−π

�
log |α| + log

��1− α
−1ei ω

���n dω

=
n�

k=0

�
n

k

�
logn−k |α| 1

2π

� π

−π
logk

��1− α
−1ei ω

�� dω

=
n�

k=0

�
n

k

�
logn−k |α| ρk

�
1
α

�
,

as required.

Example 16. (Evaluation of ωn and ρn for n ≤ 2) We have ω0(m) = 0, ω1(m) =
δ0(m), and

ω2(0) = 1, ω2(2m) = 2, ω2(2m + 1) = 0. (51)

Likewise, ρ0(α) = 1, ρ1(α) = log (|α| ∨ 1), and

ρ2(α) =
�

1
2 Li2(α2) for |α| ≤ 1,
1
2 Li2

�
1

α2

�
+ log2 |α| for |α| ≥ 1, (52)

where the latter follows from (51) and Proposition 15. ✸

We have arrived at the following description of µn(1 + x + y):

Theorem 17. (Evaluation of µn(1 + x + y)) Let n be a positive integer. Then

µn(1 + x + y) =
1
π

�
Lsn+1

�
π

3

�
− Lsn+1 (π)

�
+

2
π

� π/6

0
ρn (2 sin θ) dθ

+
2
π

n�

k=2

�
n

k

�� π/2

π/6
logn−k (2 sin θ) ρk

�
1

2 sin θ

�
dθ. (53)
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Proof. Since |α| < 1 exactly when |θ| < π/6 we start with (47) to get

µn(1 + x + y) =
1
2π

� π

−π
ρn(|2 sin θ|) dθ

=
2
π

� π/6

0
ρn(2 sin θ) dθ +

2
π

� π/2

π/6
ρn(2 sin θ) dθ

=
2
π

� π/6

0
ρn(2 sin θ) dθ

+
n�

k=0

�
n

k

�
2
π

� π/2

π/6
logn−k(2 sin θ) ρk

�
1

2 sin θ

�
dθ.

We observe that for k = 1 the contribution is zero since ρ1 is zero for |α| < 1. After
evaluating the term with k = 0 we arrive at (53).

As is shown in [7],

1
π

�
Lsn+1

�
π

3

�
− Lsn+1 (π)

�
= µ(1 + x + y1, 1 + x + y2, . . . , 1 + x + yn)

is a multiple Mahler measure. While log-sine integrals at π were the subject of
Example 1 we record the following for values at π/3:

Example 18. (Values of Lsn (π/3)) The following evaluations may be obtained
with the help of the implementation2 accompanying [8].

Ls2
�

π

3

�
= Cl2

�
π

3

�

−Ls3
�

π

3

�
=

7
108

π
3

Ls4
�

π

3

�
=

1
2
π ζ(3) +

9
2

Cl4
�

π

3

�

−Ls5
�

π

3

�
=

1543
19440

π
5 − 6Gl4,1

�
π

3

�

Ls6
�

π

3

�
=

15
2

π ζ(5) +
35
36

π
3
ζ(3) +

135
2

Cl6
�

π

3

�

−Ls7
�

π

3

�
=

74369
326592

π
7 +

15
2

πζ(3)2 − 135 Gl6,1

�
π

3

�

Ls8
�

π

3

�
=

13181
2592

π
5
ζ(3) +

1225
24

π
3
ζ(5) +

319445
864

πζ(7)

+
35
2

π
2 Cl6

�
π

3

�
+

945
4

Cl8
�

π

3

�
+ 315Cl6,1,1

�
π

3

�

✸

2Packages are available for download from http://arminstraub.com/pub/log-sine-integrals
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6.1. Further Evaluation of ρn

To make further progress, we need first to determine ρn for n ≥ 3. It is instructive
to explore the next few cases.

Example 19 (Evaluation of ω3 and ρ3). We use

4 cos (a) cos (b) cos (c) = cos (a + b + c) + cos (a− b− c) + cos (a− b + c) + cos (a− c + b)

and so derive

ω3(m) =
1
4

� �
m

3

ijk
: i ± j ± k = 0, i + j + k = m

�
.

Note that we must have exactly one of i = j + k, j = k + i or k = i + j. We thus
learn that ω3(2m + 1) = 0. Moreover, by symmetry,

ω3(2m) =
3
4

�

j+k=m

(2m)3

jk(j + k)

= 6
�

j+k=m

m
2

jk
= 12m

m−1�

k=1

1
k

. (54)

Hence, by Proposition 15,

ρ3(α) = −3
2

∞�

m=1

�m−1
k=1

1
k

m2
α

2m = −3
2

Li2,1(α2) (55)

for |α| < 1. ✸

6.2. A General Formula for ρn

In the general case we have

n�

j=1

cos(xj) = 2−n
�

ε∈{−1,1}n

cos




n�

j=1

εjxj



 (56)

which follows inductively from 2 cos(a) cos(b) = cos(a + b) + cos(a− b).

Proposition 20. For integers n,m ≥ 0 we have ωn(2m + 1) = 0.

Proof. In light of (56) the summand corresponding to the indices k1, . . . , kn in (49)
for ωn(2m + 1) = 0 is nonzero if and only if there exists ε ∈ {−1, 1}n such that
ε1k1 + . . . + εnkn = 0. In other words, there is a set S ⊂ {1, . . . , n} such that

�

j∈S

kj =
�

j �∈S

kj .

Thus k1 + . . . + kn = 2
�

j∈S kj which contradicts k1 + . . . + kn = 2m + 1.
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Example 21. (Evaluation of ω4 and ρ4) Proceeding as in Example 19 and employ-
ing (56), we find

ω4(2m) =
3
8

�

i+j=m
k+�=m

(2m)4

ijk�
+

1
2

�

i+j+k=m

(2m)4

ijk�

= 24m2
�

i<m
j<m

1
ij

+ 24m2
�

i+j<m

1
ij

= 48m2
m−1�

i=1

1
i

i−1�

j=1

1
j

+ 24m2
m−1�

i=1

1
i2

+ 48m2
m−1�

i=1

1
i

i−1�

j=1

1
j
. (57)

Consequently, for |α| < 1 and appealing to Proposition 15,

ρ4(α) =
∞�

m=1

α
2m

(2m)4
ω4(2m) = 6 Li2,1,1(α2) +

3
2

Li2,2(α2). (58)

This suggests that ρn(α) is generally expressible as a sum of polylogarithmic terms,
as will be shown next. ✸

To help the general evaluation of ωn(2m), for integers j ≥ 0 and m ≥ 1, let us
define

σj(m) :=
�

m1+...+mj=m

1
m1 · · ·mj

. (59)

Proposition 22. For positive integers n, m we have

ωn(2m)
mn

=
n−1�

j=1

�
n

j

�
σj(m)σn−j(m) (60)

where σj is as defined in (59).

Proof. It follows from (56) that

ωn(2m) =
�

k1+...+kn=2m

�

ε∈{−1,1}n
�

j εjkj=0

n�

j=1

m

kj
.

Arguing as in Proposition 20 we therefore find that

ωn(2m) =
n−1�

j=1

�
n

j

� �

k1+...+kj=m
kj+1+...+kn=m

n�

j=1

m

kj
.

This is equivalent to (60).
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Moreover, we have a simple useful recursion:

Proposition 23. Let m ≥ 1. Then σ1(m) = 1/m while for j ≥ 2 we have

σj(m) =
j

m

m−1�

r=1

σj−1(r).

Proof. We have

σj(m) =
�

m1+...+mj=m

1
m1 · · ·mj

=
j

m

�

m1+...+mj=m

1
m1 · · ·mj−1

=
j

m

m−1�

r=1

�

m1+...+mj−1=r

1
m1 · · ·mj−1

which yields the claim.

Corollary 24. We have

σj(m) =
j!
m

�

m>m1>...>mj−1>0

1
m1 · · ·mj−1

.

Thus, for instance, σ2(m) = 2Hm−1/m. From here, we easily re-obtain the evalu-
ations of ω3 and ω4 given in Examples 19 and 21. To further illustrate Propositions
22 and 23, we now compute ρ5 and ρ6.

Example 25. (Evaluation of ρ5 and ρ6) From Proposition 22,

ω5(2m)
m5

= 10σ1(m)σ4(m) + 20σ2(m)σ3(m).

Consequently, for |α| < 1,

−ρ5(α) =
∞�

m=1

α
2m

(2m)5
ω5(2m)

=
10 · 4!

32
Li2,1,1,1(α2) +

20 · 2! · 3!
32

�
3Li2,1,1,1(α2) + Li2,1,2(α2) + Li2,2,1(α2)

�

= 30 Li2,1,1,1(α2) +
15
2

�
Li2,1,2(α2) + Li2,2,1(α2)

�
. (61)

Similarly, we have for |α| < 1,

ρ6(α) = 180 Li2,1,1,1,1(α2) + 45
�
Li2,1,1,2(α2) + Li2,1,2,1(α2) + Li2,2,1,1(α2)

�

+
45
4

Li2,2,2(α2). (62)

From these examples the general pattern, established next, begins to transpire. ✸
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In general, ρn evaluates as follows:

Theorem 26. (Evaluation of ρn) For |α| < 1 and integers n ≥ 2,

ρn(α) =
(−1)n

n!
4n

�

w

4�(w) Liw(α2)

where the sum is over all indices w = (2, a2, a3, . . . , a�(w)) such that a2, a3, . . . ∈
{1, 2} and |w| = n.

Proof. From Proposition 22 and Corollary 24 we have

ρn(α) =
(−1)n

n!
2n

∞�

m=1

α
2m

m2

n−2�

j=0

�

m>m1>...>mj>0
m>mj+1>...>mn−2>0

1
m1 · · ·mn−2

.

Combining the right-hand side into harmonic polylogarithms yields

ρn(α) =
(−1)n

n!
2n

n−2�

k=0

�

a1,...,ak∈{1,2}
a1+...+ak=n−2

2c(a) Li2,a1,...,ak(α2)

where c(a) is the number of 1s among a1, . . . , ak. The claim follows.

Example 27. (Special values of ρn) Given Theorem 26, one does not expect to be
able to evaluate ρn(α) explicitly at most points. Three exceptions are α = 0 (which
is trivial), α = 1, and α = 1/

√
2. For instance we have ρ4(1) = 19

240 π
4 as well as

−ρ5(1) = 45
2 ζ(5) + 5

4ζ(3) and ρ6(1) = 275
1344π

6 + 45
2 ζ(3)2. At α = 1/

√
2 we have

ρ4

�
1√
2

�
=

7
16

log4 2 +
3
16

π
2 log2 2− 39

8
ζ(3) log 2 +

13
192

π
4 − 6Li4

�
1
2

�
. (63)

For n ≥ 5 the expressions are expected to be more complicated. ✸

6.3. Reducing Harmonic Polylogarithms of Low Weight

Theorems 17 and 26 take us closer to a closed form for µn(1 + x + y). As ρn are
expressible in terms of multiple harmonic polylogarithms of weight n, it remains to
supply reductions for those of low weight. Such polylogarithms are reduced [4] by
the use of the differential operators

(D0f)(x) = xf
�(x) and (D1f)(x) = (1− x)f �(x)

depending on whether the outer index is ‘2’ or ‘1’.
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1. As was known to Ramanujan, and as studied further in [3, §8.1], for 0 < x < 1,

Li2,1(x) =
1
2

log2(1− x) log(x) + log(1− x) Li2(1− x)

− Li3(1− x) + ζ(3). (64)

Equation (64), also given in [20], provides a useful expression numerically and
symbolically. For future use, we also record the relation, obtainable as in [20,
§6.4 & §6.7],

Re Li2,1

�
1
x

�
+ Li2,1(x) = ζ(3)− 1

6
log3

x +
1
2
π

2 log x

− Li2(x) log x + Li3(x) for 0 < x < 1. (65)

2. For Li2,2 we work as follows. As (1− x) Li�1,2(x) = Li2 (x), integration yields

Li1,2(x) = 2Li3(1− x)− log(1− x) Li2(x)− 2 log(1− x) Li2(1− x)
− log(1− x)2 log(x)− 2ζ(3). (66)

Then, since xLi�2,2(x) = Li1,2(x), on integrating again we obtain Li2,2(x) in
terms of polylogarithms up to order four. We appeal to various formulae in
[20, §6.4.4] to arrive at

Li2,2(t) =
1
2

log2(1− t) log2
t− 2ζ(2) log(1− t) log t− 2ζ(3) log t− 1

2
Li22(t)

+ 2Li3 (1− t) log t− 2
� t

0

Li2 (x) log x

1− x
dx−

� t

0

log (1− x) log2
x

1− x
dx.

Expanding the penultimate integral as a series leads to
� t

0

Li2 (x) log x

1− x
dx = Li1,2(t) log t− Li2,2(t).

Then, using [20, A3.4 Eq. (12)] to evaluate the remaining integral, we deduce
that

Li2,2(t) = − 1
12

log4(1− t) +
1
3

log3(1− t) log t− ζ(2) log2(1− t)

+ 2 log(1− t) Li3(t)− 2 ζ(3) log(1− t)− 2 Li4(t)

− 2Li4
�

t

t− 1

�
+ 2 Li4(1− t)− 2ζ(4) +

1
2

Li22(t). (67)

3. The form for Li3,1(t) is obtained in the same way but starting from Li2,1(t)
as given in (64). This leads to:

2 Li3,1(t) + Li2,2(t) =
1
2

Li22(t). (68)
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This symmetry result, and its derivative

2 Li2,1(t) + Li1,2(t) = Li1(t) Li2(t), (69)

are also obtained in [25, Cor. 2 & Cor. 3] by other methods.

4. Since Li2,1,1(x) =
� x
0 Li1,1,1(t)/tdt and Li1,1,1(x) =

� x
0 Li1,1(t)/(1 − t) dt, we

first compute Li1,1(x) = log2(1−x)/2 to find that Li1,1,1(x) = − log3(1−x)/6
(the pattern is clear). Hence

Li2,1,1(x) = −1
6

� x

0
log3(1− t)

dt

t

=
π

4

90
− 1

6
log(1− t)3 log t− 1

2
log(1− t)2 Li2(1− t)

+ log(1− t) Li3(1− t)− Li4(1− t). (70)

5. In general,

Li{1}n(x) =
(−1)n

n!
log(1− x)n

, (71)

and therefore

Li2,{1}n−1(x) =
(−1)n

n!

� x

0
log(1− t)n dt

t

= ζ(n + 1)−
n�

m=0

(−1)n−m

(n−m)!
log(1− x)n−m Lim+1(1− x). (72)

We have, inter alia, provided closed reductions for all multiple polylogarithms of
weight less than five. One does not expect such complete results thereafter.

The reductions presented in this section allow us to express ρ3 and ρ4 in terms
of polylogarithms of depth 1. Equation (64) treats ρ3 while (58) leads to

ρ4

�
α

2
�

= 3
�
Li3

�
α

2
�
− ζ(3) + Li3

�
1− α

2
��

log
�
1− α

2
�
− 1

8
log4 �

1− α
2
�

+ 3ζ(4)− 3 Li4
�
−α

2

1− α2

�
− 3 Li4

�
α

2
�
− 3 Li4

�
1− α

2
�

+
3
4

Li22
�
1− α

2
�

− log α log3 �
1− α

2
�
−

�
π

2

4
+ 3Li2

�
1− α

2
��

log2 �
1− α

2
�
. (73)

7. Explicit Evaluations of µn(1 + x + y) for Small n

We now return to the explicit evaluation of the multiple Mahler measures µk(1 +
x + y). The starting point for this section is the evaluation of µ2(1 + x + y) from
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[7] which is reviewed in Section 7.1 and was derived alternatively in Theorem 12.
Building on this, we present an informal evaluation of µ3(1 + x + y) in Section 7.2.
A conjectural evaluation of µ4(1 + x + y) is presented in equation (109) of the
Conclusion.

7.1. Evaluation of µ2(1 + x + y)

Theorem 28. (Evaluation of µ2(1 + x + y)) We have

µ2(1 + x + y) =
3
π

Ls3
�

2π
3

�
+

π
2

4
. (74)

By comparison, Smyth’s original result may be written as (see [7])

µ1(1 + x + y) =
3
2π

Ls2
�

2π
3

�
=

1
π

Cl2
�

π

3

�
. (75)

We recall from [7] that the evaluation in Theorem 28 is proceeded by first estab-
lishing the following dilogarithmic form.

Proposition 29. (A dilogarithmic representation) We have

(a)
2
π

� π

0
Re Li2

�
4 sin2

θ
�
dθ = 2ζ(2), (76)

(b)

µ2(1 + x + y) =
π

2

36
+

2
π

� π/6

0
Li2

�
4 sin2

θ
�
dθ. (77)

We include the proof from [7] as it is instructive for evaluation of µ3(1 + x + y).

Proof. For (a) we define τ(z) := 2
π

� π
0 Li2

�
4z sin2

θ
�
dθ. This is an analytic function

of z. For |z| < 1/4 we may use the defining series for Li2 and expand term by term
using Wallis’ formula to derive

τ(z) =
2
π

�

n≥1

(4z)n

n2

� π

0
sin2n

θ dθ = 4z 4F3

�
1, 1, 1, 3

2

2, 2, 2

����4z
�

= 4Li2
�

1
2
− 1

2
√

1− 4z
�
− 2 log

�
1
2

+
1
2
√

1− 4z
�2

.

The final equality can be obtained in Mathematica and then verified by differentia-
tion. In particular, the final function provides an analytic continuation from which
we obtain τ(1) = 2ζ(2) + 4iCl2

�
π
3

�
. This yields the assertion.
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For (b), commencing much as in [18, Thm. 11], we write

µ2(1 + x + y) =
1

4π2

� π

−π

� π

−π
Re log

�
1− 2 sin(θ)ei ω

�2 dω dθ.

We consider the inner integral ρ(α) :=
� π
−π

�
Re log

�
1− α ei ω

��2 dω with α :=
2 sin θ. For |θ| ≤ π/6 we directly apply Parseval’s identity to obtain

ρ(2 sin θ) = π Li2
�
4 sin2

θ
�

(78)

which is equivalent to (52) since ρ(α) = 2πρ2(α). In the remaining case we write

ρ(α) =
� π

−π

�
log |α| + Re log

�
1− α

−1 ei ω
��2 dω

= 2π log2 |α|− 2 log |α|
� π

−π
log

��1− α
−1 ei ω

�� dω + π Li2
�

1
α2

�

= 2π log2 |α| + π Li2
�

1
α2

�
, (79)

where we have appealed to Parseval’s and Jensen’s formulae. Thus,

µ2(1 + x + y) =
1
π

� π/6

0
Li2

�
4 sin2

θ
�
dθ +

1
π

� π/2

π/6
Li2

�
1

4 sin2
θ

�
dθ +

π
2

54
, (80)

since 2
π

� π/2
π/6 log2

α dθ = µ(1+x+y1, 1+x+y2) = π2

54 . Now, for α > 1, the functional
equation in [19, A2.1 (6)]

Li2(α) + Li2(1/α) +
1
2

log2
α = 2ζ(2) + iπ log α (81)

gives � π/2

π/6

�
Re Li2

�
4 sin2

θ
�

+ Li2
�

1
4 sin2

θ

��
dθ =

5
54

π
3
. (82)

We then combine (76), (82) and (80) to deduce the desired result (77).

7.2. Evaluation of µ3(1 + x + y)

In this section we provide a remarkably concise closed form of µ3(1 + x + y). We
were led to this form by the integer relation algorithm PSLQ [1] (see Example 36
for some comments on obtaining high precision evaluations), and by considering the
evaluation (74) of µ2(1 + x + y).

The details of formalization are formidable — at least by the route chosen here
— and so we proceed more informally leaving three conjectural identities.
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Conjecture 30. (Evaluation of µ3(1 + x + y)) We have

µ3(1 + x + y)
?[1]
=

6
π

Ls4
�

2π
3

�
− 9

π
Cl4

�
π

3

�
− π

4
Cl2

�
π

3

�
− 13

2
ζ(3). (83)

This evaluation is equivalent to the conjectural identities (43) and (45).

Proof. We first use Theorem 17 to write

µ3(1 + x + y) =
2
π

� π/6

0
ρ3(2 sin θ) dθ +

2
π

� π/2

π/6
ρ3

�
1

2 sin θ

�
dθ (84)

+
3
π

� π/2

π/6
log(2 sin θ) Li2

�
1

4 sin2
θ

�
dθ − ζ(3) +

9
2π

Cl4
�

π

3

�
,

on appealing to Examples 1 and 18.
Now the functional equation for the dilogarithm (81) as used above and knowl-

edge of Lsn (π/3) (see [7, 8]) allow us to deduce

3
π

� π/6

0
log(2 sin θ) Li2

�
4 sin2

θ
�
dθ +

3
π

� π/6

0
log(2 sin θ) Li2

�
1

4 sin2
θ

�
dθ

=
3
2
ζ(3)− π

2
Cl2

�
π

3

�
+

27
2π

Cl4
�

π

3

�
, (85)

3
π

� π/2

π/6
log(2 sin θ) Re Li2

�
4 sin2

θ
�
dθ +

3
π

� π/2

π/6
log(2 sin θ) Re Li2

�
1

4 sin2
θ

�
dθ

= 3ζ(3) +
π

2
Cl2

�
π

3

�
− 27

2π
Cl4

�
π

3

�
. (86)

Moreover, we have

3
π

�� π/6

0
+

� π/2

π/6

�
log(2 sin θ) Re Li2

�
4 sin2

θ
�
dθ

?[2]
=

7
2
ζ(3)− π Cl2

�
π

3

�
, (87)

3
π

�� π/6

0
+

� π/2

π/6

�
log(2 sin θ) Re Li2

�
1

4 sin2
θ

�
dθ

?[2]
= ζ(3) + π Cl2

�
π

3

�
, (88)

which are provable as was (76) because, for |z| < 1/2, we have

1
π

� π

0
log

�
2 sin

θ

2

�
Li2

�
4 z

2 sin2 θ

2

�
dθ =

∞�

n=1

�
2n
n

��2n
k=1

(−1)k

k

n2
z
2n

.

(The latter is derivable also from (85), (86) and (87).)
Thence, (85), (86) and (87) together establish that the equality

3
π

� π/2

π/6
log(2 sin θ) Li2

�
1

4 sin2
θ

�
dθ

?[3]
=

2
3
ζ(3) +

7π
12

Cl2
�

π

3

�
− 17

2π
Cl4

�
π

3

�
(89)
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is true as soon as we establish

I3 :=
3
π

� π/6

0
log(2 sin θ) Li2

�
4 sin2

θ
�
dθ

?[3]
=

7
6

ζ(3)− 11π
12

Cl2
�

π

3

�
+ 5Cl4

�
π

3

�
.

(90)

This can, in principle, be achieved by writing the integral as

I3 =
3
π

∞�

n=1

1
n2

� 1

0

s
2n

√
4− s2

log sds

and using the binomial series to arrive at

I3 = − 3
2π

∞�

m=0

�2m
m

�

42m

∞�

n=1

1
n2 (1 + 2(n + m))2

. (91)

This leaves us to deal with the two terms in (84) involving ρ3. These two terms
are in turn related by

2
π

� π/6

0
Li2,1

�
4 sin2

θ
�
dθ +

2
π

� π/6

0
Re Li2,1

�
1

4 sin2
θ

�
dθ

=
1
9

�
ζ(3)− π Cl2

�
π

3

�
+

6
π

Cl4
�

π

3

��
, (92)

as we see by integrating (65). Likewise,

2
π

� π/2

π/6
Re Li2,1

�
4 sin2

θ
�
dθ +

2
π

� π/2

π/6
Li2,1

�
1

4 sin2
θ

�
dθ

=
1
9

�
2ζ(3)− 5π Cl2

�
π

3

�
− 6

π
Cl4

�
π

3

��
. (93)

Also, using (64) we arrive at

2
π

� π/6

0
Li2,1

�
4 sin2

θ
�
dθ =

20
27

ζ(3)− 8π
27

Cl2
�

π

3

�
+

4
9π

Cl4
�

π

3

�

+
1
π

� π/3

0
log2

�
1− 4 sin2 θ

2

�
log

�
2 sin

θ

2

�
dθ, (94)

and
2
π

� π/2

0
Re Li2,1

�
4 sin2

θ
�
dθ =

1
3
ζ(3)− 2π

3
Cl2

�
π

3

�
. (95)

We may now establish — from (89), (92), (93), (94), (95) and (84) — that

µ3(1 + x + y) =
43
18

ζ(3)− 47π
36

Cl2
�

π

3

�
− 13

3π
Cl4

�
π

3

�

+
2
π

� π/3

0
log2

�
1− 4 sin2 θ

2

�
log

�
2 sin

θ

2

�
dθ. (96)
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Hence, to prove (83) we are reduced to verifying that

− 1
π

Ls4
�

2π
3

�
?[4]
= −37

54
ζ(3) +

7π
27

Cl2
�

π

3

�
− 7

9π
Cl4

�
π

3

�

+
1
2π

� π/3

0
log2

�
1− 4 sin2 θ

2

�
log

�
2 sin

θ

2

�
dθ, (97)

which completes the evaluation.

Remark 31. By noting that, for integers n ≥ 2,

Cln
�

π

3

�
=

�
1

2n−1
+ (−1)n

�
Cln

�
2π
3

�
,

the arguments of the Clausen functions in the evaluation (83) of µ3(1 + x + y) may
be transformed to 2π

3 .
Many further variations are possible. For instance, it follows from [8] that

Ls4
�

2π
3

�
=

31
18

πζ(3) +
π

2

12
Cl2

�
2π
3

�
− 3

2
Cl4

�
2π
3

�
+ 6Cl2,1,1

�
2π
3

�
(98)

in terms of multi Clausen values. ✸

8. Proofs of Two Conjectures of Boyd

We now use log-sine integrals to recapture the following evaluations conjectured by
Boyd in 1998 and first proven in [24] using Bloch-Wigner logarithms. Below, L−n

denotes a primitive L-series and G is Catalan’s constant.

Theorem 32. (Two quadratic evaluations) We have

µ(y2(x + 1)2 + y(x2 + 6x + 1) + (x + 1)2) =
16
3π

L−4(2) =
16
3π

G, (99)

as well as

µ(y2(x + 1)2 + y(x2 − 10x + 1) + (x + 1)2) =
5
√

3
π

L−3(2) =
20
3π

Cl2
�

π

3

�
. (100)

Proof. Let Pc = y
2(x + 1)2 + y(x2 + 2cx + 1) + (x + 1)2 and µc = µ(Pc) for a real

variable c. We set x = e2πit, y = e2πiu and note that

|Pc| = |(x + 1)2(y2 + y + 1) + 2(c− 1)xy|
=

��(x + x
−1 + 2)(y + 1 + y

−1) + 2(c− 1)
��

= |2(cos(2πt) + 1)(2 cos(2πu) + 1) + 2(c− 1)|
= 2 |c + 2 cos(2πu) + (1 + 2 cos(2πu)) cos(2πt)|.
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It is known that (see [15, §4.224, Ex. 9]), for real a, b with |a| ≥ |b| > 0,
� 1

0
log |2a + 2b cos(2πθ)| dθ = log

�
|a| +

�
a2 − b2

�
. (101)

Applying this, with a = c+2 cos(2πu) and b = 1+2 cos(2πu)), to
� 1
0 |Pc|dt, we get

µc =
� 1

0
log

���c + 2 cos(2πu) +
�

(c2 − 1) + 4(c− 1) cos(2πu)
��� du. (102)

If c
2 − 1 = ±4(c − 1), that is if c = 3 or c = −5, then the surd is a perfect square

and also |a| ≥ |b|.
(a) When c = 3 for (99), by symmetry, after factorization we obtain

µ3 =
1
π

� π

0
log(1 + 4| cos θ| + 4| cos2 θ|) dθ =

4
π

� π/2

0
log(1 + 2 cos θ) dθ

=
4
π

� π/2

0
log

�
2 sin 3θ

2

2 sin θ
2

�
dθ =

4
3π

�
Ls2

�
3π
2

�
− 3Ls2

�
π

2

��

=
16
3

L−4(2)
π

as required, since Ls2
�

3π
2

�
= −Ls2

�
π
2

�
= L−4(2), which is Catalan’s constant G.

(b) When c = −5 for (100), we likewise obtain

µ−5 =
2
π

� π

0
log

�√
3 + 2 sin θ

�
dθ =

2
π

� 4π/3

π/3
log

�√
3 + 2 sin

�
θ − π

3

��
dθ

=
2
π

� 4π/3

π/3

�
log 2

�
sin

θ

2

�
+ log 2

�
sin

θ + π
3

2

��
dθ

=
2
π

� 4π/3

π/3
log 2

�
sin

θ

2

�
dθ +

2
π

� 5π/3

2π/3
log 2

�
sin

θ

2

�
dθ

=
4
π

Cl2
�

π

3

�
− 4

π
Cl2

�
4π
3

�
=

20
3π

Cl2
�

π

3

�
,

since Cl2
�

4π
3

�
= −2

3 Cl2
�

π
3

�
and so we are done.

When c = 1 the cosine in the surd disappears, and we obtain µ1 = 0, which is
trivial as in this case the polynomial factorizes as (1+x)2(1+y+y

2). For c = −1 we
are able, with some care, to directly integrate (102) and so to obtain an apparently
new Mahler measure:

Theorem 33. We have

µ−1 = µ
�
(x + 1)2(y2 + y + 1)− 2xy

�
(103)

=
1
π

�
1
2
B

�
1
4
,
1
4

�
3F2

�
1
4 ,

1
4 , 1

3
4 ,

5
4

����
1
4

�
− 1

6
B

�
3
4
,
3
4

�
3F2

�
3
4 ,

3
4 , 1

5
4 ,

7
4

����
1
4

��
.
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Here, B(s, t) = Γ(s)Γ(t)
Γ(s+t) denotes the Euler beta function.

We observe that an alternative form of µ−1 is given by

µ−1 = µ

��
x + 1/x + 2

�
1/x

�
(y + 1/y + 1)− 2

�
.

Remark 34. Equation (101) may be applied to other conjectured Mahler measures.
For instance, µ(1 + x + y + 1/x + 1/y) = .25133043371325 . . . was conjectured by
Deninger [14] to evaluate in L-series terms as

µ(1 + x + y + 1/x + 1/y) = 15
∞�

n=1

an

n2
, (104)

where
�∞

n=1 anq
n = η(q)η(q3)η(q5)η(q15). Here η is the Dirichlet eta-function:

η(q) := q
1/24

∞�

n=1

(1− q
n) = q

1/24
∞�

n=−∞
(−1)n

q
n(3n+1)/2

. (105)

This has recently been proven in [23].
Application of (101) shows that

µ(1 + x + y + 1/x + 1/y) =
1
π

� π/3

0
log



1 + 2 cos θ

2
+

��
1 + 2 cos θ

2

�2

− 1



 dθ,

but the surd remains an obstacle to a direct evaluation.

9. Conclusion

To recapitulate, µk(1 + x + y) = W
(k)
3 (0) has been evaluated in terms of log-sine

integrals for 1 ≤ k ≤ 3. Namely,

µ1(1 + x + y) =
3
2π

Ls2
�

2π
3

�
, (106)

µ2(1 + x + y) =
3
π

Ls3
�

2π
3

�
+

π
2

4
, (107)

µ3(1 + x + y)
?[1]
=

6
π

Ls4
�

2π
3

�
− 9

π
Cl4

�
π

3

�
− π

4
Cl2

�
π

3

�
− 13

2
ζ(3). (108)

Hence it is reasonable to ask whether µ4(1 + x + y) and higher Mahler measures
have evaluations in similar terms.
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Example 35. In the case of µ4(1 + x + y), numerical experiments suggest that

πµ4(1 + x + y)
?[5]
= 12Ls5

�
2π
3

�
− 49

3
Ls5

�
π

3

�
+ 81Gl4,1

�
2π
3

�
(109)

+ 3π2 Gl2,1

�
2π
3

�
+ 2ζ(3)Cl2

�
π

3

�
+ π Cl2

�
π

3

�2
− 29

90
π

5
,

while the higher Mahler measure µ5(1+x+y) does not appear to have an evaluation
in terms of generalized Glaisher and Clausen values only. ✸

We close with numerical values for these quantities.

Example 36. By computing higher-order finite differences in the right-hand side
of (23) we have obtained values for µn(1 + x + y) to several thousand digits. To
confirm these values we have evaluated the double-integral (25) to about 250 digits
for all n ≤ 8. These are the results for µk := µk(1 + x + y) to fifty digits:

µ2 = 0.41929927830117445534618570174886146566170299117521, (110)
µ3 = 0.13072798584098927059592540295887788768895327503289, (111)
µ4 = 0.52153569858138778267996782141801173128244973155094, (112)
µ5 = −0.46811264825699083401802243892432823881642492433794. (113)

These values will allow a reader to confirm many of our results numerically. ✸
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