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Abstract

Let m denote a squarefree number. Let fm(n) denote the number of partitions of n into parts
that are relatively prime to m. Let Φm(z) denote the mth cyclotomic polynomial. We obtain a
generating function for fm(n) that involves factors Φm(zn).

1. Introduction

If z is a complex variable, let Φm(z) denote the mth cyclotomic polynomial, that is

Φm(z) =
∏
d|m

(zd − 1)µ(m/d)

where µ(n) denotes the Möbius function. If p is prime, let bp(n) denote the number of p-regular
partitions of n, that is, the number of partitions of n such that no part occurs p or more times.
It is well-known that bp(n) also counts the number of partitions of n into parts, k, such that
(k, p) = 1. (See [1],[2], and [3].) Furthermore, bp(n) has a generating function given by

∞∑
n=0

bp(n)zn =
∞∏
n=1

1− zpn
1− zn =

∞∏
n=1

Φp(zn) (1)

where |z| < 1 . In particular, if q(n) denotes the number of partitions of n into distinct parts
(or odd parts), so that q(n) = b2(n), then

∞∑
n=0

q(n)zn =
∞∑
n=0

b2(n)zn =
∞∏
n=1

(1 + zn) =
∞∏
n=1

Φ2(zn). (2)

In this note, we generalize (1) as follows. Let m be the product of r distinct primes. Let
fm(n) denote the number of partitions of n into parts, k, such that (k,m) = 1. That is, fm(n)
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denotes the number of partitions of n into parts that are not divisible by any of the r distinct
primes. We obtain a generating function for fm(n) as an infinite product of factors Φm(zn) or
1/Φm(zn), accordingly as r is odd or even, respectively.

2. Preliminaries

Theorem 0 If H ⊂ N , let pH(n) denote the number of partitions of n into parts belonging
to H; let qH(n) denote the number of partitions of n into distinct parts belonging to H; let
qEH(n) denote the number of partitions of n into evenly many distinct parts from H; let qOH(n)
denote the number of partitions of n into oddly many distinct parts from H. Further, let
q∗H(n) = qEH(n) − qOH(n) and define pH(0) = qH(0) = qEH(0) = q∗H(0) = 1. Let z be a complex
variable such that |z| < 1. Then

∞∑
n=0

pH(n)zn =
∏
n∈H

(1− zn)−1 (3)

∞∑
n=0

qH(n)zn =
∏
n∈H

(1 + zn) (4)

∞∑
n=0

q∗H(n)zn =
∏
n∈H

(1− zn). (5)

Remarks: Equation (3) is Theorem 1.1, (1.2.4) in [1]; (4) follows from the same theorem; (5) is
proven for the case H = N in [1]. The proof extends easily to the case: H ⊂ N .

3. The Main Results

Theorem 1 Let m =
∏r
i=1 pi , where r ≥ 1 and the pi are distinct primes. Let fm(n) be

the number of partitions of n into parts, k, such that (k,m) = 1. Let Φm(z) denote the mth
cyclotomic polynomial, where z is a complex variable, with |z| < 1. Then

∞∑
n=0

fm(n)zn =
∞∏
n=1

(Φm(zn))(−1)r−1
. (6)

Proof. If r = 1, then fm(n) = fp(n) = bp(n) = the number of p-regular partitions of n , so (by
(1))

∞∑
n=0

fm(n)zn =
∞∑
n=0

bp(n)zn =
∞∏
n=1

1− zpn
1− zn =

∞∏
n=1

Φp(zn).
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Now suppose that m has r distinct prime factors, and p is a prime such that p 6 |m. Then pm

has r + 1 distinct prime factors. By induction hypothesis,

∞∑
n=0

fm(n)zn =
∞∏
n=1

(Φm(zn))(−1)r−1
.

Now

∑∞
n=0 fpm(n)zn =

∏
(p,n)=1(Φm(zn))(−1)r−1

=
∏∞
n=1

(
Φm(zn)
Φm(zpn)

)(−1)r−1

=
∏∞
n=1(1/Φpm(zn))(−1)r−1

=
∏∞
n=1(Φpm(zn))(−1)r ,

so we are done.

Remarks: Let ω(d) denote the number of distinct prime factors of d. Then (6) could be restated
as:

∞∑
n=0

fm(n)zn =
∞∏
n=1

∏
d|m

(1− zdn)(−1)1+ω(d)
. (7)

Since d is squarefree by hypothesis, we have (−1)ω(d) = µ(d). Thus (7) becomes:

∞∑
n=0

fm(n)zn =
∞∏
n=1

∏
d|m

(1− zdn)−µ(d). (8)

A shorter, alternate proof is based on the inclusion-exclusion principle, namely

∞∑
n=0

fm(n)zn =
∞∏
n=1

(1− zn)−1
∏
p|m

(1− zpn)
∏

p1p2|m
(1− zp1p2n)−1

∏
p1p2p3|m

(1− zp1p2p3n) · · · (9)

=
∞∏
n=1

∏
d|m

(1− zdn)−µ(d).

(In the products above, the pi are distinct prime divisors of m.)

Furthermore, fm(n) may be computed recursively by the repeated use of Theorem 2 below,
whose elementary proof is omitted.
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Theorem 2 Let m, r, fm(n), z be as in the hypothesis of Theorem 1. Let p be a prime such
that p - m. Then

fpm(n) +
[n/p]∑
j=1

fpm(n− pj)fm(j) = fm(n).

For example, suppose we wish to compute the number of partitions of n into parts that are not
divisible by 2, 3, or 5. That is, we wish to compute f30(n). According to Theorem 1, we have:

∞∑
n=0

f30(n)zn =
∞∏
n=1

Φ30(zn) =
∞∏
n=1

(z8n + z7n − z5n − z4n − z3n + zn + 1).

We conclude with the following theorem, which follows easily from Theorems 1 and 0.

Theorem 3 Let m, r, n, z be as in the hypothesis of Theorem 1. Let qEm(n), qOm(n) denote
respectively the number of partitions of n into evenly, oddly many distinct parts, k, such that
(k,m) = 1. Then

∞∏
n=1

(Φm(zn))(−1)r =
∞∑
n=0

(qEm(n)− qOm(n))zn.

Proof. This follows from the hypothesis, Theorem 1, and Theorem 0, part (iii).
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