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Abstract

In this paper, as an application of our recent results to appear elsewhere [5], we compare
digital (0, 1)-sequences generated by nonsingular upper triangular matrices in arbitrary
prime bases to van der Corput sequences and show these last ones are the worst dis-
tributed with respect to the star discrepancy, the extreme discrepancy, the L2-discrepancy
and the diaphony. Moreover, we obtain digital (0, 1)-sequences in arbitrary prime bases
with very good extreme discrepancy, quite comparable to the best generalized van der
Corput sequences already found in preceding studies ([2] and [4]).

1. Introduction.

Digital (0, 1)-sequences are one-dimensional coordinate projections of digital (0, s)-sequen-
ces [3] which are themselves a special case of digital (t, s)-sequences [10], widely used in

multi-dimensional integration in the general setting of quasi-Monte Carlo methods. While
multi-dimensional sequences are difficult to handle –the order of their discrepancy is still

unknown– the one-dimensional case is much more tractable and precise results are avail-
able. Their interest is twofold, number theoretical (better knowledge of irregularities of

distribution) and practical (improvement and acceleration of quasi-Monte Carlo methods
by scrambling techniques).

Motivated by these two facets, recent researches on digital sequences have been

achieved in base 2 ([9], [11] and others under publication by the same authors), fol-
lowing a previous, but less informative, study in larger bases [7]. Then in [5], we have

obtained exact formulas for the discrepancies and the diaphony of a wide class of digital
sequences in arbitrary prime bases, the NUT digital (0, 1)-sequences (see Section 3 for
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the definition); and next, from these formulas, we have deduced selection criteria for the
scrambling of multi-dimensional digital sequences by a classification of the digits involved

in their construction [6].

Our purpose in the present article is to compare the irregularities of distribution

of NUT digital (0, 1)-sequences with those of generalized van der Corput sequences,
especially the best ones. First (Section 5.1), we show that the original van der Corput

sequences are the worst distributed among the NUT digital (0, 1)-sequences in prime

base, with respect to the four measures D, D∗, T and F (see Section 2); the proof for the
diaphony requires a deep analysis of the related key function χ (Lemma 3). Then (Section

5.2), we compare the best NUT digital (0, 1)-sequences with very good generalized van der
Corput sequences by means of the classical quality parameter for the extreme discrepancy

of these sequences. The simplicity of the formula for the extreme discrepancy of NUT
digital (0, 1)-sequences permits computations for very large bases and is promising for

finding new very low discrepancy sequences. At the present, we cannot say anything
about general (0, 1)-sequences which are not NUT digital ones.

Sections 2 and 3 contain basic definitions and Section 4 states the fundamental results
of [5] we need for our comparative study.

2. Irregularities of Distribution.

Let X = (xn)n≥1 be an infinite sequence in [0, 1], N ≥ 1 an integer and [α, β[ a subinterval

of [0, 1]; the error to ideal distribution is the difference

E([α, β[;N ;X) = A([α, β[;N ;X) −Nl([α, β[)

where A([α, β[;N ;X) is the number of indices n such that 1 ≤ n ≤ N and xn ∈ [α, β[
and where l([α, β[) is the length of [α, β[.

To avoid any ambiguity, recall that [α, β[= [0, β[∪[α, 1[ if α > β ([1], p.105), so that

l([α, β[) = 1 − α + β and E([α, β[; k;X) = −E([β, α[; k;X).

Definition of the extreme discrepancies:

D(N,X) = sup
0≤α<β≤1

|E([α, β[;N ;X)|,

D∗(N,X) = sup
0≤α≤1

|E([0, α[;N ;X)|,

D+(N,X) = sup
0≤α≤1

E([0, α[;N ;X),

D−(N,X) = sup
0≤α≤1

(−E([0, α[;N ;X)).
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Usually, D is called the extreme discrepancy and D∗ the star discrepancy; D+ and D−

are linked to the preceding one’s by

D(N,X) = D+(N,X) +D−(N,X) and D∗(N,X) = max(D+(N,X), D−(N,X)).

Definition of the L2-discrepancy and of the diaphony:

T (N,X) =
(∫ 1

0

(E([0, α[;N ;X))2dα
) 1

2
,

F (N,X) =
(
2

∞∑
m=1

1

m2

∣∣∣
N∑

n=1

exp(2iπmxn)
∣∣∣2

) 1
2

.

The diaphony F and the L2-discrepancy T are related by the formula of Koksma ([8],

Lemma 2.8)

T 2(N,X) =
( N∑

n=1

(
1

2
− xn)

)2

+
1

4π2 F
2(N,X).

3. Digital (0,1)-Sequences and Related Functions.

In this section, we define the class of digital (0, 1)-sequences we are concerned with and
we recall the definition of generalized van der Corput sequences [2], the two families being

closely related; then we introduce a set of functions which are the key tools for the study
of both families. Let b ≥ 2 be a prime number.

For integers n and N with n ≥ 1 and 1 ≤ N ≤ bn, write N − 1 =

∞∑
r=0

ar(N) br in the

b-adic system, so that ar(N) = 0 if r ≥ n.

The digital (0, 1)-sequences in prime base b we consider can be simply described as follows:

XC
b = (xN )N≥1, with xN =

∞∑
r=0

xN,r

br+1 in which xN,r =

∞∑
k=r

ckrak(N) (mod b),

the generator matrix C = (ckr)r≥0,k≥0 being an infinite nonsingular upper triangular

(NUT) matrix with entries ckr ∈ Fb identified as a set to {0, 1, . . . , b− 1}.
¿From the definitions of the ak(N) and of C, the summations above are finite. In brief,

we name these sequences NUT digital (0, 1)-sequences.

Let Σ = (σr)r≥0 be a sequence of permutations of Fb. The generalized van der Corput

sequence SΣ
b in base b associated with Σ is defined by

SΣ
b (N) =

∞∑
r=0

σr(ar(N))

br+1 ·
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Note that if the generator matrix C is diagonal we have XC
b = S∆

b , where ∆ = (δr)r≥0

is the sequence of permutations of Fb defined by δr(i) = crri (mod b), i.e. δr is the

multiplication in Fb by the diagonal entry crr. Now, if C is not diagonal, as we shall
see in the next section, the diagonal entries will still determine the same permutations

δr, but the exact formulas for D+, D−, D∗ and T will involve translated permutations
(depending on N ≥ 1) of the δr’s; on the contrary, and surprisingly, D and F will only

depend on the δr’s.

Functions ϕσ
b,h related to a pair (b, σ).

Let σ be a permutation of Fb and set Zσ
b :=

(σ(0)

b
, · · · , σ(b− 1)

b

)
. For any integer h

with 0 ≤ h ≤ b− 1, the real function ϕσ
b,h is defined as follows:

Let k be an integer with 1 ≤ k ≤ b; then for every x ∈ [k − 1
b

, k
b
[ we set:

ϕσ
b,h(x) = A

([
0,
h

b

[
; k;Zσ

b

)
− hx if 0 ≤ h ≤ σ(k − 1) and

ϕσ
b,h(x) = (b− h)x−A

([h
b
, 1

[
; k;Zσ

b

)
if σ(k − 1) < h < b;

finally the function ϕσ
b,h is extended to the reals by periodicity. Note that ϕσ

b,0 = 0.

In the very special case b = 2, we only have two permutations which give either ϕσ
2,1 = ‖·‖,

if σ is the identical permutation or ϕσ
2,1 = −‖ · ‖, if σ = (0 1), where ‖ · ‖ is the distance

to the nearest integer function.

Actually, the b functions ϕσ
b,h give rise to other functions, depending only on (b, σ),

according to the involved notion of discrepancy: for the extreme discrepancies

ψσ,+
b = max

0≤h≤b−1
(ϕσ

b,h) , ψ
σ,−
b = max

0≤h≤b−1
(−ϕσ

b,h) and ψσ
b = ψσ,+

b + ψσ,−
b

and for the L2-discrepancy and the diaphony

ϕσ
b =

b−1∑
h=0

ϕσ
b,h , φσ

b =

b−1∑
h=0

(ϕσ
b,h)

2 and χσ
b = bφσ

b − (ϕσ
b )2.

With the help of these functions, we are able to obtain exact formulas for the discrepancies

and the diaphony of NUT digital (0, 1)-sequences, as we did for the generalized van der

Corput sequences [1], [2].
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4. Exact Formulas for NUT Digital (0,1)-Sequences.

We present here the formulas for the NUT digital (0, 1)-sequences we shall use in the

two next sections (these results come from our paper [5]). For this purpose, we need a
further definition: we use the symbol � to denote the translated permutation of a given

permutation σ of Fb by an element t ∈ Fb in the following sense

(σ � t)(i) := σ(i) + t (mod b) for all i ∈ Fb.

Moreover, associated with the NUT generator matrix C = (ckr)r≥0,k≥0, we recall the
permutation δr defined by δr(i) := crri (mod b) and we introduce the quantity

θr(N) :=
∞∑

k=r+1

ckrak(N) (mod b),

where the ak(N)’s are the digits ofN−1. Note that ak(N) = 0 for all k ≥ n if 1 ≤ N ≤ bn,

thus θr(N) = 0 and σr = δr for all r ≥ n − 1 in this case. This quantity determine the
translated permutations which appear in the formulas for D+, D−, D∗ and T .

We are now in a position to state our results:

Theorem 1. For all integers n and N with 1 ≤ N ≤ bn, we have

D+(N,XC
b ) =

n∑
j=1

ψ
δj−1�θj−1(N),+
b

(N
bj

)
+
N

bn
,

D−(N,XC
b ) =

n∑
j=1

ψ
δj−1�θj−1(N),−
b

(N
bj

)
,

D(N,XC
b ) =

n∑
j=1

ψ
δj−1

b

(N
bj

)
+
N

bn
,

1

4π2F
2(N,XC

b ) =
1

b2

n∑
j=1

χ
δj−1

b

(N
bj

)
+

N2

12 b2n
and

T 2(N,XC
b ) =

(1

b

n∑
j=1

ϕ
δj−1�θj−1(N)
b

(N
bj

)
+

N

2bn

)2

+
1

b2

n∑
j=1

χ
δj−1

b

(N
bj

)
+

N2

12 b2n
·

Remarks. 1. As already noted in the preceding section, we see from the formulas
for D and F that digital (0,1)-sequences generated by NUT matrices having the same

diagonal have the same extreme discrepancy and the same diaphony. Therefore, for these
two measures of Irregularities of Distribution, generalized van der Corput sequences and

NUT digital (0, 1)-sequences have the same behaviour, provided that, for the last ones,
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we consider the sequence of permutations ∆ resulting from the multiplications in Fb by
the diagonal entries of C: D(N,XC

b ) = D(N, S∆
b ) and F (N,XC

b ) = F (N, S∆
b ).

2. As for D+, D−, D∗ and T , the formulas are similar to those for the generalized van der
Corput sequences, but the situation is more complicated because of the quantity θj−1(N)

which depends on N , via the b-adic expansion of N − 1, and on the NUT generator
matrix C, via its entries strictly above the diagonal. Very few results have been available

and only in base 2 ([9] and [11]), except loose bounds in a special case for T ([7]). In

arbitrary prime bases, we shall obtain general bounds in Section 5; but sharp results on
D∗ and T will need further investigations.

3. For the L2-discrepancy, according to the behaviour of the diaphony (its order is
O(

√
logN), see [1] Theorem 4.6 with bj = b), we have

T 2(N,XC
b ) =

1

b2

( ∞∑
j=1

ϕ
δj−1�θj−1(N)
b

(N
bj

))2

+O(logN).

Therefore the behaviour of the L2-discrepancy of XC
b depends only on the properties of

the functions ϕσ
b =

b−1∑
h=0

ϕσ
b,h.

5. Comparing NUT Digital (0,1)-Sequences and van der Corput Sequences.

In this section, we first compare NUT digital (0, 1)-sequences in prime base b with the
original van der Corput sequences, i.e. SI

b = XI
b (in which I is either the identical

permutation or the identity matrix) and show that the last ones are the worst distributed
forD∗, D, T and F . Then we give the results of computational investigations of good NUT

digital (0, 1)-sequences with respect to D and compare with the best known generalized
van der Corput sequences.

5.1 NUT sequences towards van der Corput sequences.

Theorem 2. For all integers n and N with 1 ≤ N ≤ bn, we have

D∗(N,XC
b ) ≤ D(N,XC

b ) ≤ D∗(N, SI
b ) = D(N, SI

b )

T (N,XC
b ) ≤ T (N, SI

b )

F (N,XC
b ) ≤ F (N, SI

b ).

Proof. This theorem is an immediate consequence of the three following lemmas together
with Theorem 1. ♦
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Remark. From our preceding studies, [2] Theorem 6 and [1] Theorems 4.12 and 4.13,
the exact asymptotic behaviour of D(N, SI

b ), T (N, SI
b ) and F (N, SI

b ) is already known.

Lemma 1. For any permutation σ of Fb, we have the inequality ψσ
b ≤ ψI

b .

Proof. See the proof of Corollary 3, 5.5.4 p.180 [2]. ♦
Lemma 2. For any permutation σ of Fb, we have the inequality |ϕσ

b | ≤ ϕI
b .

Proof. Let us first recall the main property of the functions ϕσ
b ([1], Property 3.5 (i),

p.109), where f ′ is the right derivative of f :

(ϕσ
b )′(

k

b
) =

b(b− 1)

2
− bσ(k) for 0 ≤ k ≤ b− 1, so that ϕσ

b (
k

b
) =

1

b

k−1∑
j=0

(ϕσ
b )′(

j

b
).

Therefore, the derivatives of ϕσ
b on [0, 1] take once only the values jb − b(b− 1)

2
for

0 ≤ j ≤ b− 1.

Now, to get a permutation maximizing |ϕσ
b |, it is sufficient to take the derivatives in the

order
b(b− 1)

2
,
b(b− 1)

2
− b, · · · , b, 0,−b, · · · ,−b(b− 1)

2

on the intervals [ j
b
, j+1

b
] for 0 ≤ j ≤ b − 1. As a matter of fact, this procedure gives

exactly the identical permutation (the other possibility should be to take the derivatives
in the opposite order, in which case we should get −ϕI

b = ϕJ
b , the permutation J being

defined by J(k) = b− 1 − k). ♦
Lemma 3. For any permutation σ of Fb, we have the inequality χσ

b ≤ χI
b .

Proof. This inequality requires more attention than the previous ones.

First, recall that ([1], Definition 3.4)

χσ
b = bφσ

b − (ϕσ
b )2 =

∑
0≤h<h′<b

(ϕσ
b,h′ − ϕσ

b,h)
2 =

1

2

∑
h �=h′

(ϕσ
b,h′ − ϕσ

b,h)
2

and that ([1], Property 3.5 (ii)) on each interval [k−1
b
, k

b
] (1 ≤ k ≤ b), χσ

b has the form

χσ
b (x) = b2(b2−1)

12
x2 + Ax + B with A and B depending on σ and k; thus χI

b − χσ
b is an

affine function, so that χI
b − χσ

b ≥ 0 if and only if χI
b(

k
b
) ≥ χσ

b (k
b
) for all 1 ≤ k ≤ b.

On the other hand, for arbitrary h 	= h′, ϕσ
b,h′(k

b
) − ϕσ

b,h(
k
b
) = E([h

b
, h′

b
[; k;Zσ

b ) since

ϕσ
b,h(

k
b
) = E([0, h

b
[; k;Zσ

b ) (see [2], proof of Property 3.2.2 (a) or [5], proof of the propo-

sition of section 6.6). Therefore, proving Lemma 3 amounts to proving that for fixed k
(1 ≤ k ≤ b) ∑

h �=h′

(
E([

h

b
,
h′

b
[; k;Zσ

b )
)2

≤
∑
h �=h′

(
E([

h

b
,
h′

b
[; k;ZI

b )
)2

.
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To obtain this result, we split up the sum into sets of couples (h, h′) satisfying
l([h

b
, h′

b
[) = d

b
, with 1 ≤ d ≤ b − 1, so that we get (b − 1) sets, each one containing

b terms, and we proceed to compare the two sums set by set with fixed d.

In other words, we take a window (d
b
)-wide and we move the window along the torus

[0, 1[ with the step 1
b

(from [0, d
b
[, [1

b
, d+1

b
[, and so on until [1− 1

b
, d−1

b
[), calculating at each

step the remainder

E([
h

b
,
h′

b
[; k;Zσ

b ) = δσ
h,h′ − dk

b
with δσ

h,h′ := A([
h

b
,
h′

b
[; k;Zσ

b )

and summing the squares.

In that way, we get (l(h, h′) = d stands for l([h
b
, h′

b
[) = d

b
)

∑
l(h,h′)=d

(δσ
h,h′ − dk

b
)2 =

∑
l(h,h′)=d

(δσ
h,h′)2 − 2dk

b

∑
l(h,h′)=d

δσ
h,h′ +

d2k2

b2

∑
l(h,h′)=d

1.

Now, we claim that
∑

l(h,h′)=d

δσ
h,h′ = kd, whatever σ may be: indeed, we have k points of

Zσ
b and each one occurs d times in A([h

b
, h′

b
[; k;Zσ

b ) = δσ
h,h′ when the window moves from

[0, d
b
[ to [1 − 1

b
, d−1

b
[. Thus we obtain

∑
l(h,h′)=d

(δσ
h,h′ − dk

b
)2 =

∑
l(h,h′)=d

(δσ
h,h′)2 − d2k2

b
for any σ,

so that, to prove Lemma 3, we need only to compare
∑

l(h,h′)=d

(δσ
h,h′)2 to

∑
l(h,h′)=d

(δI
h,h′)2 with

the condition
∑

l(h,h′)=d

δσ
h,h′ =

∑
l(h,h′)=d

δI
h,h′ = kd.

Since, from the definition of δσ
h,h′ we have 0 ≤ δσ

h,h′ ≤ min(k, d), we must distinguish two
cases: d ≤ k and d ≥ k.

Consider first d ≤ k. It is easy to compute the (δI
h,h′)’s: δI

h,h+d = d for 0 ≤ h ≤ k− d,
then δI

k−d+j,k+j = d − j for 1 ≤ j ≤ d − 1, then δI
h,h+d = 0 for k ≤ h ≤ b − d and finally

δI
b−d+j,j = j for 1 ≤ j ≤ d − 1, assuming that k + d ≤ b; otherwise,the smaller values do

not exist (no 0 if k + d = b+ 1, no 0 and no 1 if k + d = b+ 2 and so on).

Moreover, we note that these values are also obtained for the permutations σ for which

the first k points of Zσ
b are concentrated on an interval of length k

b
. And as soon as

this condition is not realized, the maximal value d for the (δI
h,h′)’s is obtained less than

(k − d+ 1) times, compensated by other δ’s since
∑

l(h,h′)=d

δσ
h,h′ = kd is constant.

Therefore, we have to deal with the following optimization problem: in the b-dimensional
space R

b, find the maximal distance to the origin of a point (xi) ∈ Z
b satisfying the



INTEGERS:ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(3) (2005), #A07 9

conditions: 0 ≤ xi ≤ d,

b∑
i=1

xi = kd (1 ≤ d ≤ k ≤ b) and xi = d for at most (k − d + 1)

indices i. Clearly, the maximum is attained when (xi) belongs to a lower dimensional

hyperface of the hypercube [0, d]b, i.e. when xi = d for (k − d + 1) indices i; and that
corresponds (among others) to the identical permutation whatever k may be between 1

and b. So, we have proved that
∑

l(h,h′)=d

(δσ
h,h′)2 ≤

∑
l(h,h′)=d

(δI
h,h′)2 in the case d ≤ k.

In the second case, d ≥ k, we proceed in the same way, but here δσ
h,h′ is at most equal

to k and at most (d− k+ 1) times, which situation again corresponds to permutations σ
such that the first k points of Zσ

b are concentrated on an interval of length k
b
, in particular

the identical permutation. The optimization problem is the same, with the hypercube
[0, k]b instead of [0, d]b and the maximal distance to the origin is reached when xi = k for

the maximal number (d − k + 1) of indices i, that is, as to our problem, when σ is the
identical permutation. This second case completes the proof of Lemma 3. ♦
Remark. The proofs of Lemma 2 and 3 should be the same for an arbitrary integer,

odd or even. Therefore, we can assert that Theorem 2 is also valid for generalized van
der Corput sequences in any base (for D and D∗, it is already in [2], 5.5.4 Corollary 3):

D∗(N, SΣ
b ) ≤ D(N, SΣ

b ) ≤ D∗(N, SI
b ) = D(N, SI

b ),

T (N, SΣ
b ) ≤ T (N, SI

b ) and F (N, SΣ
b ) ≤ F (N, SI

b ).

5.2 NUT sequences towards generalized van der Corput sequences.

In this subsection, we compare the extreme discrepancy of digital (0, 1)-sequences gen-

erated by NUT matrices C with crr = f to generalized van der Corput sequences by
means of good permutations. For this purpose, we recall formulas giving the asymptotic

behaviour of the extreme discrepancy of these sequences (see [2] Theorem 2, Property
3.2.2 and Lemma 4.2.2):

Set dσ
b (n) = sup

x∈[0,1]

n∑
j=1

ψσ
b (
x

bj
) and ασ

b = inf
n≥1

dσ
b (n)

n
· Then lim sup

N→∞

D(N, Sσ
b )

logN
=

ασ
b

log b

and

D(N, Sσ
b ) ≤ ασ

b

log b
logN + ασ

b + 2 for all N ≥ 1 (Theorem 2).

Moreover, ασ
b = lim

n→∞
dσ

b (n)

n
and there exists βn with 0 ≤ βn ≤ 1 such that

dσ
b (n) = ασ

b n+ βn, so that 0 ≤ dσ
b (1) − ασ

b ≤ 1 (Lemma 4.2.2).
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Therefore, the quality parameter ασ
b may be approached with a good approximation by

dσ
b (1), that is by computing the quantity

dσ
b := max

1≤k≤b
max

0≤h′<h<b
|E([h′/b, h/b[; k;Zσ

b )|

since dσ
b = supx∈[0,1] ψ

σ
b (x) = dσ

b (1) (Property 3.2.2 (ii)).

The interest is that dσ
b is easy to compute while other approachs of ασ

b should need to

make explicit the huge function ψσ
b . We have already performed a program to compute

df
b (where f refers to the permutation resulting from the multiplication by f) in order to

obtain the numerical results which are going to appear in [6]. Here, we make use of it to
get the best factors f for arbitrary prime bases. The results are given in the following

Table 1 together with the identical permutation I, the permutations σ from [4] and the
best permutations σ0 we have found in our preceding studies.

Comments. For decimal numbers, we have kept the first two digits only.

The bases 12 and 36 give the smallest discrepancies currently known, see [4].

We have computed the best factors f up to b=1301. The bases 89 and 233 give the
best constants for 2 ≤ b ≤ 863 and 233 the best in all. Among the 212 prime numbers

considered, few constants are above 0.5, mainly for small b. Recall that αI
2 = 1/3 so

that
αI

2

log 2
≈ 0.48 and αI

3 = 1/2 so that
αI

3

log 3
≈ 0.45; therefore, we see that our best

factors give often better bounds than the exact asymptotic constants for bases 2 and 3.
Prospecting permutations for bases close or equal to 89 or 233 for instance should give

very low discrepancy sequences.
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