KIRKMAN’S HYPOTHESIS REVISITED
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Abstract

Watson proved Kirkman’s hypothesis (partially solved by Cayley). Using Lagrange In-
version, we drastically shorten Watson’s computations and generalize his results at the
same time.

Kirkman’s hypothesis [3] is (in changed notation) the formula
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Kirkman could not prove it, but Cayley [1] proved the special case N = 0 in 1857.
After more than hundred years, Watson [5] proved Kirkman’s hypothesis by establishing
the following power series expansions. Set
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Of course, Kirkman’s hypothesis follows from this by writing -1 = 9? and comparing
coefficients.

However, Watson’s derivation of these two expansions required quite a bit of compu-
tation, in particular he treated both cases differently and separately.

Here, we present an extremely simple computation using the Lagrange inversion for-
mula that has the advantage of not only treating both cases together but rather finding
the power series expansion for ¢?(z,w) for general p. We refer for the Lagrange inversion
formula to [2, 6]; the version that is sufficient for our purposes is this: If

y = 2®(y),

then

[2"]y? = g[y""’] (®(y)"

([2"]f(2) means the coefficient of 2" in the series expansion of f(z)).

The quadratic equation satisfied by ¥(z,w) is

2(z +w)p?*(z,w) + (22 +w — Dy(z,w) +1=0.

Writing ¢ = y/z and rearranging leads to the following equation of Lagrange type:
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With the Lagrange inversion formula we obtain:
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This leads, with 4+ s = p and 9" - ©)°* = 9P, to the convolution formula (generalized
Kirkman hypothesis):
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For other results of Kirkman’s, treated with the Lagrange inversion formula, see [4,
Ex. 6.33-¢|.
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