
GENERALIZED DAVENPORT–SCHINZEL SEQUENCES:
RESULTS, PROBLEMS, AND APPLICATIONS

Martin Klazar1

Department of Applied Mathematics (KAM) and Institute for Theoretical Computer Science (ITI),
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Abstract

We survey in detail extremal results on Davenport–Schinzel sequences and their gener-
alizations, from the seminal papers of H. Davenport and A. Schinzel in 1965 to present.
We discuss geometric and enumerative applications, generalizations to colored trees, and
generalizations to hypergraphs. Eleven illustrative examples with proofs are given and
nineteen open problems are posed.

1. Introduction

DS sequences. Why a survey on Davenport–Schinzel sequences? (We shall abbreviate
this term as DS sequences.) Two combinatorially oriented survey articles have appeared,
Stanton and Dirksen [55] and Klazar [29]. Both are now outdated. Sharir and Agarwal
[52] and Agarwal and Sharir [3] focus on geometric applications. Survey and historic
sections can be found also in [27], [36], and [61], but the main goals of these works
lie elsewhere. In this survey we treat the subject in more details and more concisely,
pose many open problems, and present several combinatorially interesting and often
unexplored generalizations of the original problem. We concentrate on its extremal side
but we do discuss related enumerative aspects.

In Section 1 the classical Davenport–Schinzel’s extremal functions λs(n) are intro-
duced and several simple bounds on them are proved. Section 2 surveys the extremal
results on DS sequences which were obtained in the early period, before the superlinear-
ity of λ3(n) was discovered in [21]. Section 3 explains the superlinear bounds on lengths
of DS sequences. Section 4 presents the generalization of DS sequences to any forbid-
den subsequence, which was introduced in [1]. Section 5 describes various combinatorial
situations where DS sequences and their generalizations appear; we discuss geometric
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graphs, colored trees, 0-1 matrices, ordered bipartite graphs, permutations, and set par-
titions. In Section 6 we describe a further generalization of DS sequences, or rather of
the containment relation that defines them, to ordered hypergraphs; this section surveys
some results of [33] and [35].

An s-DS sequence, where s ≥ 1 is an integer, is any finite sequence u = a1a2 . . . al

over a fixed infinite alphabet A satisfying two conditions:

1. For every i = 1, 2, . . . , l − 1 we have ai 6= ai+1, which means that u contains no
immediate repetition.

2. There do not exist s indices 1 ≤ i1 < i2 < · · · < is ≤ l such that ai1 = ai3 = ai5 =
· · · = a, ai2 = ai4 = ai6 = · · · = b, and a 6= b. That is, u contains no alternating
subsequence of length s.

We write DSs to denote the set of s-DS sequences. What are the elements of the
alphabet A is not important. We assume that we have in A all positive integers 1, 2, . . .,
the letters a, b, c, d, . . ., and perhaps some other symbols. The set A∗ consists of all finite
sequences over A. Two sequences from A∗ which have the same length and which differ
only by an injective renaming of the symbols, for example 121331 and 2c2aa2, are called
isomorphic. For our purposes isomorphic sequences are identical. Every element of A∗ is
isomorphic to a unique normal sequence. A sequence u is normal if it is over the alphabet
{1, 2, . . . , n} for some integer n > 0, every i ∈ {1, 2, . . . , n} appears in u, and the first
occurrences of 1, 2, . . . , n in u, if we scan u from left to right, come in this order.

Example 1. There exist exactly ten normal 4-DS sequences u using at most 3 symbols:

u = ∅, 1, 12, 121, 1213, 12131, 123, 1231, 1232, and 12321. 2

N and N0 denote the sets {1, 2, . . .} and {0, 1, 2, . . .}. We write [n], n ∈ N, for the
set {1, 2, . . . , n}, and [a, b], a, b ∈ N, a ≤ b, for the set {a, a+1, . . . , b}. For two functions
f, g : N → R, the asymptotic notation f ¿ g is synonymous to the f = O(g) notation
and means that |f(n)| < c|g(n)| holds for every n > n0 and a constant c > 0. The
subscripts, such as f ¿k g, indicate that c depends only on the mentioned parameters.
The notation f = o(g) means that f(n)/g(n)→ 0 as n→∞.

Extremal functions λs(n). For a sequence u = a1a2 . . . al over A, we write |u| to refer
to its lentgh l. S(u) = {a1, a2, . . . , al} is the set of symbols used in u, and ‖u‖ = |S(u)|
is their number. Obviously, always |u| ≥ ‖u‖. We define, for the integers s, n ≥ 1,

λs−2(n) = max{|u| : u ∈ DSs & ‖u‖ ≤ n}. (1)

The function λs−2(n) measures the maximum length of s-DS sequences using at most
n symbols. It is trivial that, for every n ≥ 1 and s ≥ −1, λs(n) < ∞, λ−1(n) = 0,
λ0(n) = 1, λ1(n) = n, λs(1) = 1 (for s ≥ 0), and λs(2) = s + 1.
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The notation λs(n) for the maximum lengths of DS sequences was introduced in 1986
by Hart and Sharir [21] and quickly became the standard notation. The shift −2 in
the index results from an important application of DS sequences in geometry, which we
explain in Section 2. All works on DS sequences prior to 1986 use the original notation
Ns(n) of Davenport and Schinzel [14]; Ns(n) = λs−1(n). In the survey of these results in
Section 2 we use both the original and the modern notation.

Example 2 ([14]). We bound λs(n) in a rough way, determine λ2(n) precisely, and
bound λ3(n) in a finer way.

We begin with the bound

λs(n) ≤
(
n

2

)
s + 1 (2)

which holds for all n ≥ 1 and s ≥ 0. Suppose a sequence u = a1a2 . . . al satisfies condition
1 (no immediate repetition) and ‖u‖ ≤ n, but its length l exceeds the bound. Then among

the l − 1 ≥
(

n
2

)
s + 1 two-element sets {ai, ai+1}, some s + 1 sets must coincide (by the

pigeonhole principle), which produces in u an alternating subsequence of length s + 2.
This proves (2).

Let us prove now that for every n ≥ 1,

λ2(n) = 2n− 1.

The sequences u = 1 2 . . . (n− 1) n (n− 1) . . . 2 1 show that λ2(n) ≥ 2n− 1. We prove
the opposite inequality by induction on n. Certainly λ2(1) = 1. In every u ∈ DS4 with
‖u‖ ≤ n and |u| = λ2(n) some symbol x appears only once; it is easy to see that any
symbol sandwiched in the closest repetition has this property (and since |u| is maximum,
there must be a repetition). Delete x and, if necessary, one of its neighbours (to avoid
creating an immediate repetition). The sequence v obtained is a 4-DS sequence and
‖v‖ ≤ n−1. By induction, λ2(n) = |u| ≤ |v|+2 ≤ λ2(n−1)+2 = 2(n−1)−1+2 = 2n−1.

We prove that
λ3(n)¿ n log n.

Let u ∈ DS5 with ‖u‖ ≤ n and |u| = λ3(n). Note that the maximum length implies
‖u‖ = n. For every x ∈ S(u) we set k(x) to be the number of appearances of x in u.
Only the first and the last appearance of x in u may have equal neighbours, because equal
neighbours of any middle appearance of x would create the forbidden 5-term alternating
subsequence. So by deleting at most k(x)+2 elements from u we get rid of all appearances
of x and create no immediate repetition. The sequence v obtained is a 5-DS sequence and
‖v‖ ≤ n− 1. Thus λ3(n) = |u| ≤ |v|+ k(x) + 2 ≤ λ3(n− 1) + k(x) + 2. Summing these
inequalities over all x ∈ S(u), we obtain the inequality nλ3(n) ≤ nλ3(n−1)+λ3(n)+2n,
which we rewrite as

λ3(n)

n
− λ3(n− 1)

n− 1
≤ 2

n− 1
.
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Summing these inequalities for 2, 3, . . . , n leads to the bound λ3(n) ≤ n(1+2(1−1 +2−1 +
· · ·+ (n− 1)−1))¿ n log n. 2

2. The Early Period

The geometric origin of λs(n). Davenport and Schinzel introduced the sequences,
which now bear their names, in 1965 in [14]. They were led to them by the following
geometric problem. Suppose f1, . . . , fn : R→ R are n continuous functions such that the
equation fi(x) = fj(x) has for i 6= j at most s solutions x ∈ R. In other words, the graphs
of any two functions intersect in at most s points. The real line then splits uniquely into
l nonempty open intervals I1 = (−∞, a1), I2 = (a1, a2), I3 = (a2, a3), . . . , Il = (al−1,∞)
so that the pointwise minimum function f(x) = minj=1...n fj(x) coincides on each Ii with
a unique function fj(Ii), 1 ≤ j(Ii) ≤ n, and j(Ii) 6= j(Ii+1). (See Figure 1 in the next
section for a very similar situation.) The problem is how large the number l can be. It is
easy to prove that the sequence u = j(I1)j(I2) . . . j(Il) is an (s+2)-DS sequence. Thus if
every pair fi and fj, i 6= j, has at most s intersections, the number |u| = l of the distinct
portions of the graph of f can be bounded from above by λs(n). This is the reason for
the later −2 shift of s in λs−2(n) compared to DSs. However, in [14] and all works prior
to 1986, max{|u| : u ∈ DSs & ‖u‖ ≤ n} is denoted by Ns−1(n) (or by N(s − 1, n)).
For the reader’s convenience, in Section 2 we combine both notations. Simply remember
that Ns(n) = λs−1(n).

A natural example of a system {fi} with |{x ∈ R : fi(x) = fj(x)}| ≤ s for every
fixed i 6= j is any system of distinct polynomials of degree at most s. Or, as was the
case in [14], any system of distinct solutions of a given homogeneous linear differential
equation with constant coefficients, of order at most s + 1. The problem to determine or
to bound the maximum number l of the portions of the graph of f originated in control
theory, and it was communicated to Davenport and Schinzel by K. Malanowski ([14]).
They reduced geometry to combinatorics and asked about the values of Ns(n). In [14]
they proved that

(λs−1(n) =) Ns(n) ≤ n(n− 1)s + 1 (3)

(λ2(n) =) N3(n) = 2n− 1 (4)

(λ3(n) =) N4(n) < 2n(1 + log n) (5)

(λs−1(n) =) Ns(n) ¿s n · exp(10(s log s)1/2(log n)1/2). (6)

Their proofs of (3)–(5) are reproduced in Example 2. (We have slightly corrected the proof
of (3) to obtain the somewhat better bound (2). Of the two proofs of (4) in [14], we present
the second one, based on “an observation, made to us by Mrs. Turan that (. . .) one of the
integers (. . .) occurs only once”.) They proved further that Ns(n) ≥ (s2−4s+3)n−C(s)
(s > 3 is odd) and Ns(n) ≥ (s2 − 5s + 8)n − C(s) (s ≥ 4 is even). Modifying these
constructions, they obtained the bound N4(n) > 5n− c.
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Davenport’s results. In the posthumously published paper [13] (edited by Schinzel),
Davenport improved (5) to N4(n)¿ n log n/ log log n. He noted that the ratio N4(n)/n
must have a finite limit or it must go to +∞, because N4(m + n) ≥ N5(m) + N5(n) for
every m and n (easy to see from the definition). He proved more specificly that

lim
n→∞

N4(n)

n
≥ 8.

Davenport’s third result is the inequality N4(lm + 1) ≥ 6lm − m − 5l + 2 (l, m ∈ N),
which was “found in collaboration with J. H. Conway”. It implies that N4(n) ≥ 5n− 8,
with the strict inequality for odd n ≥ 13 and even n ≥ 18. The note added in proof
(apparently by Schinzel) says that Z. KoÃlba proved that N4(2m) ≥ 11m− 13.

The results of Roselle and Stanton. (Recall that Ns(n) = λs−1(n).) Roselle and
Stanton proved in [56] that Ns(3) = 3s− 4 (for even s > 3) and Ns(3) = 3s− 5 (for odd
s > 3). In [49] they proved that Ns(4) = 6s − 13 (for even s > 4) and Ns(4) = 6s − 14
(for odd s > 4). Finally, in [48] they proved that Ns(5) = 10s− 27 (for even s > 6; the
case s = 6 contains an error) and Ns(5) = 10s − 29 (for odd s > 5). In [48] also the
bound N4(n) ≥ 5n − 8 is proved (n ≥ 4). In [49] Roselle and Stanton gave the general
bound (s > n)

Ns(n) ≥


(

n
2

)
s− F (n) s is even

(
n
2

)
s− F (n)− bn−1

2
c s is odd

 (7)

where F (n) = (2n3+9n2−32n+9)/12 for odd n ≥ 3 and F (n) = (2n3+9n2−32n+12)/12
for even n. For n = 3, 4, and 5 these bounds are sharp.

If n = o(s), the bounds (2) and (7) yield the asymptotics Ns(n) = (1 + o(1))
(

n
2

)
s.

But what if n is bigger?

Problem 1. The bounds (2) and (7) give

n3(1 + o(1))

3
< Nn(n) <

n3(1 + o(1))

2
.

What is the precise asymptotics of Nn(n)? 2

Further results. Peterkin [44] determined by computer the value N5(6) = 29 and found
all 35 longest (normal) 6-DS sequences, corrected the value N6(5) of Roselle and Stanton
to 34 (they had the incorrect value 33), and proved that N5(n) ≥ 7n − 13 (n > 5) and
N6(n) ≥ 13n− 32 (n > 5).

Burkowski and Ecklund [12] found for small values of n, r, and d the maximum lengths
of d-DS sequences over n symbols, in which no symbol appears more than r times. MR
reviewer N. G. de Bruijn wrote on [12]: “. . . The following question was raised by D. J.
Newman: Is there a word S in some Φn,4 [5-DS sequences over n symbols] that contains
each symbol at least 5 times? The authors give an affirmative answer (but the proof
seems to be incomplete). . . .”
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Dobson and Macdonald [16] obtained a slight improvement of (7). We state one of
their bounds: if n and r are even, then Nn+r(n) ≥ 1

6
(2n3 + 3n2(r− 2)− 2n(3r− 5) + 6r).

For n > 2r + 2 this improves (7). Their other bounds are similar.

Rennie and Dobson [46] derived the inequality(
n− 2 +

1

s− 3

)
·Ns(n) ≤ n ·Ns(n− 1) +

2n− s + 2

s− 3
. (8)

From it they could obtain good upper bounds on Ns(n) for small values of s and n.

The next table, taken from Rennie and Dobson [46], gives specific bounds for Ns(n)
in the range 5 ≤ s ≤ 12 and 5 ≤ n ≤ 12. The upper bound is obtained from (8). The
lower bound is the larger of the lower bounds given by Dobson and Macdonald or (shown
in italic) by Roselle and Stanton in (7).

s 5 6 7 8
n
5 22 34 41 53
6 29 46–47 56–58 72–76
7 36–37 59–62 72–77 96–102
8 43–46 72–78 89–99 120–131
9 50–56 85–96 106–123 145–164
10 57–66 98–115 123–149 170–200
11 64–77 111–136 140–177 195–239
12 71–89 124–158 157–207 220–281

s 9 10 11 12
n
5 61 73 81 93
6 85–88 102–105 115–117 132–135
7 110–119 134–143 152–159 176–184
8 140–154 170–186 192–207 223–240
9 170–193 210–234 236–261 276–303
10 201–236 250–287 284–321 332–373
11 232–283 291–345 332–387 392–450
12 263–334 332–408 381–458 452–534

Mills [40] proved the inequalities N4(k
2 + 5 − j) ≥ 6k2 − 2k + 16 − 6j and N4(k

2 +
k + 5 − j) ≥ 6k2 + 4k + 15 − 6j, where 0 ≤ j < k. In [40] and [41] he determined the
values of N4(n) for n ≤ 21:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
N4(n) 1 4 8 12 17 22 27 32 37 42 47 53 58 64

n 15 16 17 18 19 20 21
N4(n) 69 75 81 86 92 98 104
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Figure 1: The lower envelope of plane segments.

The values of N4(n) form the sequence A002004 of the database [54]. The formula
N4(n) = 5n− 8, valid for 4 ≤ n ≤ 11, breaks down later, as noted already by Davenport.

Szemerédi’s general bound. In 1974, Szemerédi [57] published a remarkable result
with a difficult proof: for n→∞,

Ns(n)¿s n log∗ n. (9)

Here log∗ n is the smallest integer k > 0 such that ek > n, where e1 = e = 2.71828 . . . and
ei+1 = eei . (Nothing changes if we replace e by any other base b > 1.) The key part of
Szemerédi’s proof is a decomposition lemma, which is based on the doubly exponential
upper bound in a particular case of the classical Ramsey theorem (triples colored with
two colors). The bound (9) improved considerably both (6) and (5).

Mills’ article [41] and Stanton and Dirksen’s survey [55], both published in 1976, mark
the end of the early investigations of Ns(n) = λs−1(n). DS sequences were dormant for
the next 10 years.

3. Superlinear Growth

New bounds on λ3(n): enigma solved. In the middle of 1980s, the importance of DS
sequences for combinatorial and computational geometry was discovered, first by Atallah
[7]. Or rather rediscovered, since the geometric motivation was in the background from
the very beginning, only computational geometry did not exist in the times of [14]. The
functions λs(n), s > 2, remained mysterious. Despite the effort invested in the proofs of
(6) and (9), the O(n) upper bounds were not in sight and the correct orders of growth
of λs(n) were unclear. Stanton and Dirksen conjectured in [55] that λ3(n)/n→∞.

Example 3 ([52]). We illustrate the role of DS sequences in combinatorial geometry
by a classical example, which is very similar to the problem in [14] (we discussed it in
the beginning of Section 2) but is more recent. Let S1, S2, . . . , Sn be n straight segments
in the plane, none of them vertical and no two of them overlapping. We regard them as
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graphs of n real functions f1, . . . , fn which are now defined only on intervals. We consider
the pointwise minimum function f = mini fi. As before, f and fi define a unique splitting
of R into the intervals I1, I2, . . . , Il. The only difference is that now f is undefined on
some of the intervals, certainly on I1 and Il. Again, for every i = 1, 2, . . . , l we write
down the index j of the segment Sj that forms in Ii the graph of f ; the intervals Ii with
undefined f are ignored. We obtain a sequence u over {1, 2, . . . , n}, |u| ≤ l−2. In Figure
1, n = 3, l = 10, and u = 21232313. The graph of f is the lower envelope of the system
{S1, . . . , Sn}, u is the minimazing sequence, and the length |u| is the complexity of the
lower envelope. The fact that every two (nonoverlapping) plane segments intersect in
at most one point implies that u is a 5-DS sequence. Thus the complexity of the lower
enevelope has the bound |u| ≤ λ3(n). 2

Another geometric connection was recently studied by Alon and Onn [6]. Consider a set
X of n points lying on the moment curve in Rd. The partitions of X into p parts with
mutually disjoint convex hulls then correspond to the (d + 2)-DS sequences (immediate
repetitions are now allowed) which are over {1, 2, . . . , p} and are of length n. See also
Aviran and Onn [8].

New light on λ3(n) was shed by Hart and Sharir in 1986 in their breakthrough article
[21]. They proved that

nα(n)¿ λ3(n)¿ nα(n), (10)

where α(n) is the inverse Ackermann function, which is defined as follows. The Acker-
mann function A(n) is the diagonal function A(n) = Fn(n) of the hierarchy of functions
Fi : N → N, i ∈ N, where F1(n) = 2n and Fi+1(n) = Fi(Fi(. . . Fi(1) . . .)) with n iter-
ations of Fi. The inverse Ackermann function is then defined by α(n) = min{m ∈ N :
A(m) ≥ n}. Alternative definitions of the hierarchy and of A(n) can be found in the
literature, but these hardly affect the values of α(n). The function α(n) grows to infinity
much more slowly than log∗ n. (For further information on the role of very fast and very
slow functions in combinatorics and computer science, see Loebl and Nešetřil [39].) The
asymptotics (10) was not only an improvement upon (9) for s = 4, but it settled almost
completely the 20 years old riddle of Davenport and Schinzel about the growth rate of
λ3(n).

In [21], Hart and Sharir first translated 5-DS sequences to certain tree objects called
(generalized path) compression schemes; these are motivated by data structures algo-
rithms. They derived the new upper and lower bounds for the compression schemes,
and then translated the bounds back to 5-DS sequences. Their proofs were inspired by
some ideas and techniques of Tarjan [58] who pioneered applications of α(n) in computer
science. This method gave bounds for both 5-DS sequences and compression schemes,
but it was technically complicated. Soon it turned out that the translation is not really
necessary and that one can work directly with DS sequences. This approach is adopted
in all subsequent works. (For information on compression schemes and their relation
to 5-DS sequences, see the book of Sharir and Agarwal [52].) Komjáth [37] proved the
superlinear lower bound λ3(n)À nα(n) by a construction purely in terms of sequences.



INTEGERS:ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 2 (2002),#A11 9

Wiernik and Sharir [64] gave a simpler construction and, more importantly and remark-
ably, they proved that the 5-DS sequences produced by it can be realized as minimazing
sequences of appropriate systems of plane segments. Thus there do exist systems of n
plane segments whose lower envelopes have À nα(n) portions. We come to the natural
but open

Problem 2. Can every 5-DS sequence be realized as the minimazing sequence of a
system of plane segments? 2

In [52], the authors express their opinion that the correct answer is negative. It is easy
to realize every 5-DS sequence as the minimazing sequence of a system of pseudoseg-
ments . These are graphs of continuous functions defined on intervals, each two of them
intersecting in at most one point.

Example 4 ([64, 52]). Following [52], we decribe the construction of [64] proving
λ3(n)À nα(n). One defines, by double induction, a two-dimensional array S : N×N→
A∗ of sequences. Before giving the precise inductive definition, we have to say that the
sequences S(k, m) have no immediate repetition and are of the form

S(k, m) = u1v1u2v2 . . . uNvN ,

where every ui is a sequence of length m containing m distinct symbols, and v1, . . . , vN

are possibly empty intermediate sequences. The sequences ui are called fans or m-fans
and vi are called separating sequences . The key property of fans is this: every symbol of
S(k, m) appears in exactly one fan and this is its leftmost appearance in S(k, m). The
number N = N(k, m) will be defined inductively in the construction. The sequences ui

and vi depend on k and m as well, of course, but to avoid cumbersome notation we do
not mark this dependence.

The first row k = 1 consists of the sequences S(1, m) = u1 = 12 . . . m, and N(1, m) =
1. If the row k ≥ 1 is already defined, we define S(k + 1, 1) to be identical with S(k, 2),
except that every 2-fan in S(k, 2) is now regarded as two neighbouring 1-fans in S(k+1, 1).
Thus N(k + 1, 1) = 2N(k, 2).

Let now the whole row k ≥ 1 be already defined, as well as the sequences in the
row k + 1 up to the column m ≥ 1. Let the same hold for the values of N(x, y). We
define S(k + 1, m + 1) and N(k + 1, m + 1). We denote w0 = S(k, N(k + 1, m)). We set
M = N(k, N(k +1, m)) and create M copies w1, w2, . . . , wM of the sequence S(k +1, m),
renaming the symbols so that no two of the M + 1 sequences w0, w1, . . . , wM share a
symbol. We have as many copies of S(k + 1, m) as fans in w0, and any fan in w0 has
as many elements as S(k + 1, m) has fans. By duplicating the last term in every fan in
every wi, i = 0, 1, . . . , M , we create sequences w′i. We set

S(k + 1, m + 1) = w′1w
′
2 . . . w′M + w′0 = w∗1z1w

∗
2z2 . . . w∗MzM ,

where the + indicates the following interleaving of w′1w
′
2 . . . w′M and w′0, which preserves

the order of terms in both sequences. The elements of the first N(k + 1, m)-fan of w′0
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are used to separate the twins on the ends of the N(k + 1, m) m-fans of w′1; this yields
w∗1. The sequence z1 consists of the last term of the first fan of w′0, followed by the first
separating sequence of w′0. In the same way we use the second fan of w′0 to separate the
twins in w′2, which yields w∗2, and so on. The resulting sequence S(k + 1, m + 1) has no
immediate repetition and its (m+1)-fans are the old m-fans in w′1, . . . , w

′
M , each enlarged

by one term coming from the fans of w′0. Thus

N(k + 1, m + 1) = N(k + 1, m) ·N(k, N(k + 1, m)).

One can easily check that the key property of fans is preserved during this step.

Note that S(k, m) uses exactly m ·N(k, m) symbols. Using the key property of fans,
it is easy to show by double induction that every S(k, m) is a 5-DS sequence. One can
define, for details consult [64] or [52], a sequence of numbers 1 ≤ m1 < m2 < · · · such that,
writing nk for ‖S(k, mk)‖ = mk · N(k, mk), the inequality |S(k, mk)| ≥ nkα(nk) − 3nk

holds. (We owe the superlinear growth of |S(k, mk)| to the duplications.) Hence, for
every k ∈ N,

λ3(nk) ≥ nkα(nk)− 3nk. (11)

A simple interpolation argument of [52] shows that

λ3(n) ≥ 1
2
nα(n)− 2n

holds for all n ∈ N. 2

Hart and Sharir [21] proved the lower bound in (10) with the constant 1
4

+ o(1). The
constants achieved in the upper bound were 52 + o(1) in [21] and 68 + o(1) in [52]. (The
objective of these works was not really to obtain the best constants.) Klazar [26] obtained
the constant 4 + o(1) and in [31] he proved that

λ3(n) < 2nα(n) + O(n
√

α(n)). (12)

Problem 3. Does the limit

lim
n→∞

λ3(n)

nα(n)

exist? 2

If it exists, (11) and (12) show that it lies in the interval [1, 2].

We answer in positive the question from the MR review of Burkowski and Ecklund
[12] that we quoted in the previous section. We know that λ3(n) > cn for large n for every
constant c > 0. We deduce from it that for every k ∈ N there exists a 5-DS sequence v in
which every symbol appears at least k times. Let v ∈ DS5 be such that |v| ≥ (k + 1)‖v‖
and ‖v‖ is as small as possible. If some symbol a ∈ S(v) occurs in v less than k times,
we eliminate all a-occurrences by deleting at most k − 1 + 2 = k + 1 terms (as in the
third proof in Example 2) and obtain a sequence w ∈ DS5 such that |w| ≥ (k + 1)‖w‖
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and ‖w‖ ≤ ‖v‖− 1. But w contradicts the minimality of ‖v‖. Therefore v has the stated
property. Note that for k = 5 the sequence v must use at least 22 symbols, because Mills’
table in Section 2 shows that λ3(n) < 5n for n < 22.

Bounds on λs(n) for s > 3. The next obvious step was to extend the new techniques
to λs(n) for s > 3. Sharir in [50] proved the upper bound

λs(n)¿ nα(n)csα(n)s−3

and in [51] the lower bound
λ2s−1(n)Às nα(n)s−1.

Since λ2s(n) ≥ λ2s−1(n), this gives lower bounds for every λs(n).

This line of research culminated in 1989 in the long and technical work of Agarwal,
Sharir and Shor [4]. For s = 4 they proved the estimate

n2α(n) ¿ λ4(n)¿ n2α(n). (13)

For s > 4 they obtained strong bounds as well but they could not match completely the
precision of (10) and (13). Their lower bound says that

λ2s(n)Às n2csα(n)s−1+Qs(n), (14)

where cs = 1/(s− 1)! and Qs(n) is a polynomial in α(n) of degree at most s− 2. As for
the upper bound, they proved that

λ2s+1(n) ≤ n2α(n)s−1 log(α(n))+C2s+1(n) and λ2s(n) ≤ n2α(n)s−1+C2s(n), (15)

where Ck(n) equals 6 and 11 for k equal to 3 and 4, respectively, C2s+1(n) = O(α(n)s−1),
and C2s(n) = O(α(n)s−2 log(α(n))). We remark that in these bounds (and the whole [4])
log n denotes the binary logarithm with base 2, whereas in Example 2 and (5) we have
the natural logarithm.

Let us summarize the current best bounds on λs(n). Cases s ≤ 1 are trivial. The
formula λ2(n) = 2n − 1 was proved by Davenport and Schinzel in [14], see Example 2.
The functions λ3(n) and λ4(n) grow, up to multiplicative constants, as nα(n) and n2α(n),
respectively, as proved by Hart and Sharir [21] and Agarwal, Sharir and Shor [4]. The
bounds (14) and (15) of [4] estimate λs(n) for s > 4.

Problem 4. What are the exact speeds of growth of λ5(n) and λ6(n)? And of the other
λs(n) for s > 4? 2

By (14) and (15),
n2α(n) ¿ λ5(n)¿ nα(n)(1+o(1))α(n)

and
n2(1+o(1))α(n)2/2 ¿ λ6(n)¿ n2(1+o(1))α(n)2 .
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Bounds on λs(n) found many applications in problems and algorithms of computa-
tional geometry. We suggest to the interested reader works [3] and [52] of Agarwal and
Sharir for detailed information and many references. We remark that the “Web of Sci-
ence” [65] listed in the middle of the year 2002 more than 110 citations of [21], which
documents the big impact of this work.

4. A Generalization of λs(n) to Any Forbidden Subsequence

A containment of sequences. The extremal function λs(n) corresponds to the (for-
bidden) alternating sequence ababa . . . of length s + 2. Now we associate with every
sequence, not just with the alternating ones, an extremal function. For this we need to
define a general containment of sequences.

Recall that our sequences are finite and are over A, where A is an infinite alphabet
such that A ⊃ N and a, b, c, d, . . . lie in A. Recall that two sequences u = a1a2 . . . al and
v = b1b2 . . . bl of the same length are isomorphic, if for some injection f : A→ A we have
ai = f(bi), i = 1, 2, . . . , l. This is an equivalence relation and each class of isomorphic
sequences contains exactly one normal sequence (see the definition before Example 1).
We shall refer to elements of A by the leters a, b, c, d, . . . and to sequences over A by the
letters u, v, w, . . ..

Let u and v be two sequences. We say that u contains v and write u ⊃ v, if u has a
subsequence isomorphic to v. For example, u = a1a2 . . . al contains abccba if and only if
there are six indices 1 ≤ i1 < · · · < i6 ≤ l such that ai1 = ai6 , ai2 = ai5 , ai3 = ai4 , and
these are the only equality relations among ai1 , . . . , ai6 . The containment is a nonstrict
partial order on classes of isomorphic sequences. If u does not contain v, we say that u
is v-free.

The extremal function Ex(v,n). A sequence u = a1a2 . . . al is called k-sparse if
ai = aj, i > j, implies i − j ≥ k. In other words, in every interval in u of length at
most k all terms are distinct. For k = 2 we get the condition 1 from the definition of DS
sequences. Recall that |u| is the length of a sequence u and ‖u‖ is the number of symbols
used in u.

Let v be any sequence and n ∈ N. We associate with v the extremal function

Ex(v, n) = max{|u| : u 6⊃ v & u is ‖v‖-sparse & ‖u‖ ≤ n}. (16)

It extends λs(n): if als denotes the alternating sequence abab . . . of length s, then λs(n) =
Ex(als+2, n). The condition that u is ‖v‖-sparse is necessary to ensure that Ex(v, n) <∞;
note that 12 . . . k12 . . . k12 . . . is an infinite sequence that is k-sparse and contains no u
with ‖u‖ ≥ k + 1.

Ex(v, n) was introduced, albeit in a different notation, in 1992 by Adamec, Klazar
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and Valtr [1]. Ex(v, n) is always well defined because a modification of the argument
proving (2) gives

Ex(v, n) < ‖v‖ · (
(

n
‖v‖

)
(|v| − 1) + 1)¿v n‖v‖. (17)

Before proceeding to further general properties of Ex(v, n), we derive two specific bounds
to convey to the reader the flavour of arguments used to handle Ex(v, n), and we present
a historical remark.

Example 5 ([26]). We determine Ex(abba, n) exactly and then prove a linear upper
bound on Ex(a1a2 . . . aka1a2 . . . ak, n).

We prove that, for all n ∈ N,

Ex(abba, n) = 3n− 2

(cf. the next historical remark). The sequences

u = 1 2 1 2 3 2 3 4 3 4 5 4 . . . (n− 2) (n− 1) (n− 2) (n− 1) n (n− 1) n

show that Ex(abba, n) ≥ 3n− 2. We prove the opposite inequality. For n = 1 it is true.
For n > 1 we use induction on n. Let u = a1a2 . . . al be 2-sparse, abba-free, and ‖u‖ ≤ n.
Suppose first that some symbol a ∈ S(u) appears in u at least four times. We select
four indices 1 ≤ i1 < · · · < i4 ≤ l such that ai1 = ai2 = ai3 = ai4 = a and aj 6= a for
j ∈ [i2+1, i3−1]. A moment of thought reveals that the symbol b = ai2+1 is distinct from
a and appears in u only once. Deleting ai2+1 and also ai2 if i3 = i2 + 2, we decrease ‖u‖
by one and obtain by induction the even stronger bound |u| ≤ 3(n− 1)− 2 + 2 = 3n− 3.
Thus we may assume that every symbol appears in u at most three times, which gives
|u| ≤ 3n. If a = a1 appears in u three times, we can still apply the deletion argument
to b = a2 and conclude that |u| ≤ 3n − 3. The same if a = al appears in u three times.
If a1 = al = a, only a may be repeated in u and |u| ≤ 2n − 1. Thus we may assume
in addition that a1 6= al and both symbols a1 and al appear in u at most twice. We
conclude that |u| ≤ 3n− 2.

Let vk = a1a2 . . . aka1a2 . . . ak where a1, . . . , ak are k distinct symbols from A. We
prove that

Ex(vk, n)¿k n.

Notice that Ex(v1, n) = n and Ex(v2, n) = λ2(n) = 2n− 1. Let k, n ∈ N and k be fixed.
We set K = (k − 1)4 + 1 and L = Ex(vk, K − 1) + 1. The number L exists by the rough
general bound (17). Let u be a k-sparse sequence (‖vk‖ = k) with ‖u‖ ≤ n. We assume
that |u| ≥ (2n + 1)L and show that it implies u ⊃ vk. We split u into 2n + 1 disjoint
intervals, each of length at least L. One of these intervals, let us call it I, contains
neither the first nor the last appearance of any symbol a ∈ S(u) because these are only
at most 2n in number. If ‖I‖ < K, the definitions of L and |I| imply I ⊃ vk and we
are done. So ‖I‖ = |S(I)| ≥ K. By the property of I, every a ∈ S(I) appears before I,
in I, and after I. Applying twice the classical Erdős–Szekeres lemma, which says that
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every sequence of (k − 1)2 + 1 numbers contains a monotone subsequence of length k,
we see that there is a subset Y ⊂ S(I) of k elements, Y = {y1, y2, . . . , yk}, such that
y1, y2, . . . , yk appear before I in this order, in I in this or in the opposite oder, and after
I also in this or in the opposite order. But then two of the three orders agree, which
gives u ⊃ vk. Thus |u| ≥ (2n + 1)L always forces the containment u ⊃ vk. We conclude
that Ex(vk, n) < (2n + 1)L. 2

A historical remark. The author of this survey wondered from time to time why
for so long (until the apperance of [1]2) nobody tried to generalize λs(n) and everybody
followed so faithfully the original formulation of the problem that forbids only alternating
subsequences. The extension (16) of (1) is relatively straightforward and Example 5 shows
that with a modest effort one can obtain for Ex(v, n) results of some interest. On the
other hand, to prove (6) or (10), say, is difficult. Of course, retrospect views are often
dubious. We will not delve into psychological speculations but we want to present a little
historical discovery.

Surprisingly, revisionists appeared already in the very beginning and it was nobody
else but Davenport and Schinzel who in 1965, besides the famous [14], published also
[15] hinting on a generalization of λs(n). The latter forgotten note is missing in all
bibliographies of DS sequences we know of ([3], [20, problem E20], [26], [52], [55], . . .)
and probably is not refered to anywhere. It is accesible in Davenport [9] where we found
it. Davenport and Schinzel derive in [15] an inequality on lentghs of subsequences of a
2-sparse sequence. In the last paragraph they say:

The inequality is of some interest in connection with sequences which, in addi-
tion to having no immediate repetition, satisfy some prescribed “hereditary”
conditions, that is, some condition which if valid for a sequence is necessarily
valid for every subsequence. Take as an illustration the condition that the
sequence contains no subsequence

. . . , a, . . . , b, . . . , b, . . . , a, . . . (b 6= a) .

Then the length of any such a sequence is at most 2n(n−1); for we can apply
(1) [they refer to the inequality] with m = 2, in which case M ≤ 4. (Actually
in this particular case the maximum length is 3n− 2.)

Nobody followed the hint then.

An almost linear bound on Ex(v,n). As for strengthening of (17), Klazar [23] showed
by a simple combinatorial argument that Ex(v, n) ¿v n2. The main result of [23] says
that if v is a sequence with ‖v‖ = k ≥ 2 and |v| = l ≥ 5, then for every n ∈ N

Ex(v, n) ≤ n · k2l−3 · (10k)2α(n)l−4+8α(n)l−5

. (18)

2I learned about DS sequences in the fall of 1988 in the Prague combinatorial seminar that was then
led by J. Nešetřil and J. Matoušek. They suggested to us, a group of undergraduate students of Charles
University, to investigate generalizations of λs(n). This eventually resulted in [1] and some other works.
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If k = 1 or l ≤ 4, it is easy to show that Ex(v, n)¿v n. This general bound was derived
by adapting the techniques from Sharir [50].

A slight generalization: Ex(v,k,n). One can investigate the more general extremal
function Ex(v, k, n), which is defined as the maximum length of a v-free and k-sparse
sequence u with ‖u‖ ≤ n. It is clear that Ex(v, ‖v‖, n) = Ex(v, n) and Ex(v, k, n) = ∞
whenever k < ‖v‖ and n ≥ k — the infinite sequence 12 . . . k12 . . . k12 . . . is k-sparse and
does not contain v. Thus one has to have k ≥ ‖v‖. For the asymptotics it brings nothing
new because, as proved in [1],

Ex(v, n)¿v,k Ex(v, k, n) ≤ Ex(v, n) (19)

for every sequence v and every k ≥ ‖v‖; the latter inequality is trivial. As for the precise
values, in Klazar [28] it was proved that for n ≥ k ≥ 2,

Ex(abab, k, n) = 2n− k + 1 and Ex(abba, k, n) = 2n +
⌊
n− 1

k − 1

⌋
− 1.

For n ≤ k − 1 both functions equal to n.

As one expects, the asymptotic order of Ex(v, n) respects the containment order of
sequences:

u ⊂ v ⇒ Ex(u, n)¿u,v Ex(v, n). (20)

For ‖u‖ = ‖v‖ this is triviality, since then even Ex(u, n) ≤ Ex(v, n). For ‖u‖ < ‖v‖ this
follows immediately from the first bound in (19), and ¿ cannot in general be replaced
with ≤.

Blow-ups. If a ∈ A and i ∈ N, we write ai for the sequence aa . . . a of i a’s. We call u
a chain if ‖u‖ = |u|, that is, u has no repetition. Obviously, Ex(ai, n) = (i− 1)n for any
i ∈ N and Ex(v, n) = min(|v| − 1, n) for any chain v.

In the extremal theory of sequences we want to determine, for as many sequences
as possible, the extremal functions or at least their orders of growth. At present our
knowledge is still very fragmentary. The most succesful approach so far turned out to
be the following one. We start with some sequences v1, . . . , vr and combine them, by a
specific operation, into a new sequence w. If certain conditions are satisfied, we can bound
Ex(w, n) in terms of the functions Ex(vi, n). We have found three such operations; two are
unary (r = 1) and one is binary (r = 2). They have two common features: the resulting
w always contains all vi and if Ex(vi, n) ¿ n for all i = 1, . . . , r then Ex(w, n) ¿ n as
well. We begin with one of the unary operations, the blow-up.

Every sequence u expresses uniquely in the form u = ai1
1 ai2

2 . . . air
r , where aj ∈ A,

aj 6= aj+1, and ij ∈ N. The blow-up of u is any sequence isomorphic to ak1
1 ak2

2 . . . akr
r ,

where k1 ≥ i1, k2 ≥ i2, . . ., kr ≥ ir. For example, 1221111 and a3b3a = aaabbba are
blow-ups of al3 = aba.

If v is not a chain, then Ex(v, n) ≥ |1 2 . . . n| = n. On the other hand, we mentioned
above that for every chain u the function Ex(u, n) is eventually constant. Thus the
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extremal function Ex(v, n) of every proper blow-up v of a chain u grows substantially
faster than Ex(u, n). There are reasons to believe that, except of this trivial situation,
blowing up a sequence cannot change the asymptotics of its extremal function:

Problem 5. Prove (or disprove) that if u is not a chain and v is a blow-up of u, then

Ex(v, n)¿u,v Ex(u, n). 2

The lower bound Ex(v, n) ≥ Ex(u, n) is trivial.

Adamec, Klazar and Valtr [1] proved that the bound in Problem 5 often holds.
Namely, if a is a symbol and u, v sequences, then

Ex(a2u, n)− Ex(au, n)¿au n and Ex(ua3v, n)¿ua2v Ex(ua2v, n). (21)

By symmetry, also Ex(ua2, n)− Ex(ua, n)¿ua n. Let v = ak1
1 ak2

2 . . . akr
r be any blow-up

of u = ai1
1 ai2

2 . . . air
r such that kj > ij implies ij ≥ 2 or j = 1 or j = r. Applying the

bounds (21), it is easy to see that then Ex(v, n) ¿ Ex(u, n). Both extremal functions
are then of the same asymptotic order. For example, a4bc5ab2 and abc2ab have extremal
functions with the same asymptotic order.

In Problem 5, it remains to settle the case when uav is not a chain and is blown-up
to ua2v (here u and v are nonempty sequences, u does not end with a, and v does not
begin with a). This operation is not covered by the results (21) and whether it changes
asymptotics is unknown. Surprisingly, this does happen for certain tree generalizations
of Ex(v, n), as shown by Valtr in [61]. This is a contrary evidence showing that perhaps
blow-ups may change asymptotics.

Example 6 ([1]). We prove the first bounds of (19) and (21). We begin with (19). Let
v be a fixed sequence, k ≥ ‖v‖ be a number, and u be a ‖v‖-sparse and v-free sequence.
It suffices to show that u has a k-sparse subsequence w such that |w| Àv,k |u|. We set w
to be the longest k-sparse subsequence of u. Let I be any of the intervals in u that are
disjoint to w and are maximal to this property. Suppose, for a while, that ‖I‖ ≥ 2k− 1.
Then there must be an a ∈ S(I) that differs from the k − 1 terms of w preceding I
and also from the k − 1 terms of w following after I. Such an a could be added to
w, in contradiction with the maximality of w. Hence ‖I‖ ≤ 2k − 2 for every I. Thus
|I| ≤ Ex(v, 2k − 2) for every I and |w| ≥ 1 + |u|/(1 + Ex(v, 2k − 2)). This finishes the
proof of the first bound in (19).

Now we prove that Ex(a2u, n) = Ex(au, n) + O(n), where the constant in O depends
on the sequence au. Let k = ‖a2u‖ and v be a k-sparse and a2u-free sequence with
‖v‖ ≤ n. First, we show that there is a constant c > 0 depending only on a2u and with
the following property. For every term x of v there is a k-sparse subsequence w of v
avoiding x and of length |w| ≥ |v| − c. In other words, x plus some other O(1) terms of
v can be deleted so that the k-sparseness is preserved. To prove it, we fix an arbitrary
interval I in v containing x and of length |I| = Ex(a2u, 3k− 3) + 1. So ‖I‖ ≥ 3k− 2 and
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there must be a subset Y ⊂ S(I), |Y | = k − 1, such that every y ∈ Y is distinct from
x, from the k − 1 terms preceding I, and from the k − 1 terms following after I. We fix
in I one appearance for each y ∈ Y and we delete from v the rest of I. The resulting
sequence w is clearly k-sparse, x was deleted, and |w| ≥ |v| − (Ex(a2u, 3k − 3) + 2− k).
We can set c = Ex(a2u, 3k − 3) + 2− k.

In this way we delete from v, one by one, the first appearances of all x ∈ S(v).
At most cn elements are deleted and the resulting subsequence w is k-sparse. Clearly,
w 6⊃ au because otherwise v ⊃ a2u would be forced. Thus |v| ≤ |w|+cn ≤ Ex(au, n)+cn
and Ex(a2u, n) ≤ Ex(au, n) + O(n). Trivially, Ex(a2u, n) ≥ Ex(au, n). 2

The two-letter theorem. If u has at most two symbols, then either u ⊃ ababa and
Ex(u, n) ≥ λ3(n)À nα(n), or u is contained in a blow-up of abab. The main result of [1]
says that for the latter u’s we have Ex(u, n) ¿u n. We obtain the characterization ([1,
Theorem 5]) that is in [61] called the two-letter theorem: If ‖u‖ ≤ 2 then

Ex(u, n)¿u n ⇐⇒ u 6⊃ ababa. (22)

It follows from (20) and from the discussion after Problem 5 that the proof of (22)
(given λ3(n) À nα(n)) reduces to proving that Ex(ab2a2b, n) ¿ n. By (21), this im-
plies Ex(aibjakbl, n) ¿m n, where m = max(i, j, k, l), for every choice of the exponents
i, j, k, l ∈ N0.

More results and errors on blow-ups. In [36, p. 467] the first author wrote: “How-
ever, it may be checked that the method [of Hart and Sharir] (. . .) works for aibiaibiai as
well and so Ex(aibiaibiai, n) = Θ(nα(n)).”. However, after some time he realized that
no matter how hard he tried he could not recollect the proof anymore and therefore we
have the following problem.

Problem 6. Prove (or disprove) that Ex(v, n) ¿v nα(n) for every blow-up v of ababa.
That is, prove (or disprove) that

Ex(ab2a2b2a, n)¿ nα(n). 2

This is a special case of Problem 5. We are not done with the forbidden 5-term alternating
subsequence yet! The applications of the conjectural bound Ex(aibiaibiai, n) ¿i nα(n)
in [36, 3.2] must be considered as unproved.

A simpler proof of the two-letter theorem was given in Klazar [27]. In particular, he
proved that

7n− 9 ≤ Ex(ab2a2b, n) ≤ 8n− 7

and Ex(aibiaibi, n) < (1 + o(1))32i2 · n. The method of [27] was extended in Klazar [25]
to the blow-ups of the sequences vk of Example 5. In [25] he proved that, for i ∈ N and
k distinct symbols a1, a2, . . . , ak,

Ex(ai
1a

i
2 . . . ai

ka
i
1a

i
2 . . . ai

k, n)¿i,k n. (23)
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Two general questions on the growth of Ex(v,n). Is the equivalence (22) valid
for sequences using more than two symbols? Klazar and Valtr realized that the answer
was “no”. A specific example is given in Klazar [24]: u1 = abcbadadbcd 6⊃ ababa but
Ex(u1, n)À nα(n). A more extremal example in this direction is given in [31]:

u2 = abcbadadbecfcfedef 6⊃ ababa but Ex(u2, n)À n2α(n).

Thus the containment of al5 = ababa is not the sole cause of superlinearity. These ex-
amples are obtained by showing that the constructions of [64] and [4] produce sequences
avoiding not only ababa and ababab, respectively, but even u1 and u2. Some new con-
struction might help to solve the following problem.

Problem 7. We conjecture that for every constant c > 0 there exists a sequence u such
that

u 6⊃ ababa but Ex(u, n)À n2α(n)c

. 2

In other words, in view of (18), we conjecture that every extremal function Ex(v, n) is
majorized (for n > n0) by some Ex(u, n), u 6⊃ ababa. Below we will see that u 6⊃ abab
implies Ex(u, n)¿u n.

Another attractive but at present hopeless question is whether nα(n) is the smallest
superlinear growth of extremal functions.

Problem 8. Is it true that for every sequence u either Ex(u, n) ¿ n or Ex(u, n) À
nα(n)? 2

Is there an extremal function whose restrictions to two infinite subsequences of N have
different orders of growth? Said more explicitly, we ask if there exist a sequence u, two
infinite subsequences 1 ≤ n1 < n2 < . . . and 1 ≤ m1 < m2 < . . . of N, and two increasing
functions f, g : N→ R+ with f(n)/g(n)→∞, such that f(ni)¿ Ex(u, ni)¿ f(ni) and
g(mi) ¿ Ex(u, mi) ¿ g(mi) as i → ∞. Valtr [61, Proposition 3] shows that for every
sequence u,

lim sup
n→∞

Ex(u, n)

n
=∞ =⇒ lim inf

n→∞
Ex(u, n)

n
=∞.

So in any case one cannot select g(n) = n. If u is irreducible, which means that there is
no nontrivial decomposition u = u1u2 with S(u1) ∩ S(u2) = ∅, then it is easy to prove
the stronger result that limn→∞ Ex(u, n)/n exists (it may equal ∞).

Insertions and intertwinings. We proceed to the remaining two operations which com-
pose w from v1, . . . , vr so that Ex(w, n) can be bounded in terms of Ex(v1, n), . . . , Ex(vr, n).
They constitute the main result of Klazar and Valtr [36].

Let a and b be two distinct symbols and u1, u2, and v be three sequences. The
insertion of v in u = u1a

2u2 gives the sequence w = u(v) = u1avau2. The intertwining of
u = u1a

2u2a and b gives the sequence w = u[b] = u1ab2au2ab. We can bound Ex(u(v), n)
only under the assumption that S(u1a

2u2)∩S(v) = ∅. Similarly, we can bound Ex(u[b], n)
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only under the assumption that b 6∈ S(u1a
2u2a). The insertion is a binary operation in the

sense that it is determined completely by two sequences u, v and an immediate repetition
. . . aa . . . in u. In the similar sense the intertwining is an unary operation.

Let u = u1a
2u2 and v be two sequences with S(u) ∩ S(v) = ∅, and u(v) arise by

inserting v in u. If v is a chain, it is easy to see that Ex(u(v), n) ≤ Ex(u, n). If v is not
a chain then, as proved in [36],

Ex(u(v), n) = Ex(u1avau2, n)¿u,v Ex(v, Ex(u, n)). (24)

Let u = u1a
2u2a be a sequence, b be a symbol such that b 6∈ S(u), and u[b] arise by

intertwining u with b. Then, as proved in [36],

Ex(u[b], n) = Ex(u1ab2au2ab, n)¿u Ex(u, n). (25)

By symmetry, we have the analogous statement for bau1ab2au2. The lower bounds

Ex(u(v), n)Àu,v max(Ex(u, n), Ex(v, n)) and Ex(u[b], n)Àu Ex(u, n)

are immediate from (20). Simpler proofs of (24) and (25) were given in Valtr [61].
Blowing-up u[b], we obtain from (25) for i, j ∈ N the bounds

Ex(u1abiau2abj, n)¿u,i,j Ex(u, n)

(remember the condition b 6∈ S(u)).

Linear sequences. It is natural (but difficult) to investigate the class of the linear
sequences

Lin = {v : Ex(v, n)¿ n}.
We have already met several members of it: abab (Example 2), abba and vk (Example 5),
ai and chains (trivial). On the other hand, ababa 6∈ Lin by (10).

Problem 9. What are the elements of Lin? 2

The bounds (21), (24), and (25) give a simple method to obtain many members of
Lin: start with ai and by repeated blow-ups, insertions, and intertwinings generate linear
sequences. To formulate it more precisely, let L be the smallest class of sequences that is
closed on the isomorphism and has the following closure properties: (i) for every i ∈ N,
ai ∈ L; (ii) if au ∈ L then aiu ∈ L for every i ∈ N, and if ua ∈ L then uai ∈ L for
every i ∈ N; (iii) if ua2v ∈ L then uaiv ∈ L for every i ∈ N; (iv) if u = u1a

2u2, v ∈ L
and S(u) ∩ S(v) = ∅ then u1avau2 ∈ L; and (v) if u = u1a

2u2a ∈ L and b 6∈ S(u) then
u1ab2au2ab ∈ L, and if u = au1a

2u2 ∈ L and b 6∈ S(u) then bau1ab2au2 ∈ L. Then ([36]),

L ⊂ Lin.

Observe that, by the way of definition, L is closed to the containment and to all blow-ups.
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Problem 10. Decide if there is a sequence u ∈ Lin\L. 2

By (20), u ⊂ v ∈ Lin implies that u ∈ Lin. Hence we can characterize Lin by means
of the class of minimal nonlinear sequences

B = {u : u 6∈ Lin but v ∈ Lin whenever v ⊂ u & |v| < |u|}.

Namely, we have the equivalence u ∈ Lin ⇐⇒ ∀v ∈ B [v 6⊂ u]. Knowing (effectively) B,
we could hope to draw more information about Lin. Unfortunately, at present we know
only two significant properties of B: (i) ababa ∈ B and (ii) B has at least two elements.
The first property follows from the facts that λ3(n) À nα(n) (by (10)), abab ∈ Lin
(Example 2), ab2a ∈ Lin (Example 5), and aba2 ∈ Lin (trivial). As for (ii), it follows
from the examples given after the bound (23). Might B be infinite?

Problem 11. Is the set B of minimal nonlinear sequences finite or infinite? 2

One might hope to prove the finiteness of the set B, which is an antichain to the con-
tainment, by proving that the quasiordering (A∗,⊂) has no infinite antichains at all.
However, one can easily construct infinite antichains in (A∗,⊂) and thus B still might
be infinite. An infinite antichain is presented by Klazar [24] who also determines certain
well quasiordered subsets of A∗.

Interesting sequences in the class L. Let us return to the class L of the sequences
whose linearity we can prove. It is rich enough to contain several interesting families of
sequences. First we prove by induction on |u| that every abab-free sequence u falls in L. If
u is abab-free then u is isomorphic to au1au2a . . . auk, where u1, . . . , uk are possibly empty
sequences, the sets S(ui) are mutually disjoint, and a 6∈ S(ui) for every i = 1, . . . , k. By
induction, ui ∈ L for every i = 1, . . . , k. Inserting in ak+1 the sequences u1, . . . , uk, we
conclude (applying k times the closure property (iv)) that u ∈ L. Thus Ex(u, n) ¿u n
for every abab-free sequence u. In particular,

DS4 ⊂ Lin.

Recall that u1 = abcbadadbcd 6∈ Lin and u1 6⊃ ababa. Thus DS5 6⊂ Lin.

Intertwinings and blow-ups yield an immediate proof of the two-letter theorem: a3 ∈ L
by (i), ab2a2b ∈ L by (v), and aibiaibi ∈ L (i ≥ 2) by (ii) and (iii). Hence every ai1bi2ai3bi4

(ij ≥ 0) is linear.

Intertwinings bring in L sequences more complicated than abab-free sequences. Re-
peated intertwinings and blow-ups show that the sequence

u′ = 1 2 1 2 3 2 3 4 3 4 5 4 . . . (k − 2) (k − 1) (k − 2) (k − 1) k (k − 1) k

of Example 5 lies in L. Hence this longest abba-free 2-sparse sequence is linear for every
k, as well as its every blow-up. On the other hand, abcadbcd 6⊃ abba but abcadbcd 6∈ L.
At present we are not able to prove the linearity of all abba-free sequences.
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Similarly, intertwinings and blow ups show that for every k and i the N -shaped
sequence

uN(k, i) = 1i2i . . . (k − 1)iki(k − 1)i . . . 2i1i2i . . . (k − 1)iki

belongs to L and thus is linear. The bound

Ex(uN(k, i), n)¿i,k n (26)

is an important result of [36] and a considerable strengthening of (23).

It follows by a case analysis that every ababa-free sequence u with ‖u‖ ≤ 3 is contained
in a blow-up of one of the three sequences v1 = ababcbc, v2 = abcbabc, and v3 = abacacbc.
All blow-ups of v1 and v2 are in L and thus are linear; v1 is the k = 3 instance of the
above u′ and v2 = uN(3, 1). But v3 = abacacbc 6∈ L.

Problem 12. Is it true that Ex(abacacbc, n) ¿ n? And what about the blow-ups of
abacacbc? 2

In fact, the minimal subsequences of v3 = abacacbc lying outside L are abacabc, abcacbc,
abacacb, and bacacbc. The first two are, up to the isomorphism, reversals of one another
and hence have equal extremal functions. The same holds for the last two sequences.
Writing u for the reversal of u, we have this partial characterization of the linear sequences
over three symbols: for ‖u‖ ≤ 3,

u and u contain none of {ababa, abacabc, abacacb} ⇒ Ex(u, n)¿u n.

In the opposite direction we know only that ababa ⊂ u implies the nonlinearity of u.

5. Geometric Graphs, Colored Trees, 0-1 Matrices, Ordered Bipartite Graphs,
Permutations, and Set Partitions

Geometric graphs. Generalized DS sequences found interesting applications in the
combinatorics of geometric graphs . These are particular planar realizations of graphs:
the vertices of a graph are represented by some points in the plane lying in the general
position and the edges are represented by possibly crossing straight segments. Two edges
of a geometric graph cross if their relative interiors intersect, and they are parallel if they
form two opposite sides of a convex quadrilateral.

Katchalski and Last [22] proved, using the bound (4), that any geometric graph with
n vertices and no two parallel edges has at most 2n − 1 edges. Valtr [60] lowered this
bound to 2n− 2, which proves the conjecture of Y. S. Kupitz from 1979; Figure 2 shows
geometric graphs attaining this number of edges. (Another nice application of (4) in
combinatorial geometry was given by Edelsbrunner and Sharir in the article [17] with a
self-explaining title.) Applying the N -sequence bound (26), Valtr proved in [60] more
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Figure 2: Geometric graphs with n vertices and 2n− 2 edges, no two of them “parallel”.

generally that every geometric graph with n vertices and no k pairwise parallel edges has
¿k n edges. From this he derived that if k pairwise crossing edges are forbidden, then
the number of edges is ¿k n log n. (For these results see also [61].) This improves the
previous bound ¿k n log2k−6 n (for k > 2) of Agarwal et al. [2] (based on the bound
¿k n log2k−4 n of Pach, Shahrokhi and Szegedy [43]). Whether the bound ¿k n holds is
open. It is known to hold only for k = 2 (the classical case of planar graphs) and k = 3
([2]).

Precisely speaking, the bounds ¿k n log2k−6 n of [2] and ¿k n log n of [60] are in
a sense incomparable. The former bound holds, as stated in [2], for the more general
representation of edges by curves (details are in [2] given only for the case of segments).
The latter stronger bound applies on the more special representation by segments. In
[59] Valtr extended it to the situation when edges are represented by x-monotone curves,
but the case of general curves seems out of reach of his method.

For further applications of DS sequences in computational and combinatorial geome-
try, see [3] and [52].

Colored trees. From the viewpoint of graph theory, sequences can be regarded as
undirected colored paths, where colors are the symbols used. For example, abcabc is
the path of six vertices v1v2 . . . v6 where v1 and v4 are colored a, v2 and v5 are colored
b, and v3 and v6 are colored c. To work with more exciting objects, we regard colored
paths just as special cases of colored trees. Can one extend in a reasonable way the
definition (16) to colored trees? Can one prove for colored trees an analogue of, say,
λ2(n) = Ex(abab, n) = 2n− 1? We begin with the latter problem.

Let T (abab, n) be the maximum number of vertices in a tree T = (V, E) that can be
vertex-colored by at most n colors so that three conditions hold:

1. The coloring is proper, which means that no edge is monochromatic.

2. No subgraph of the colored tree T is a subdivision of the properly 2-colored 4-vertex
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path •−◦−•−◦ .

3. No subgraph of the colored tree T is a subdivision of the properly 2-colored 4-vertex
star •−◦−•

•
.

The condition 1 is the analogy of 2-sparseness. The condition 2 forbids in T the color
pattern abab and it requires, for the coloring f : V → N, that there are no four distinct
vertices v1, . . . , v4 ∈ V such that f(v1) = f(v3) 6= f(v2) = f(v4) and the v1-v4 path
contains, in this order, the vertices v2 and v3. The condition 3 requires that there are no
three distinct vertices v1, . . . , v3 ∈ V such that f(v1) = f(v2) = f(v3) 6= f(v4) and the
three vi-v4 paths are disjoint except for v4. For colored trees the conditions 1 and 2 alone
do not suffice to bound the number of vertices, as shown by arbitrarily large properly
colored stars. Therefore we add the condition 3. To reformulate it, define for a color c
and a colored tree T the tree T (c) as the smallest subtree of T containing all c-colored
vertices. The condition 3 then says that, for every color c, in the tree T (c) all vertices
with degrees at least 3 must be colored c. Notice that if we restrict T to paths, then
T (abab, n) coincides with Ex(abab, n). This is due to the fact that the sequence abab is
isomorphic to its reversal.

Example 7 ([29]). We prove that for every n ∈ N,

T (abab, n) = 2n− 1. (27)

So if T ranges over the larger set of all trees, T (abab, n) still equals Ex(abab, n) = λ2(n) =
2n− 1.

The lower bound T (abab, n) ≥ 2n − 1 is achieved already on colored paths. More
strongly, we can color any tree U on 2n− 1 vertices with n colors so that the conditions
1, 2, and 3 are satisfied: we color with 1 two arbitrary leaves of U , then we color with 2
two arbitrary leaves of the uncolored subtree of U , and so on until the whole U is colored.

We prove the opposite inequality T (abab, n) ≤ 2n− 1. Let T = (V, E) be a tree and
f : V → {1, 2, . . . , n} be a coloring satisfying the conditions 1, 2, and 3. We show that
|V | ≤ 2n−1. We may assume that n > 1 and that b(T ) = #{v ∈ V : degT (v) ≥ 3} > 0;
else T is a path and |V | ≤ Ex(abab, n) = 2n− 1. Formally, we proceed by induction on
the sum n + b(T ). We use the operation of smoothing out a vertex u of degree 1 or 2.
For degT (u) = 1 this is just the deletion of u. For degT (u) = 2 we delete u and connect
its two neighbours by an edge.

Observe that there is a vertex v in T with degree at least 3 and such that T − v =
P1 ∪ P2 ∪ . . . ∪ Pl ∪ C where l ≥ 2, every Pi is a path, and C is a tree which may not be
a path. First we show that f may be assumed to be injective on the set V (T )\V (C) =
{v} ∪ V (P1) ∪ . . . ∪ V (Pl). If this is not the case, then f(u1) = f(u2) for two distinct
u1, u2 ∈ V (T )\V (C), and either (i) {u1, u2} ⊂ {v} ∪ V (Pi) for some i or (ii) u1 ∈ V (Pi)
and u2 ∈ V (Pj) for some i 6= j. In the case (i), there must be a vertex u3 between u1
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and u2 whose color c = f(u3) does not appear elsewhere in T ; else we would have in T
the color pattern abab. Smoothing out u3 and, if necessary, one of its neighbours (lest
we create a monochromatic edge), we get rid of the color c and keep the three conditions
satisfied. By induction, |V | ≤ 2(n− 1)− 1 + 2 = 2n− 1. In the case (ii) we may assume
that the color c = f(u1) = f(u2) does not appear elsewhere in T ; else we have the case (i)
or the condition 3 is violated. If u1 has two neighbours, they have distinct colors for else
we would have the abab pattern. The same holds for u2. We get rid of c by smoothing out
both u1 and u2; this creates no monochromatic edge. The three conditions are satisfied
and we conclude again by induction that |V | ≤ 2(n− 1)− 1 + 2 = 2n− 1.

Thus we may assume that on the vertices in V (T )\V (C) no color is repeated. We
transform the colored tree (T, f) into a new colored tree (T ∗, f ∗) by splitting the paths
P1, . . . , Pl into individual vertices, assembling from them a single colored path P , and
joining P back to v. During the transformation every vertex keeps its color. The number
of colors has not changed, b(T ∗) = b(T ) − 1 because degT ∗(v) = 2, and (T ∗, f ∗) clearly
satisfies the conditions 1 and 3. It remains to find an appropriate order for the vertices in
P so that (T ∗, f ∗) does not contain the color pattern abab. Then we apply the inductive
assumption and conclude that |V (T )| = |V (T ∗)| ≤ 2n− 1.

To this end we define a binary relation R on the set of colors appearing in V (P1) ∪
. . . ∪ V (Pl). We set aRb iff a 6= b and there is a path Q = (v0, . . . , vk) in C ∪ {v},
v0 = v, such that, for some i < j, f(vi) = a and f(vj) = b. We show that R is a strict
partial ordering. First we prove that R is antisymmetric. Suppose, for the contradiction,
that aRb and bRa, witnessed by paths Q1 and Q2, respectively. Let w be the merging
vertex of Q1 and Q2. One case is that a and b appear on Q1 in this order after w (if
we go in the v-w direction), and the same holds for the appearances of b and a on Q2.
Since both colors appear also in the paths Pi, we have a contradiction with the condition
3: w should have both colors a and b. If this case does not occur (which includes the
possibility Q1 = Q2), then Q1 or Q2 must contain the pattern aba or bab. But then (T, f)
contains the pattern abab, which contradicts the condition 2. Thus R is antisymmetric.
The transitivity of R can be proved by very similar arguments which we omit.

R is a strict partial ordering. Any occurrence of the pattern abab in (T ∗, f ∗) would
have to use two vertices of C ∪ {v} and two vertices of P . We order the vertices in P in
a linear extension of R so that if aRb then the vertex in P colored a is closer to v than
the vertex colored b. Then no abab pattern can appear. 2

For a general sequence u ∈ A∗ with ‖u‖ > 1, we define T (u, n) as the maximum
number of vertices of a tree T that can be vertex-colored by at most n colors so that
three conditions hold:

1. Two distinct vertices with the same color have distance at least ‖u‖ edges.

2. No subgraph of the colored tree T is a subdivision of the path of |u| vertices that
is colored according to u.
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Figure 3: The bound T (abba, n) ≥ 5n− 8 for n = 6.

3. No subgraph of the colored tree T is a subdivision of the properly 2-colored 4-vertex
star •−◦−•

•
.

We keep the condition 3 and modify the first two conditions in the obvious way. For
‖u‖ > 1 this works fine, T (u, n) < ∞. For u = ai the first condition is void and for
i ≥ 4 we would still have T (ai, n) =∞ (consider monochromatic stars). Therefore in the
special case of u = ai we require the coloring of T to be proper. We must not forget that
after replacing sequences by paths we lose the unique left-right order of terms. Forbidding
a sequence u we forbid its reversal u as well. For u isomorphic to u, if T are restricted
to paths then T (u, n) = Ex(u, n). We say that then T (u, n) extends Ex(u, n).

This generalization of Ex(u, n) to colored trees, T (u, n), was considered first in [26].
From the results on T (u, n) proved in Klazar [30] we mention the extension of (18) to
colored trees and the exact values (n > 1)

T (ai, n) =


(2i− 3)n− 2i + 4 . . . i ≥ 2 is even

(2i− 4)n− 2i + 6 . . . i ≥ 3 is odd

(recall that for the monochromatic i-path ai the coloring of T is required to be proper).
The next example shows that, unlike abab, T (abba, n) 6= Ex(abba, n).

Example 8 ([62]). We show that T (abba, n) ≥ 5n − 8, in contrast with Ex(abba, n) =
3n − 2. (Since abba is isomorphic to its reversal, T (abba, n) extends Ex(abba, n).) We
hope that the construction of (T, f) due to P. Valtr and independently discovered also
by Ch. Vogt, is clear enough from its instance n = 6 visualized in Figure 3.

The coloring is proper, contains no subdivision of abba, and satisfies the condition 3.
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In general the horizontal path has n vertices and the rays contribute 4(n − 2) vertices.
Together we have 5n− 8 vertices. In Valtr [62] a more general example is given showing
that

T (aibiai, n) ≥ 9in−O(i + n). 2

In [26] and [29] we posed as a problem to show that T (abba, n) ¿ n. This was
accomplished in [62] by Valtr who proved more generally that

T (aibiai, n) ≤ 24in.

Thus 5n− 8 ≤ T (abba, n) ≤ 48n.

Problem 13. Improve these bounds. Or, better, determine the function T (abba, n)
exactly. 2

The theory of tree extremal functions was much advanced by Valtr in [61] and [63].
He introduced other generalizations of Ex(v, n) to colored trees, which are better to work
with than T (v, n), and he proved analogues of most of the results that we described in
the previous section. In particular, he extended blow-ups, insertions, and intertwinings
to colored trees. To discuss properly his results would mean to write another Section 4;
the interested reader is refered for details to [61] and [63]. Here I only say that, contrary
to my original expectations, the behaviour of tree extremal functions often turns out to
be much different compared to Ex(v, n). For example, the two-letter theorem for colored
trees ([61], [63]) says: for ‖u‖ ≤ 2,

T (u, n)¿u n ⇐⇒ u 6⊃ ababa & u 6⊃ ab2a2b.

In fact ([61], [63]), T (ab2a2b, n) À nα(n). Comparing this with (27), we see that for
colored trees blow-ups change asymptotics.

0-1 matrices and ordered bipartite graphs. Recall the notation [n] = {1, 2, . . . , n}
and [a, b] = {a, a + 1, . . . , b}. Füredi and Hajnal [18] investigated the following class of
extremal problems for 0-1 matrices. Let N : [k]× [l]→ {0, 1} and M : [m]× [n]→ {0, 1}
be two 0-1 matrices of types k× l and m× n, respectively. We say that M contains N if
there are increasing injections f : [k]→ [m] and g : [l]→ [n] such that, for all i ∈ [k] and
j ∈ [l], M(f(i), g(j)) = 1 whenever N(i, j) = 1. In other words, M has a (not necessarily
contiguous) k × l submatrix that has 1 on every position where N has 1, and that has
0 or 1 on every position where N has 0. It is convenient to write in the matrices blanks
instead of zeros. Let f(m, n; N) be the maximum number of 1’s in an m× n 0-1 matrix
M not containing N , and let f(n; N) = f(n, n; N). It is easy to see that for every N
with at most three 1’s one has f(n; N) ¿ n. For four 1’s the situation is much more
complicated. Performing on N the obvious automorphisms preserving f(n; N), one is
left with 37 matrices N with four 1’s and no zero row or column. Füredi and Hajnal
investigated f(n; N) for each of these N . One of their results related to DS sequences
says that

nα(n)¿ f(n;
(

1 1
1 1

)
)¿ nα(n);
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the upper bound is obtained from (10) by reduction to 5-DS sequences and for the lower
bound they give a construction of their own. They prove the same lower and upper
bounds for

N =

 1
1

1 1


and the upper bound f(n; N)¿ nα(n) for

N =

 1
1

1 1

 and N =


1

1
1

1

 .

In the end of [18] the authors pose a question whether f(n; P ) ¿P n holds for all
permutation matrices P . In [34] we pointed out that this conjecture, if true, would imply
the enumerative Stanley–Wilf conjecture (which we formulate in a moment).

One can naturally reformulate the matrix setting in terms of ordered bipartite graphs;
these are bipartite graphs with linear orders on both parts. M is understood as the
bipartite graph G = ([n], [n + 1, n + m], H) where, for all i ∈ [m] and j ∈ [n + 1, n + m],
{i, j} ∈ H iff M(i, j−n) = 1. The matrix containment translates into the usual subgraph
relation, with the important additional condition that the linear orders of vertices are
preserved. The extremal function f(n;H) is defined as the maximum number |H| of the
edges of a bipartite graph G = ([n], [n + 1, 2n], H) such that G does not contain H. For
a permutation p = a1a2 . . . ak of [k], the permutation bipartite graph Gp is defined as

Gp = ([k], [k + 1, 2k], {{i, k + ai} : i = 1, 2, . . . , k}).

The question of Füredi and Hajnal asks if, for any fixed permutation p, every G =
([n], [n + 1, 2n], H) not containing Gp as an ordered subgraph must have ¿ n edges.

Permutations. Alon and Friedgut [5] applied generalized DS sequences to a problem
in enumerative combinatorics. Let p = a1a2 . . . am and q = b1b2 . . . bn be permutations of
[m] and [n], respectively. We say that q contains p if q has a subsequence bi1bi2 . . . bim ,
1 ≤ i1 < i2 < . . . < im ≤ n, such that bir < bis ⇐⇒ ar < as for every r and s. Else
we say that q avoids p. Let Sn(p) be the number of permutations of [n] avoiding p. The
Stanley–Wilf conjecture (stated, for example, in Bóna [10]) asserts that for any given
permutation p,

Sn(p) < cn (28)

holds for every n ∈ N and a constant c > 1 depending only on p. Using the general
bound (18), Alon and Friedgut proved for every p the upper bound

Sn(p) < βp(n)n, (29)

where βp(n) is an extremely slowly growing function defined in terms of α(n). Using the
N -sequence bound (26), they proved also that (28) holds for all unimodal p. (Recall that
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p = a1a2 . . . am is unimodal if it first decreases and then increases or vice versa.) Bóna
[11] proved that (28) holds for all permutations p of the form p = a1a2 . . . am = s1s2 . . . sk

where the si’s are decreasing sequences and, for every i, all terms of si are smaller than
those of si+1.

Example 9 ([34]). We give a simpler proof of the bound (29). We translate the problem
from permutations to ordered bipartite graphs G and work with the above described
extremal function f(n;G) and the permutation graphs Gp. Let, for a permutation p,
Gn(p) be the number of all ordered bipartite graphs G = ([n], [n + 1, 2n], H) such that
G 6⊃ Gp. Clearly,

Sn(p) ≤ Gn(p)

because now we count many more p-free objects. Let us suppose that we have a bound
f(n;Gp) < nγ(n), where γ(n) = γp(n) is a nondecreasing function. Let n ∈ N be fixed
and m = dn/2e. We claim that

Gn(p) < 15mγ(m) ·Gm(p).

To prove this inductive inequality, we transform every G = ([n], [n+1, 2n], H) counted by
Gn(p) to a G ′ = ([m], [m+1, 2m], H ′) counted by Gm(p). For i ∈ [m] and j ∈ [m+1, 2m],
we let {i, j} ∈ H ′ iff in G the sets {2i− 1, 2i} and {2j − 1, 2j} are connected by at least
one edge. In other words, to get G ′, we identify in G the vertices in each of the pairs
(1, 2), (3, 4), . . . and (n+1, n+2), (n+3, n+4), . . . and replace the arising multiple edges
by simple edges. Every edge of G ′ can be obtained in at most 22·2 − 1 = 15 ways. Thus
if G ′ has e edges, there are at most 15e graphs G that transform to G ′. Also, G 6⊃ Gp

implies G ′ 6⊃ Gp, and therefore e ≤ f(m;Gp) < mγ(m). Hence we obtain the inductive
inequality. Iterating it until m = 1 and denoting m0 = n, mi = dmi−1/2e, we obtain the
bound

Sn(p) ≤ Gn(p) < 2 · 15
∑

i≥1
miγ(mi) < 2 · 15γ(n)

∑
i≥1

mi < 152nγ(n) =
(
225γ(n)

)n
.

We have obtained (29) with βp(n) = 225γp(n). If γp(n) is almost constant, so is βp(n).
To find such a γp(n), we reduce bipartite graphs to sequences. We associate with every
G = ([n], [n + 1, 2n], H) the sequence u = N1N2 . . . Nn ∈ [n + 1, 2n]∗, where Ni is the
(arbitrarily ordered) list of the neighbours of i ∈ [n] in G. Let p be a fixed permutation
of [k]. It follows that G 6⊃ Gp implies u 6⊃ w where w = a1a2 . . . aka1a2 . . . ak . . . a1a2 . . . ak

consists of 2k repetitions of the segment of k distinct symbols a1, . . . , ak. The problem
that u may not be k-sparse is easily fixed: deleting at most k−1 terms from the beginnings
of N2, N3, . . . , Nn, we obtain a subsequence v of u, |v| ≥ |u| − (k − 1)(n − 1), which is
k-sparse. Invoking (18), we obtain the required bound:

|H| = |u| ≤ (k − 1)(n− 1) + |v| < kn + Ex(w, n)

< kn + n · k2l−3 · (10k)2α(n)l−4+8α(n)l−5

=: nγp(n),

where l = 2k2. 2
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Set partitions. From the viewpoint of algebraic combinatorics, sequences can be re-
garded as set partitions. For example, abcabc is the partition of [6] in the blocks {1, 4},
{2, 5}, and {3, 6}. Generally, we assign to a sequence u = a1a2 . . . al of length l the
partition P of [l] such that i and j are in the same block of P iff ai = aj. Then the set of
blocks of mutually isomorphic sequences of length l corresponds bijectively to the set of
all partitions of [l]. Representing partitions by equivalence relations ∼, we can formulate
the containment of sequences ⊂ in the following way. A partition u = ([k],∼u) is con-
tained in another partition v = ([l],∼v), if there is an increasing injection f : [k] → [l]
such that the equivalence x ∼u y ⇐⇒ f(x) ∼v f(y) holds for every x, y ∈ [k].

An important and interesting class of partitions is the noncrossing partitions. A
partition P of [l] is noncrossing, if there are no four numbers 1 ≤ x1 < x2 < x3 < x4 ≤ l
and no two distinct blocks B1 and B2 of P such that x1, x3 ∈ B1 and x2, x4 ∈ B2.
More briefly, P is noncrossing if it does not contain abab = {{1, 3}, {2, 4}}. Noncrossing
partitions and abab-free sequences (4-DS sequences with 2-sparseness dropped) are two
ways of looking at the same thing. Simion [53] wrote an interesting survey of results
on noncrossing partitions and related topics. The seminal work introducing noncrossing
partitions was that of Kreweras [38], followed shortly by Poupard [45]. In the same year
1972, Mullin and Stanton published independently their article [42] on enumeration of
4-DS sequences. Other enumerative works on 4-DS sequences are Roselle [47], Gardy
and Gouyou-Beauchamps [19], and Klazar [28]. See also Klazar [32] for a more general
approach to the enumeration of u-free set partitions.

Although one can read in the MR review of [31] (with the main result (12)) that
“The author improves previous results to show that the number N5(n) [λ3(n)] of finite
sequences . . .”, unfortunately, to my knowledge, no significant enumerative results on 5-
DS sequences are known. Some should be discovered! In this connection it is interesting
that Alon and Onn [6] applied in an enumerative problem (of bounding the numbers of
separable partitions of points on the moment curve) the extremal bounds (2) and (7).

Problem 14. Let rl be the number of ababa-free partitions of [l]. In other words,

rl = #{u : u 6⊃ ababa & |u| = l & u is normal}.

What can be said about the numbers rl? What is their asymptotics? 2

The numbers rl grow superexponentially. To see it, note that no partition of [l] into
blocks of at most two elements contains ababa = {{1, 3, 5}, {2, 4}}. Thus

rl ≥
∑
i≥0

(
l
2i

)
· (2i− 1)!!

where (2i− 1)!! = 1 · 3 · 5 · . . . · (2i− 1) and (−1)!! = 1.

Having in mind the variety of enumerative formulas for noncrossing partitions, we
state the following problem.
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Problem 15. Let sl be the number of abcabc-free partitions of [l]. In other words,

sl = #{u : u 6⊃ abcabc & |u| = l & u is normal}.

What can be said about the numbers sl? What is their asymptotics? 2

The hypergraph bound (31) (proved in [33]) covers the partition case and implies that
sl < cl for a constant c > 1. It is easy to see that sk+l ≥ sksl for every k, l ∈ N. Hence
s
1/l
l tends to a finite limit.

6. Hypergraphs

A hypergraph containment. The containment of sequences discussed through this
survey is a special case of the hypergraph containment introduced in Klazar [33]. In
Section 6 we survey some of the results of [33] and [35].

A hypergraph H = (Ei : i ∈ I) is a finite list of finite nonempty subsets Ei of
N = {1, 2, . . .}, which are called edges . The edges may be repeated (we allow Ei = Ej for
i 6= j). Simple hypergraphs have no repeated edges. The elements of

⋃H =
⋃

i∈I Ei ⊂ N
are called vertices . Hypergraphs include partitions as a special case: partitions are the
hypergraphs with mutually disjoint edges. Now, for partitions we have the important
notion of the sequential containment. Could not it be “lifted” to hypergraphs? We
propose the following definition ([33, 35]).

A hypergraphH′ = (E ′i : i ∈ I ′) is contained in another hypergraphH = (Ei : i ∈ I),
in symbols H′ ⊂ H, if there is an increasing injection F :

⋃H′ → ⋃H and an injection
f : I ′ → I such that the implication

x ∈ E ′i =⇒ F (x) ∈ Ef(i)

holds for every vertex x ∈ ⋃H′ and every index i ∈ I ′. If H′ 6⊂ H, we say also that
H is H′-free. If H′ and H are partitions, the hypergraph containment coincides with
the sequential containment. To help the reader to get used to the former, we give two
examples. Let H1 = (E1, E2), E1 = E2 = {1}, be the hypergraph consisting of the
singleton edge {1} repeated twice. Then H is H1-free iff H is a partition. Let H2 =
({1, 3}, {2, 4}). Then H = (Ei : i ∈ I) ⊃ H2 iff there are four vertices x1, . . . , x4 ∈

⋃H,
x1 < x2 < x3 < x4, and two (not necessarily distinct) edges Ei, Ej in H, i 6= j, such that
x1, x3 ∈ Ei and x2, x4 ∈ Ej. (H2-free hypergraphs generalize noncrossing partitions.)

Let F be a fixed hypergraph. One can ask two extremely natural questions. First,
how many F -free hypergraphs are there. Second, how large F -free hypergraphs may be.
We discuss first the enumerative aspect and then in more details the extremal aspect.

Exponential and almost exponential bounds. For a fixed hypergraph F and n ∈ N,
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we are interested in the number

a(F , n) = #{H : H is simple &
⋃H = [n] & H 6⊃ F}.

The simplicity of H is needed to make a(F , n) finite. The forbidden hypergraph F ,
however, may be arbitrary, not necessarily simple. (If F = H1 = ({1}, {1}) from the
above example, a(F , n) counts the partitions of [n] and equals to the nth Bell number.)
One of the basic problems here is to determine all hypergraphs F for which a(F , n) < cn

for a constant c > 1. The candidates for such F are the permutation hypergraphs Hp

(with added singleton edges); these are slightly modified graphs Gp. For a permutation
p = a1a2 . . . ak of [k] we define

Hp = ({i, k + ai} : i = 1, . . . , k).

For example, H1,3,2 = ({1, 4}, {2, 6}, {3, 5}). If a hypergraph F either (i) has an edge
with at least three elements or (ii) has two intersecting edges or (iii) has two two-element
edges E1 and E2 such that E1 < E2, then every permutation hypergraph Hp is F -free.
Thus for such an F we have

a(F , n) ≥ (bn/2c)! = exp((1
2

+ o(1))n log n)

and the numbers a(F , n) grow superexponentially. It is clear that F satisfies neither of
(i)–(iii) if and only if it is a disjoint union of several singleton edges and a hypergraph
isomorphic to someHp. We say briefly that F is of the formHp+singletons . For example,
we may have

F = ({1}, {3}, {7}, {2, 9}, {4, 6, }, {5, 8}).
We conjecture that a(F , n) < cn if and only if, for some permutation p, F = Hp+singletons.
This strengthens the Stanley–Wilf conjecture.

To prove our conjecture, it is enough to prove a(Hq, n) < cn for every permutation q;
every Hp+singletons is contained in an appropriate Hq.

Problem 16. Prove (or disprove) that for any given permutation p,

a(Hp, n) < cn

holds for every n ∈ N and a constant c > 1. 2

In [33] we proved, using (18), a slightly weaker bound: for every permutation p there is
an almost constant function βp(n) defined in terms of the inverse Ackermann function
α(n), such that

a(Hp, n) < βp(n)n. (30)

Note that this strengthens (29) (and our strengthening of (29) in Example 9) because
now we count many more p-free objects. In [33] we also proved, using the N -sequence
bound (26), that the exponential bound in Problem 16 holds for certain permutations:
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if p = a1a2 . . . ak first dicreases and then increases, or if p−1 first increases and then
dicreases, then

a(Hp, n) < cn (31)

for all n ∈ N and a constant c > 1. Note that this gives an exponential upper bound
on the numbers sl of Problem 15 (p = 1, 2, 3). Can the reader give a reasonably simple
direct proof of it?

Summarizing, we have the enumerative alternative

a(F , n)


< βp(n)n . . . F ⊂ Hp for some p

> n(1/2+o(1))n . . . F 6⊂ Hp for every p,

 (32)

we conjecture that βp(n) may be replaced with a constant, and can prove this for some
particular permutations p.

Two hypergraph extremal functions. For a hypergraph H = (Ei : i ∈ I), we denote
by v(H) = |⋃H| the number of vertices, by e(H) = |I| the number of edges, and by
i(H) =

∑
i∈I |Ei| the number of vertex-edge incidences. For a fixed hypergraph F and

n ∈ N, we define two extremal functions

He(F , n) = max{e(H) : H 6⊃ F & H is simple & v(H) ≤ n}
Hi(F , n) = max{i(H) : H 6⊃ F & H is simple & v(H) ≤ n}.

The simplicity of H is again needed that He(F , n) and Hi(F , n) be well defined. The
forbidden F may be arbitrary. Obviously, He(F , n) ≤ Hi(F , n) for every F and n. In
most cases we have, up to a constant factor, also the opposite inequality:

Example 10 ([35]). Suppose that no two edges E1 and E2 of F satisfy E1 < E2. Let
p = v(F) and q = e(F) > 1 (the case q = 1 is trivial). Then for every n ∈ N,

Hi(F , n) ≤ (2p− 1)(q − 1) ·He(F , n). (33)

For the proof suppose that H is a simple and F -free hypergraph with v(H) ≤ n.
We transform H in a new hypergraph H′. If E = {v1, v2, . . . , vs} is an edge of H,
v1 < v2 < · · · < vs, we keep it if s < p. If s ≥ p, we replace E with t = b|E|/pc new edges
{v1, . . . , vp}, {vp+1, . . . , v2p}, . . . , {v(t−1)p+1, . . . , vtp}. The new edges have each p elements
and are mutually separated in the way that is excluded in F . The new hypergraph H′
may not be simple. Therefore we define a simple hypergraph H′′ by keeping from every
family of repeated edges of H′ only one edge. We observe two things: (i) no edge of
H′ is repeated more than q − 1 times and (ii) H′′ is F -free. If (i) were false, there
would be q distinct edges E1, . . . , Eq in H such that |⋂q

i=1 Ei| ≥ p. But this implies the
contradiction F ⊂ H. As for (ii), since the new p-element edges born from an edge E
of H are separated, every copy of F in H′′ may use for every E only at most one of
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them. But then it would be a copy of F in H as well, which is again impossible. Both
observations and the definitions of H′ and H′′ imply

i(H) ≤ (2p− 1) · i(H′)
p

≤ (2p− 1)(q − 1) · i(H′′)
p

≤ (2p− 1)(q − 1) · e(H′′)
≤ (2p− 1)(q − 1) ·He(F , n). 2

The inequality (33) holds, for example, for all permutation hypergraphs F = Hp.
On the other hand, there exists a class of somewhat singular hypergraphs F for which
Hi(F , n) 6¿ He(F , n). For F = ({1}, {2}) one can quickly show that He(F , n) = 1 but
Hi(F , n) = n. More generally, in [35] we have shown that if F = ({1}, {2}, . . . , {k}) then
He(F , n) = 2k−1 − 1 (n ≥ k − 1) and Hi(F , n) = (k − 1)n− (k − 2) (n is large enough).

Problem 17. Is it true that for every F 6= ({1}, {2}, . . . , {k}) one has the estimate
Hi(F , n)¿F He(F , n)? 2

Linear and almost linear bounds on Hi(F ,n). In [33] we proved, by means of (18),
an extremal analogue of (30): for every permutation p,

Hi(Hp, n) < n · γp(n) (34)

where γp(n) is defined in terms of α(n) and thus grows to infinity extremely slowly.
(This proof now may be simplified by means of the inequality (33).) Similarly, in [33] we
proved, by means of (26), that if p = a1a2 . . . ak is a permutation that first dicreases and
then increases, or if p−1 first increases and then dicreases, then

Hi(Hp, n)¿p n. (35)

Problem 18. Prove (or disprove) that for every permutation p we have Hi(Hp, n)¿p n.

2

We have seen already in Example 9 that the extremal problem is, in a sense, more
fundamental than the enumerative problem. This holds also on the hypergraph level:
in [33] we prove first the bounds (34) and (35) and from them we derive, respectively,
the bound (30) and (31) as corollaries. The derivation uses a variant of the inductive
argument presented in Example 9. In the same vein, the bound in Problem 18 implies
the bound in Problem 16.

What is the extremal analogue of (32)?

Problem 19. Identify the class of hypergraphs Ψ such that

He(F , n), Hi(F , n)


< n · γF(n) . . . F ∈ Ψ

> n · δF(n) . . . F 6∈ Ψ
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holds. Here the functions γF(n) and δF(n) grow to infinity, any γF(n) is defined in terms
of α(n) and thus is almost constant, and any δF(n) is much faster than any γF(n). 2

Unlike in enumeration, now we cannot hope to replace every γF(n) with a constant. This,
of course, comes as no surprise. By a reduction to 5-DS sequences, it is easily shown
([35]) that for F = ({1, 3}, {1, 5}, {2, 4}, {2, 6}) one has He(F , n)À nα(n). This F is an
example of a star forest . These are simple hypergraphs F with only two-element edges,
with no cycles, and with the components forming stars such that all centers of the stars
precede all endvertices. In [35] we proved that for every star forest F ,

Hi(F , n) < n · γF(n) (36)

where γF(n) is an almost constant function defined in terms of α(n). Note that by (33),
it suffices to prove this bound for He(F , n). So, in Problem 19, the class Ψ must contain
all star forests. Does it consist only from star forests? Since star forests generalize
permutation hypergraphs Hp, the bound (36) generalizes the bound (34). However, (34)
can be probably improved to a ¿ n bound.

One more almost linear bound and back to abab. In the definition (16), if ex-
pressed in terms of partitions, the number of vertices is maximized over all v-free parti-
tions u with at most n edges (and u is moreover ‖v‖-sparse). For partitions H we have
v(H) = i(H) but the proper measure of size for hypergraphs is i(H). We generalize the
approach of (16) as follows. Suppose that F is a fixed partition with q = e(F) > 1. Then
for every F -free hypergraphH (really every, even not simple) we have the inequality ([35])

i(H) < (q − 1)v(H) + e(H) · γF(e(H)) (37)

where γF(n) is an almost constant function defined in terms of α(n). The bound (37) is
an extension of (18) to hypergraphs. We can also apply (37) to bound Hi(F , n) (almost
linearly) in terms of He(F , n) in situations when (33) does not apply.

We conclude our survey by returning to the pattern abab, alias •−◦−•−◦ , alias ({1, 3},
{2, 4}).

Example 11 ([33, 35]). We prove that, denoting abab = ({1, 3}, {2, 4}), for every
n > 1,

He(abab, n) = 4n− 5 and Hi(abab, n) = 8n− 12.

We begin with the case when G is a simple abab-free graph with the vertex set [n]
(so G has only two-element edges). We prove by induction on n that e(G) ≤ 2n− 3. For
n = 2 this is true. Let n > 2 and deg(1) ≥ 2; for deg(1) = 1 induction immediately
applies. We split [n] into two overlapping intervals I1 = [k] and I2 = [k, n], where k is
the largest vertex in [2, n− 1] adjacent to 1. The restrictions of G to I1 and I2 are simple
abab-free graphs and every edge of G, except possibly of {1, n}, lies in I1 or in I2. By
induction,

e(G) ≤ 1 + 2|I1| − 3 + 2|I2| − 3 = 2(|I1|+ |I2|)− 5 = 2n− 3.
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In the graph case, e(G) ≤ 2v(G)− 3.

Let now H be a simple abab-free hypergraph with the vertex set [n]. We look at the
big edges of H having 3 and more vertices. We claim that after deleting from each of
them its first and last vertex, the resulting sets lie in [2, n− 1] and are mutually disjoint.
The former claim is clear. If the resulting sets were not disjoint, we would have two
distinct edges E1, E2 in H and five not necessarily distinct vertices v1, . . . , v5 ∈

⋃H such
that v2 < v3 < v4, v1 < v3 < v5, {v1, v3, v5} ⊂ E1, and {v2, v3, v4} ⊂ E2. Moreover, we
may assume that v1 6= v2 or v4 6= v5 because E1 6= E2 (H is simple). But then H contains
abab, a contradiction. Thus the resulting sets must be disjoint and their number is at
most n− 2, which bounds the number of big edges in H.

Not forgetting singleton edges, we conclude that

e(H) ≤ n + (2n− 3) + (n− 2) = 4n− 5

i(H) ≤ n + 2(2n− 3) + (n− 2) + 2(n− 2) = 8n− 12.

The abab-free hypergraphs

({i}, {j, j + 1}, {1, k}, {1, j, j + 1} : i ∈ [n], j ∈ [2, n− 1], k ∈ [2, n])

show that these bounds are tight. 2

Interestingly, the previous proof needs only small adjustments to work also for the for-
bidden hypergraph abba = ({1, 4}, {2, 3}). For n > 1 we have He(abba, n) = 4n− 5 and
Hi(abba, n) = 8n− 12 as well. This should be compared with the situation for sequences
and colored trees when abab and abba have different extremal functions.
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