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Abstract

Let ay,asq, ..., a; be relatively prime, positive integers arranged in increasing order. Let
I'* denote the positive integers in the set { a1x1 + aswa + - -+ agzry 1 v; > 0 }. Let

S*(ay,ag,...,a5) ={n ¢TI :n+I*CI™}.

We determine S*(ay, as, ..., ax) in the case where the a;’s are in arithmetic progression.
In particular, this determines g(aq, as, ..., ax) in this particular case.

1. Introduction

Let aq, as, . .., a be relatively prime, positive integers arranged in increasing order. Let I"
denote { a1x1 +asxo+- - -+agxy : x; > 0}, and let I'™* = I"\ {0}. It is well known and easy
to show that I'“ = IN \ T" is a finite set. We use the classical notation g(ay,as, ..., ax) to
denote the largest number in T'°. J.J. Sylvester [15] showed that g(ay, as) = ajas —a; —as.
In later years, the number of elements in I'°, denoted by n(ay, as, ..., ax), was also stud-
ied, and it was shown that n(a;,as) = (a3 — 1)(az — 1)/2. Another function related to
this is the function s(ay, as, ..., ax) that denotes the sum of elements in I'°. Introduced
in [4], it was shown that s(aq,as) = (a1 — 1)(az — 1)(2a1a9 — ag — ay — 1)/12.

There is a neat formula for each of the functions g and n when the a;’s are in arith-
metic progression ([1],[5],[9],[16]), but other results obtained are mostly partial results
([2],[3],16],[7],[10],[11], [12],[13],[14]) and often not as neat. Due to an obvious connection
with making change given money of different denominations, this problem is also known
as the Coin Fxchange Problem.
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2. Main Result

We study a variation of the Coin Exchange Problem in this note. We denote by
S*(ay,aq, ..., a;) the set of all n € I'° such that

n+I*CI™,

and let g*(ay, as, ..., ax) (respectively, n*(ay, aq, ..., ax) and s*(ay, as, . .., ax)) denote the
least (respectively, the number and sum of) elements in S*. Since g(ay, as, ..., ay) is the
largest element in S*,

g (ar,as,...,a;) < glay,as, ..., ax),

and n*(ay, ag,...,a;) > 1, with equality if and only if g* = ¢g. This problem arises from
looking at the generators for the Derivation modules of certain curves [8], and has been
extensively studied.

For each j, 1 < j < a; — 1, let m; denote the least number in I' congruent to j
(mod a;). Then m; — a; is the largest number in I'® congruent to j (mod @), and no
number less than this in this residue class can be in §*, for they would differ by a multiple
of aq, an element in I'*. Therefore,

S*(ar,a2,...,a5) C{m;—a1:1<j<a;—1}, (1)
g (ay,ag, ... a;) < (1;}%&61}1(1 mj) —a; = g(ay,as, ..., a), (2)
n*(ay, ag,...,a;) < ap —1, (3)
and
a;—1
S*(a17a27"’7a’l€) S Z mj_a1<a1_1)' (4)
j=1
More precisely,
m; —ay € S (a1, as,...,a5) <= (m; —ar) +m; > myy,; for 1 <i<ay —1 (5)

We shall explicitly evaluate the set &*, and as a consequence, the functions g, g*,
n* and s*, when the a;’s are in arithmetic progression. We write a; = a + (j — 1)d
for 1 < j <k, and assume gecd(a,d) = 1. In this case, we denote the functions g, g*,
n* and s* by g(a,d; k), g*(a,d; k), n*(a,d; k) and s*(a,d; k), respectively. To determine
S*(a, d; k), we recall Lemma 2 from [16].

Lemma: For each t, 1 <t < a — 1, the least integer in I'* congruent to dt (mod a)
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is given by a(1 + [£=1]) + dt.

Theorem: Let a,d be relatively prime, positive integers, and let £k > 2. If a — 1 =
q(k—=1)4r, with 1 <r <k —1, then

S*(a,d;k):{aﬁ_ﬂ—kdx:a—rgxga—l}.

Proor: Fix k > 2. Throughout this proof, and elsewhere, by  mod m we mean
r —x[£]. By (1) and Lemma,

xZ
m

xr
* . C
S*(a, d: k) _{a -

]+d:€:1§x§a—1}.

From (5), n = a[f=1] + dz € S* if and only if for each y with 1 <y <a—1,

a<1—|— {((ery;criO{ia)_l:) +d((z 4+ y) mod a) < {a [i:ﬂ +dx}+{a (1+ [Z:ﬂ) —i—dy},

or,

" [((1’ +y) mod a) — 1]

- _+d((l’+y)m0da)§a{z:HwL[z:H}er(ery). (©)

Suppose 2 <k <a—1. Leta—1=q(k—1)4r, with1 <r <k—1. Unlessz =a—1,
r+y <a-—1for at least one y, for such a y, (6) reduces to proving the inequality

{x—l—y—l} < [:1:—1} L [y—l].

kE—1 |~ k-1 k—1

If we now write x = qi(k — 1) + 71, y = qo(k — 1) + 7o, with 1 < ry,7y < k — 1, the
reduced inequality above fails to hold precisely when r{ + 7 > k. Given x, and hence ry,
the choice y = ro = k — 1y will thus ensure that (6) fails to hold provided z +y < a — 1.
However, such a choice for y is not possible precisely when x > g(k — 1)+ 1 =a —r,

so that (6) always holds in only these cases. Finally, it is easy to verify that (6) holds if

r=a—1. ThisshowsS*:{a[i—j]jtdx:a—rgxga—l}if2§k§a—1.

If £ > a, (6) reduces to d((z+y) mod a) < d(z+y). Thus, S* ={dr:1 <z <a—-1},
as claimed, since r = a — 1 and [i—j] = 0 in this case. This completes the proof. a

Corollary: If a,d be relatively prime, positive integers, k > 2, anda—1=q(k—1) +r,
with 1 <r <k — 1, then
g9(a,d; k) = aq + d(a — 1),
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and

9"(a,d; k) = aq + d(a — ),
n*(a,d; k) =,

1
s*(a,d; k) = aqr + §dr(2a —r—1).
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