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Abstract

It is shown that there exists an absolute constant H such that for every h > H, every
prime p, and every set A ⊆ Zp such that 10 ≤ |A| ≤ p(ln h)1/2/(9h9/4) and |hA| ≤
h3/2|A|/(8(ln h)1/2), the set A is contained in an arithmetic progression modulo p of

cardinality max1≤j≤h−1
|hA|−Pj(|A|)

h−j
+ 1, where Pj(n) = (j+1)j

2
n − j2 + 1. This result can

be viewed as a generalization of Freiman’s “2.4-theorem”.

1. Introduction

For a non-empty subset A of an additively written group and an integer h ≥ 2 the
h-sumset of A is defined as

hA = {a1 + · · ·+ ah : a1, . . . , ah ∈ A};

and by a sumset we mean a 2-sumset of A. The following well-known “2.4-theorem” of
Freiman [2] describes the structure of sets A ⊆ Zp with small sumsets.

Theorem 1 (Freiman). Let A, |A| ≤ p/35, be a subset of Zp for some prime p. If

|2A| ≤ 2.4|A| − 3,

then A is contained in an arithmetic progression of Zp with |2A| − |A|+ 1 terms.

Freiman’s proof goes roughly as follows. Since A has a small sumset, the characteristic
function of A has a large non-zero Fourier coefficient. Hence A is dense in some arithmetic
progression P ⊆ Zp of length (p−1)/2. The set A′ = A∩P is isomorphic (in the sense of
Freiman) to a subset of integers, hence one can apply to A′ Freiman’s additive theorem
for integers, and infer that A′ is contained in an arithmetic progression of cardinality
|2A′| − |A′|+ 1. As a last step one shows that A′ = A, otherwise we would have |2A| >
2.4|A| − 3.
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In this note we generalize Freiman’s theorem to h summands, provided h is large. Our
main result is as follows.

Theorem 2. There is an absolute constant H such that for every h > H, every prime

p, and every A ⊆ Zp such that 10 ≤ |A| ≤ p(ln h)1/2

9h9/4 and

|hA| ≤ h3/2

8(ln h)1/2
|A|,

the set A is contained in an arithmetic progression of cardinality max1≤j≤h−1
|hA|−Pj(|A|)

h−j
+

1, where Pj(n) = (j+1)j
2

n− j2 + 1.

Our approach follows the main idea of Freiman’s proof. First we observe that the absolute
value of some Fourier coefficient of the characteristic function of A is very close to |A|.
We use this fact to show the existence of a large subset A′ of A contained in an arithmetic
progression of cardinality roughly p(ln h/h)1/2. Then we apply a result of Lev (Theorem
3 below) to A′ and some h0 > (h/ ln h)1/2 to prove that A′ is, in fact, contained in
a much shorter arithmetic progression. Finally we employ a well-known theorem of
Cauchy-Davenport to infer that A′ = A.

In order for our method to work we have to impose some restrictions on the sizes of
A and hA. Thus, we assume that h > H, where the value of an absolute constant
H can be explicitly computed. In our result Freiman’s constant “2.4” is replaced by
“h3/2/4(ln h)1/2”, although one can expect that, as in Theorem 3, the assertion holds for
each A with |hA| ≤ (h+1)h

2
|A| − h2.

2. Auxiliary results

In this section we recall some theorems and definitions used in the proof of our main
result. First we state a consequence of [3, Corollary 1] . Here and below L(A) denotes
the cardinality of the shortest arithmetic progression containing A.

Theorem 3 (Lev [3]). Let h ≥ 2 and A be a finite subset of Z, |A| ≥ 2 such that
|hA| ≤ (h+1)h

2
|A| − h2. Then

L(A) ≤ max
1≤j≤h−1

|hA| − Pj(|A|)
h− j

+ 1,

where Pj(n) = (j+1)j
2

n− j2 + 1.

Remark 1. The estimate of Theorem 3 is tight, as shows the following example given in
[3]. Let ` ≥ n− 1, A = {0, . . . , n− 2} ∪ {`} and put k = d `−1

n−2
e − 1. If h > `−1

n−2
then it is
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easily seen that |hA| = Pk(n) + (h− k)l < Ph(n) and

max
1≤j≤h−1

|hA| − Pj(n)

h− j
+ 1 = ` + 1 = L(A),

maximum is attained for j = k.

Remark 2. Note that under the assumptions of Theorem 3 we have

L(A) ≤ 2|hA|
h

+ 1.

Indeed, suppose that the maximum is attained for j0. If j0 ≤ h/2 then the inequality
follows immediately. Assume that j0 > h/2 and

|hA| − Pj0(|A|)
h− j0

>
2|hA|

h
.

Then we have

|hA| > h

2j0 − h
Pj0(|A|) ≥ min

h/2<j≤h

h

2j − h
Pj(|A|).

Since h
2j−h

Pj(n) is a strictly decreasing function of j it follows that

|hA| > Ph(|A|) >
(h + 1)h

2
|A| − h2,

contradicting the assumptions of Theorem 3.

Theorem 4 (Cauchy-Davenport). Let p be a prime number and let A be a nonempty
subset of Zp. Then, for every integer h ≥ 2,

|hA| ≥ min(p, h|A| − h + 1).

We will also need the following straightforward consequence of Theorem 4.

Corollary 1. Let p be a prime number and let A be a nonempty subset of Zp such that
|hA| < p. Then, for every integers h ≥ h1 ≥ 2,

|h1A| < bh/h1c−1 |hA|+ 1.

Proof. By Cauchy-Davenport theorem, we have

|hA| ≥ | bh/h1c (h1A)| ≥ bh/h1c|h1A| − bh/h1c+ 1. 2

Let G and H be abelian groups and let A ⊆ G and B ⊆ H. We say that a mapping
φ : A→ B is a Freiman’s isomorphism of order h ( briefly, Fh-isomorphism), if for every
a1, . . . , ah, a

′
1, . . . , a

′
h ∈ A the equation

a1 + · · ·+ ah = a′1 + · · ·+ a′h
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holds if and only if

φ(a1) + · · ·+ φ(ah) = φ(a′1) + · · ·+ φ(a′h)

holds. In particular Fh-isomorphisms preserve the size of h-sumsets.

3. Proof of the main theorem

For a set S ⊆ Zp let {Ŝ(r)}r∈Zp denote the Fourier coefficients of the indicator function

of S ( Ŝ(r) =
∑

s∈S e2πirs/p ). It is easy to see that |Ŝ(0)| = |S|. We recall also Parseval
formula

p−1∑
r=0

|Ŝ(r)|2 = |S|p.

By the definition all sums a1 + · · ·+ ah, a1, . . . , ah ∈ A belong to the set hA, hence

p−1∑
r=0

Â(r)h ˆ(hA)(−r) = |A|hp

and
p−1∑
r=1

Â(r)h ˆ(hA)(−r) = |A|hp− |A|h|hA| ≥ |A|hp/2.

Put M =maxr 6=0 |Â(r)|. By Cauchy-Schwarz inequality and Parseval formula we have

|A|hp/2 ≤
p−1∑
r=1

|Â(r)|h| ˆ(hA)(−r)| ≤Mh−1

p−1∑
r=1

|Â(r)|| ˆ(hA)(−r)|

≤ Mh−1
( p−1∑

r=1

|Â(r)|2
)1/2( p−1∑

r=1

| ˆ(hA)(−r)|2
)1/2

< Mh−1|A|1/2|hA|1/2p.

Thus,

M >
( |A|

4|hA|
) 1

2(h−1) |A| ≥ (h−3/2)
1

2(h−1) |A|

= exp
(
− 3

4

ln h

h− 1

)
|A| >

(
1− 3

4

ln h

h− 1

)
|A|

>
(
1− ln h

h

)
|A|. (1)

Let r0 ∈ Zp \ {0} be an element with |Â(r0)| = M. Put γ = arg Â(r0), α = arccos
(
1−

2 ln h
h

)
, so that α ≤ π

(
ln h
2h

)1/2
. Define

B =
{
r0a : a ∈ A and d

(
γ − 2π

(r0a)p

p

)
≤ α

}
,
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where (r0a)p stands for the least non-negative integer congruent to r0a modulo p and d(x)
denotes the distance of x from the nearest number of the form 2πk, k ∈ Z. It follows
that

|Â(r0)| ≤ |B|+ (cos α)(|A| − |B|),
and by (1)

|B| ≥ 1− ln h
h
− cos α

1− cos α
|A| = |A|/2. (2)

Observe that B is Fh0-isomorphic to a subset of integers, where h0 = b2π/αc . Then

h0 ≥ 2
(

h
ln h

)1/2
and by Corollary 1, (1), and (2), we get

|h0B| ≤
|hB|
bh/h0c

+ 1 ≤ 2h0|hA|
h

+ 1 ≤ h0h
1/2|A|

4(ln h)1/2
+ 1

≤ h0h
1/2|B|

2(ln h)1/2
+ 1 ≤ h2

0

4
|B|+ 1

<
(h0 + 1)h0|B|

2
− h2

0 + 1.

Thus, one can apply Theorem 3 to the set B, so that B is contained in an arithmetic
progression in Zp of size

max
1≤j≤h0−1

|h0B| − Pj(|B|)
h0 − j

+ 1 ≤ 2|h0B|
h0

+ 1 ≤ 2|hB|
h0 bh/h0c

+ 2

≤ 4|hA|
h

+ 2 ≤ h1/2|A|
2(ln h)1/2

+ 2

≤ p

2h7/4
. (3)

Let A1 be any subset of A of the maximum cardinality, contained in an arithmetic
progression of cardinality bp/hc. From (2) and (3) it follows that |A1| ≥ |A|/2. An
argument analogous to that used in (3) shows that A1 is contained in an arithmetic
progression of size at most p/(2h7/4). Without loss of generality we may assume that A1

is a subset of the arithmetic progression with the common difference 1 centered at 0 that
means ‖a‖ ≤ p/(4h7/4) for every a ∈ A1, where ‖x‖ = min

(
(x)p, (p−x)p

)
. If a0 ∈ A\A1,

then
‖ka0‖ ≤

p

2h
,

for some k ∈ N. Let k be the smallest number with this property. Observe that if
k ≤ h3/4, then for every a ∈ A1

‖ka‖ ≤ k‖a‖ ≤ h3/4 p

4h7/4
<

p

2h
,

so the set A1 ∪ {a0} is contained in an arithmetic progression of size at most p/h and
the common difference k−1 (the multiplicative inverse of k in Zp), contradicting the
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maximality of A1. Hence we may assume that k ≥ h3/4. Put ` =
⌊
h3/4

⌋
. Then, the

elements a0, 2a0, . . . , `a0 are well-spaced:

‖ia0 − ja0‖ = ‖(i− j)a0‖ ≥
p

2h
,

for all i 6= j, i, j ∈ {1, . . . , `}. Consequently, the sets

`A1, a0 + (`− 1)A1, . . . , (`− 1)a0 + A1 (4)

are pairwise disjoint. Indeed, if (ia0 + (` − i)A1) ∩ (ja0 + (` − j)A1) 6= ∅ for some
i 6= j, i, j ∈ {0, . . . , ` − 1}, then there are elements a1, . . . , a`−i, b1, . . . , b`−j ∈ A1 such
that

ia0 + a1 + · · ·+ a`−i = ja0 + b1 + · · ·+ b`−j,

so that we would have

‖ja0 − ia0‖ = ‖a1 + · · ·+ a`−i − b1 − · · · − b`−j‖
≤ ‖a1‖+ · · ·+ ‖a`−i‖+ ‖b1‖+ · · ·+ ‖b`−j‖
≤ p

2h
.

Now by (4) and Theorem 4

|hA| ≥ |`A1|+ |a0 + (`− 1)A1|+ · · ·+ |(`− 1)a0 + A1|
≥

(
`|A1| − ` + 1

)
+

(
(`− 1)|A1| − ` + 2

)
+ · · ·+ |A1|

> `2|A|/4− `2/2 > |hA|,

a contradiction. Hence A is contained in an arithmetic progression of cardinality bp/hc
in Zp and is Fh-isomorphic to a subset of integers. Applying Theorem 3 we infer that A is

contained in an arithmetic progression of size max1≤j≤h−1
|hA|−Pj(|A|)

h−j
+1, which completes

the proof. 2

Remark. Using a rectification principle from [1], one can prove that the bound for L(A)
similar to that given in Theorem 3 holds also for A ⊆ Zp, provided we put much more
restrictive bounds on the size of A.
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