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Abstract

It is shown that there exists an absolute constant H such that for every h > H, every
prime p, and every set A C Z, such that 10 < |A| < p(Inh)Y/2/(9h%%) and |hA| <
R3/2|A|/(8(In h)'/?), the set A is contained in an arithmetic progression modulo p of
cardinality max;<j<p_1 w + 1, where P;(n) = @n — 324 1. This result can
be viewed as a generalization of Freiman’s “2.4-theorem”.

1. Introduction

For a non-empty subset A of an additively written group and an integer h > 2 the
h-sumset of A is defined as

hA={a1+ - +ap:ay,...,a, € A};

and by a sumset we mean a 2-sumset of A. The following well-known “2.4-theorem” of
Freiman [2] describes the structure of sets A C Z,, with small sumsets.

Theorem 1 (Freiman). Let A, |A| < p/35, be a subset of Z, for some prime p. If
24| < 2.4]A] - 3,
then A is contained in an arithmetic progression of Z, with |2A| —|A| + 1 terms.

Freiman’s proof goes roughly as follows. Since A has a small sumset, the characteristic
function of A has a large non-zero Fourier coefficient. Hence A is dense in some arithmetic
progression P C Z, of length (p—1)/2. The set A’ = AN P is isomorphic (in the sense of
Freiman) to a subset of integers, hence one can apply to A’ Freiman’s additive theorem
for integers, and infer that A’ is contained in an arithmetic progression of cardinality
|2A’| — |A'] + 1. As a last step one shows that A’ = A, otherwise we would have |2A]| >
2.4|A| — 3.
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In this note we generalize Freiman’s theorem to A summands, provided A is large. Our
main result is as follows.

Theorem 2. There is an absolute constant H such that for every h > H, every prime

p, and every A C Z, such that 10 < |A| < p(g;@im and

3/2
|hA| <

> é(ﬁ;ﬁji7§’flh

the set A is contained in an arithmetic progression of cardinality max;<j<p_1 w+

1, where Pj(n) = —(jzl)jn -2+ 1

Our approach follows the main idea of Freiman’s proof. First we observe that the absolute
value of some Fourier coefficient of the characteristic function of A is very close to |A|.
We use this fact to show the existence of a large subset A’ of A contained in an arithmetic
progression of cardinality roughly p(In h/h)'/2. Then we apply a result of Lev (Theorem
3 below) to A" and some hy > (h/Inh)/? to prove that A’ is, in fact, contained in
a much shorter arithmetic progression. Finally we employ a well-known theorem of
Cauchy-Davenport to infer that A’ = A.

In order for our method to work we have to impose some restrictions on the sizes of
A and hA. Thus, we assume that h > H, where the value of an absolute constant
H can be explicitly computed. In our result Freiman’s constant “2.4” is replaced by
“h3/2/4(In h)'/?” | although one can expect that, as in Theorem 3, the assertion holds for
cach A with [nA| < ®EDR 4] — b2,

2. Auxiliary results

In this section we recall some theorems and definitions used in the proof of our main
result. First we state a consequence of [3, Corollary 1] . Here and below L(A) denotes
the cardinality of the shortest arithmetic progression containing A.

Theorem 3 (Lev [3]). Let h > 2 and A be a finite subset of Z, |A| > 2 such that
|hA| < @M Al B2 Then

L(A) < max Al = BUAD

~ 1<j<h—1 h—j ’

where P;(n) = —(jzl)jn — 52+ 1.
Remark 1. The estimate of Theorem 3 is tight, as shows the following example given in
[B]. Let £>n—1, A={0,...,n—2}U{(} and put k = [£=1] — 1. If h > =1 then it is

n—2 —2
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easily seen that |hA| = Py(n) + (h — k)l < Py(n) and

max M—i—lzﬁ—i—l:L(A),
1<j<h—1 h—j

maximum is attained for 7 = k.

Remark 2. Note that under the assumptions of Theorem 3 we have
2|RhA|
— +1

N +

Indeed, suppose that the maximum is attained for jo. If jo < h/2 then the inequality
follows immediately. Assume that jo > h/2 and

[hA = P (14])  2[hA]

L(A) <

h— o 3
Then we have h L
hAl > 5 (A 2 | min P14,
Since 2Jthle(n) is a strictly decreasing function of j it follows that
h+1
) > P > P A

contradicting the assumptions of Theorem 3.

Theorem 4 (Cauchy-Davenport). Let p be a prime number and let A be a nonempty
subset of Z,. Then, for every integer h > 2,

|hA| > min(p, h|A| — h +1).

We will also need the following straightforward consequence of Theorem 4.

Corollary 1. Let p be a prime number and let A be a nonempty subset of Z, such that
|hA| < p. Then, for every integers h > hy > 2,

\hi Al < |h/hy] 7" |RA] + 1.

Proof. By Cauchy-Davenport theorem, we have
[hA[ = [ [h/h] (I A)| = [h/ha | A] = [B/ha] + 1. 0

Let G and H be abelian groups and let A C G and B C H. We say that a mapping
¢ : A — B is a Freiman’s isomorphism of order h ( briefly, F}-isomorphism), if for every
a,...,ap,ay,...,a, € A the equation

a4+ tap=ay+ - +a,
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holds if and only if
¢lar) + -+ -+ ¢lan) = ¢(a1) + -+ + ¢(ay,)

holds. In particular Fj-isomorphisms preserve the size of h-sumsets.

3. Proof of the main theorem

For a set S C Z, let {S (7)}rez, denote the Fourier coefficients of the indicator function
of S (S(r) = > e €T/P ). It is easy to see that |5(0)| = |S|. We recall also Parseval
formula

1

[S(r) = ISIp.

bS]
|

Il
o

T

By the definition all sums a; + - -+ + ap, aq,...,a, € A belong to the set hA, hence

I
—

p

A(r)" (hA)(—r) = |A]"p

\3
Il
o

and

fay

.
A@r)" (hA)(=r) = [A]"p — |A]"|hA| = |A["p/2.

1

Put M =max, |A(r)|. By Cauchy-Schwarz inequality and Parseval formula we have

Al'p/2 < S TIAE)M(RA) (=) < MPTUSY T JAQ)[[(A) (=)
< MY STIAR) (Y (A (=)

r=1

< Mh_1|A|1/2|hA|1/2p.

Thus,
Al \ 2o 1
M= (ﬁ) "UAl = (A
3 Inh 3 Inh
- ~= Al>(1-° A
eXp( 4h—1>| |>< 4h—1>| |
Inh
> (1—7)1A|. (1)

Let 7o € Z, \ {0} be an element with |A(r)| = M. Put v = arg A(r,), a = arccos <1 -

21;“), so that a < W(%)UQ. Define

B = {Toa: a € A and d(fy— 2%%%)1’) < a},
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where (r9a), stands for the least non-negative integer congruent to rpa modulo p and d(x)
denotes the distance of x from the nearest number of the form 27k, k € Z. It follows
that X

[A(ro)] < [B]+ (cosa)(|A] — | BJ),

and by (1)

1 — Inh

|B| > .
1 —cosa

— COS

Al = [A]/2. (2)

Observe that B is Fj,-isomorphic to a subset of integers, where hg = |27/a|. Then
ho > 2(%)1/2 and by Corollary 1, (1), and (2), we get

hB| 2ho|hA| hoh'/2| Al
hoB| < 1< < Mol 7714
Bl = o 7tls— = Amh)2
hoh'/2|B| 02
< Mh 5Ly Mg
S Sz TS IBlE
1)ho| B
_ M_%H'

Thus, one can apply Theorem 3 to the set B, so that B is contained in an arithmetic
progression in Z, of size

|hoB| — P;(|B]) 2|ho B 2|hB|
1 I ]
T o= S The T S hothhe] T
4nA| B2 A|
Al o TR Ly
S TR TS omae T
p
< ART/4" (3)

Let A; be any subset of A of the maximum cardinality, contained in an arithmetic
progression of cardinality [p/h|. From (2) and (3) it follows that |A;| > |A|/2. An
argument analogous to that used in (3) shows that A; is contained in an arithmetic
progression of size at most p/(2h7/*). Without loss of generality we may assume that A,
is a subset of the arithmetic progression with the common difference 1 centered at 0 that
means ||a|| < p/(4h™/*) for every a € A;, where ||z|| = min ((z),, (p—2),). If ag € A\ Ay,
then »

[kaol| < on
for some k£ € N. Let k£ be the smallest number with this property. Observe that if
k < h3/*, then for every a € A,

P p

TS

Ikall < Klla]] < K/

so the set A; U {ag} is contained in an arithmetic progression of size at most p/h and
the common difference £~ (the multiplicative inverse of k in Z,), contradicting the
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maximality of A;. Hence we may assume that k > h%*4. Put ( = VL?’MJ. Then, the
elements ag, 2ao, . . ., fay are well-spaced:

. . . . p
—_ = — > R
liao = jaoll = [I(i = 7)aoll = o,

for all i # j, i,j € {1,...,¢}. Consequently, the sets
€A1,6L0+(€—1)141,...,(@—1)@04—141 (4)

are pairwise disjoint. Indeed, if (iag + (¢ — i)A1) N (jag + (¢ — j)A;) # O for some
i # j, i,j € {0,...,£ — 1}, then there are elements ay,...,ap—;,b1,...,b—; € Ay such
that

iao+a1+---+ag,i :jao+bl+"'+bg7j,

so that we would have

ljao —iaol| = |la1 + -+ 4+ ap—y — b1 — -+ — b
< llaall + -+ A+ flag—ill + [ba]] + - - + [|be—]]
<
- 2h

Now by (4) and Theorem 4

|hA] > [CA| +]ag+ (0 — DA+ -+ |(€ = 1)ag + A
> (|A|/4— ?/2 > |hA|,

a contradiction. Hence A is contained in an arithmetic progression of cardinality |p/h|
in Z, and is F},-isomorphic to a subset of integers. Applying Theorem 3 we infer that A is
contained in an arithmetic progression of size max;<j<p_1 w +1, which completes

the proof. O

Remark. Using a rectification principle from [1], one can prove that the bound for L(A)
similar to that given in Theorem 3 holds also for A C Z,,, provided we put much more
restrictive bounds on the size of A.
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