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Abstract

We define the arithmetic function P by P(1) = 0, and P(n) = p1 +p2 + - - - + pg if n has the
unique prime factorization given by n = Hle p;i'; we also define w(n) = k and w(1) = 0. We
study pairs (n,n + 1) of consecutive integers such that P(n) = P(n +1). We prove that (5,6),
(24,25), and (49,50) are the only such pairs (n,n + 1) where {w(n),w(n + 1)} = {1,2}. We
also show how to generate certain pairs of the form (22"pq, rs), with p < ¢, 7 < s odd primes,
and lend support to a conjecture that infinitely many such pairs exist.
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1. Introduction

For positive integers n, we define the arithmetic function P(n) by
P(1) =0, and, for a positive integer n having as its unique prime factorization n = pi*p3? - - - pi¥,

P(n)=p1+p2+ -+ pi.

That is, P(n) gives the sum of prime divisors of n without multiplicity taken into account. The
function is additive, in that P(m) + P(n) = P(mn) if (m,n) = 1.

This function compares to the arithmetic function defined for positive integers n by S(1) =0
and S(n) = Zle a;p; whenever n = Hle pi’; that is, S(n) gives the sum of primes dividing
n, taken with multiplicity. Then S(n) is completely additive, in that S(mn) = S(m) + S(n)
for any two positive integers m and n. A Ruth—Aaron pair is a pair (n,n + 1) of consecutive
integers such that S(n) = S(n + 1). These were first discussed by Pomerance et. al. [4], and
have been the subject of several articles (such as by Pomerance [6], Drost [2]) and numerous
websites since.

However, in this article we are interested in finding pairs of consecutive positive integers
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(n,m + 1), such that P(n) = P(n + 1). For the sake of easy reference, we may call these Ruth—
Aaron pairs of the second kind, or RAP2s for short. Note, however, that a RAP2 is also an
ordinary Ruth—Aaron pair if both members n and n + 1 are square-free.

Some observations regarding RAP2s are immediate. For example, the members (n,n + 1)
of a RAP2 are of opposite parity, and are relatively prime. Let n be a positive integer. If n
has the unique prime factorization n = Hle pi*, then the prime powers p;*, 1 < i < k, are
called the components of n, and we define w(n) = k, w(1) = 0 (thus w counts the components
of n). For any given RAP2 (n,n + 1), since 2 divides exactly one of the members (all other
prime divisors of n and n + 1 being odd), we see that w(n) and w(n + 1) are of opposite parity.
In this article we shall completely determine all RAP2s (n,n + 1) whose members have one or
two components. We will also investigate RAP2s of the form (22"pq, rs), with p < ¢, r < s odd
primes.

2. Preliminaries

If p is a prime and a, m, are positive integers we write p™||a if p™ | @ and p™*! { a. In
this case we say p™ ezactly divides a. For distinct primes p and g we write e,(¢) to denote the
exponent to which g belongs modulo p.

For positive integers n, we denote the n'" cyclotomic polynomial evaluated at = by ®, ().
The cyclotomic polynomials (as shown by Niven [5], Ch. 3) may be defined inductively by

(1) 2" — 1 =[] ®nlx).
d|n
By Theorems 94 and 95, Nagell [3], Ch. 5, we have

Lemma 1. Let p be and q be odd primes and let m be a positive integer. Let h = e,(q). Then
p | ®,,.(q) if and only if m = hp’ for some integer j > 0. If j > 0 then p||®p,i(q).

Lemma 2. Let q be an odd prime and let m be a positive integer. Then 2 | ®,,(q) if and only
if m =27 for some integer j > 0. If j > 1 then 2||®4; (q).
Let g be prime and let m > 0 be an integer. Since, by definition,

m—

1

()= [ (@—em™),

k=1
(k,m)=1

and since ®,,(q) > 0, we have

m—1
Oula) = [[ |a—em],
k=1

(k,m)=1

and since |q — e?™*/™| > g — 1 for 1 <k < m — 1, we have
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Lemma 3. For a prime q and an integer m > 0 we have ®,,(q) > (g — 1)%™).

3. RAP2s of the form (2“pb,q°)

The smallest numbers of components the members of a RAP2 can have are 1 and 2. In this
instance, the members of the RAP2 have the form 2%p® and ¢° for positive integers a, b, and c,
where p and ¢ are necessarily twin (odd) primes (that is, p+ 2 = ¢). We have two cases arising
in this instance, those being 2%p? = ¢° £ 1. In this section we consider the easier case of the
two,

(2) 20p" = ¢ — 1.
Clearly ¢ > 1, since 2%p® > 2(q —2) = ¢+ (¢ — 4) > ¢ — 1. Thus, since ¢ = p + 2, (2) factors as
a, b __ c—1 c—2
2" =(p+ D" +q¢" "+ Fq+1).

Since (p,p + 1) = 1, it follows that p + 1 = 2! for some positive integer . Hence p = 2 — 1,
q = 2! + 1, which is possible only if ¢ = 2; that is, p = 3 and ¢ = 5. Then (2) becomes

203Y = 5° — 1.
Since 5° = 1 (mod 3), we have 2 | ¢, so we write ¢ = 2 for some positive integer . Thus
273" = (57 — 1)(5” + 1).
Since 2||5” + 1, we must have 3 | 57 4 1. Since (57 + 1,57 — 1) = 2, we have 3157 — 1. Hence
5 —1=2"' 57+1=2.3"
Certainly ~ is odd (as 315” —1). Suppose v > 1. Then
57 —1=0G6-1)G"1 4572+ +54+1).
But the second factor is odd, and greater than 1; this contradicts 57 — 1 = 2%~!. Therefore

v =1, and so ¢ = 2. Hence (2) becomes 23 -3 = 52 — 1; that is, a = 3, b = 1, and we have the
RAP2 (24,25). Hence the only RAP2 of the form (29p°, ¢¢) is (24, 25).

4. RAP2s of the form (¢¢,2%p%)
Suppose now that
(3) 2°p" = ¢ +1

for positive integers a, b, and ¢, where p and ¢ are primes such that p + 2 = ¢. This case is
more difficult than that in Section 3.
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By (1), we see that (3) is equivalent to

(4) 2°p" =[] ®ala)-

Let h = e,(q); we observe h = e,(2) as well (since ¢ = p+2). By Lemmas 1 and 2, each divisor
d | 2¢ such that d { ¢ must either have the form hp’ for some integer j > 0 or the form 2% for
some integer k > 1. Writing ¢ = 2""s for some integer m > 0 and odd integer s, we see that
2m+1|d for all divisors d | 2¢ such that d { c. In particular 2+ A.

Suppose s is composite. Then ¢ | s for some odd integer ¢ such that 1 < ¢ < s. Then by (4),
®,(q)Ps(q) | 2°p®. This is impossible as 2 1 ®,(q)®;(¢) by Lemma 2, and, as 2 | h, we have
h s, and so pt ®4(q)P:(¢) by Lemma 1. Hence either s is prime or s = 1.

Suppose s is prime. Then h = 2™*tls. For, if this were not the case then we would have
h = 2™+ since 2§ ®5.(q) by Lemma 2, it follows that either p{ ®o.(q) (if s # p) or p||Pac(q) (if
s = p) by Lemma 1. The former possibility clearly contradicts (4); the latter implies ®5.(q) = p,
which is impossible as ®5.(q) > p by Lemma 3.

Therefore, since h = 2™ 1s, we have
(5) 2apb = @2m+1s(q)¢’2m+1 (q)

by (4). This implies m = 0 because otherwise (5) is impossible since we have p t ®om+1(q),
2||®om+1(q), and Pym+1(g) > 2 by Lemmas 1, 2, and 3 respectively. Therefore h = 2s and

2°p = B3 (q)Pas(q),

with 2% = ®5(q) = ¢+1 and p® = ®o,(q). But then ¢ = 2% —1, so that p = 2% —3. It is clear that
a > 2, hence p =5 (mod 8). Thus 2 is a quadratic nonresidue of p, and hence 2(P~1/2 = —1
(mod p) by Euler’s criterion. Since 2% | p—1 = 2% — 4, it follows that 22 | e,(2). But e,(2) = h,
and since h = 2s, we have 2||h, a contradiction.

Therefore s = 1 and hence ¢ = 2" for some integer m > 0. Thus (3) becomes
(6) 29p" = ¢*" + 1.
First let us suppose that m > 1. Then ¢?>" =1 (mod 4) so that a = 1. Hence
(7) 29" =" +1.
Since p | ¢ +1 = ®ymi1(q), it follows from Lemma 1 that h = 2™*!; recalling as well

h = e,(2), it follows that p = 1 (mod 2™*1). Since e,(2) = 2™*! and Pgm+1(2) = 22" +1, it
follows from Lemma 1 that

(8) p| 2% +1.
Suppose p = 2™+t + 1 for some odd integer t. Then, as 22" = —1 (mod p) by (8),

o(p=1)/2 _ 92™t _ (22m)t =(-1)'=-1 (mod p),
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and hence (%) = —1 by Euler’s criterion, where (—) denotes the Legendre symbol. But, p =1
(mod 8), which implies (%) = +1, a contradiction. Therefore
9) p=1 (mod 2™"?).
Suppose b > 2™. Then from (7) we have

. 2\*" 1
b—2
p p

By (9), p > 2™%2 and so

b—2m 1\*
2p < 1+2—m +1l1<e+1<4,

which implies 2p < 4, a contradiction. On the other hand, suppose b < 2. Then by (6),

2 = (1 + 3>b(p+2)2m—”+ ib >p+2)?2" " >p+2,
p p
a contradiction. Therefore we must have b = 2™, so that (7) becomes
(10) 27" =¢*" + 1.
Since ¢ = p + 2, (10) becomes

P =+ (p+2* +1

2m
2m m
(11) —§:(k)ﬁ‘*ﬁ+L
k=1

Since by (9) p > 2™ %2 we have for each k such that 1 <k < 2™,

([ G RV JE

k k!
mh 2™ —kok
1 1 om
R
Hence by (11),
11
2m 2 2 2m
p <22_k Ep +1<p (\/E—1+292—m><08p ,

a contradiction.
Hence we have (6) with either m = 0 or m = 1. If m = 0 then (6) becomes

2p’ =q+1=p+3,
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implying p | 3, and hence p = 3, ¢ = 5. Therefore 23” = 6, and so @ = b = 1, and we have the
RAP2 (5,6).

If m =1 then (6) becomes
2apb — q2 4 1’
which implies @ = 1 since ¢> = 1 (mod 4). Therefore
2= +1=(p+2°+1=p"+4p+5,

implying p | 5, and hence p = 5, ¢ = 7. Therefore 2 - 5° = 50, and so b = 2, and we have the
RAP2 (49,50). Therefore the only RAP2s of the form (¢, 2%p") are (5,6) and (49, 50).

We summarize our results from this and the previous section:

Theorem 1. The only RAP2s (n,n+1) such that {w(n),w(n+1)} = {1,2} are (5,6), (24,25),
and (49, 50).

5. RAP2s of the form (22"pgq,rs)

We now turn our attention to RAP2s (n,n + 1) where {w(n),w(n + 1)} = {2,3}. There are
88 such pairs less than 10%. Of these, 41 have the form (4pq,7s), six have the form (16pq,7s),
and three have the form (64pgq,rs), with p < ¢, r < s odd primes. Among the remaining 38
pairs, no discernable patterns emerged. These data led us to narrow our investigation to those
pairs of the form (22"pq,rs), n > 1.

Given such a pair, we have
(12) 24 p+qg=r+s,
(13) 22"pg+ 1 =rs.
By (12) we have integers x, y, and z such that
(14) r=x-—y, s=z+y,
(15) p=xz—1-z, g=z—1+z.
Substituting (14) and (15) into (13), and simplifying, gives us

(2" =D — (@ + 1))z~ 1) = (2" — y)(2"2 +y),

which may be expressed as

220 Dz — (227 +1 2"
(16) ( Je— @7+ 224y _a
2nz —y z—1 b

where a/b represents the fractions in (16) in their lowest terms; thus (a,b) = 1. Separating the
variables x, y, and z in (16) gives us

(2% — )bz + ay — 2"az = (22" +1)b,

ar — by — 2"bz = a,
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which we solve for x, y, in terms of z:

(17) (a® + (22" — 1)b?)z = 2" abz 4 a® 4 (277 + 1)1,

(18) (a® + (2% — 1))y = 2"(a® — (22" — 1)b?)z + 2ab.

Our data of RAP2s less than 10° revealed to us many different rational numbers for the quotient
a/b in (16), but some persisted more than others, especially 2/1 and 7/4 in the cases where

n = 1. Recognizing these values as solutions to the Pell equation a? — 3b*> = 1, we decided to
assume that a, b, solved the Pell equation

(19) a?— (22" -1 =1
in the general case for n > 1. Under this hypothesis, (17) and (18) simplify to

(2a* — 1)z = 2" abz + 2a% 4 2* — 1,
(20) (26 — 1)y = 2"z + 2ab.

It is well known (e.g., as shown by Shockley [7], Ch. 12) that all positive solutions to (19) are
given by

a; =27, by =1,
ajp1=2"a; + (27 = 1)b; (= 1),
(21) bjy1=a; +2"b; (j=1).

One shows by induction that 2" | a;b; for all j > 1. Hence we may parametrize z from (20):
since y is an integer it follows that 2a? — 1 divides 2"z + 2ab, and since 2a? — 1 is odd we have

2ab
z= —2% (mod 2a* — 1).
Thus z has the form given by

2ab
(22) z:(2a2—1)k+2a2—1—2—n
for integers k > 0. Substituting (22) into (17) and (18) gives us

(23) x = 2" tabk + 2" ab — 207 + 1,
(24) y = 2"k 4 2",

Substituting (22), (23), and (24) into (14) and (15) gives us

Theorem 2. Let integral n > 1 be given and let a, b, be solutions to the Pell equation (19).
Then (22"pq, rs) is a RAP2 if, for an integer k > 0, the following four quantities are all prime:

2ab
p=2(2""tab - 24* + 1)k + <2”+1 — 20 —2a% + 1+ 2%) ,

2ab
q=2(2""ab+2a® — 1)k + <2”+1 2?22 —1— 2%) ,

r=2""(2ab — 1)k + 2"(2ab — 1) — 20 + 1,
s = 2" (2ab 4+ 1)k +2"(2ab + 1) — 2b% + 1.
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Note that we substituted 2k instead of k£ to ensure p and ¢ as given in Theorem 2 are
odd. We also kept 2ab in the numerators above (rather than reduce to ab/2"~!) since the Pell
sequences (21) have the property bo; = 2a;b; (as well as ag; = 2a§ —1). Moreover, one shows by
induction that for all n and k, if as;, bs; in (21) are the solutions used in applying Theorem 2,
then at least one of p, ¢, r, and s is divisible by 3 (hence no RAP2 is produced).

There are 149 RAP2s of the form (227pq, rs) whose elements are less than 234. Of these, 116
correspond to n = 1, and 16 of these involve the solutions a; = 2, b = 1 of the Pell equation
a’® — 3b% = 1, while an additional 3 involve as = 7, by = 4. Also, 16 such RAP2s correspond to
n = 2, 3 of which involve the solutions a; = 4, b; = 1 of the equation a? — 15b*> = 1, and 9 of
the RAP2s correspond to n = 3, 3 of which involve a; = 8, by = 1 (a? — 63b®> = 1). Finally, 3
of the RAP2s involve n = 4.

We had found the RAP2s less than 234 by a straightforward computer search. Later on, we
applied Theorem 2 to search for the RAP2s of the special form described in that theorem. We
found literally thousands of them. We computed them on a PC, using the UBASIC software
package. Primality of p, ¢, r, s, were verified by the APR primality test due to Adleman,
Pomerance, and Rumely [1].

6. Concluding Remarks

It is unknown if there are infinitely many RAP2s. The question of infinitude also remains
open for ordinary Ruth-Aaron pairs—see Pomerance [6] for a detailed history. In light of
Theorem 2, fixing n at say n = 1, if one could show that for each solution a;, b;, 31 j, to (19),
there exists at least one k for which p, ¢, r, s, are all prime, then a proof of infinitely many
RAP2s of the form (4pq, rs) would be obtained. We have not been able to produce such a proof,
but we conjecture the existence of infinitely many RAP2s nonetheless.

We have also considered RAP2s (n,n + 1) for which {w(n),w(n+1)} = {1,4}. These would
be obtained by finding distinct odd primes pi, p2, p3, ¢, and positive integers a, by, bo, b3, c,
such that

(25) 2+ p1+p2+p3=gq,
and such that
(26) 20phphepl = ¢° + 1.

Let h = [ep, (9), €p,(q), €ps (q)]- Then py, pa, ps3, all divide ¢°—1 only if & | ¢, in which case ¢" —1
divides 2“pl{1 pSQ pg3. Thus if ¢" — 1 is found to contain any prime factors other than 2, pi, po,
p3, then a contradiction is obtained. Using modular arithmetic, we can find «, 51, B2, 03, such
that 2%(¢" — 1 and p}||¢" —1 (1 < i < 3). A contradiction is obtained if 20ptplpls < gh 1.

In the case of ¢ + 1, (26) becomes
2°ppyps® = [ [ ®alg)

d|2c
dte
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by (1). By Lemma 1, the primes p1, p2, p3, all divide ¢ + 1 only if e,, (q), €p,(q), and ey, (¢)
are all even such that each quantity is exactly divisible by the same power of 2. In this case
we have ¢"/? + 1 | 2“p?1 pg2 pg?’. Thus a contradiction is obtained if ¢"/2 + 1 contains any prime
factors other than 2, p1, po, or ps.

For all odd primes ¢ < 20000, we found all triples of odd primes p; < p2 < p3 satisfying (25),
and then we disproved the possibility of (25) and (26) by computation. We conjecture the
nonexistence of RAP2s (n,n+ 1) for which {w(n),w(n+1)} = {1,4}, although we have not yet
obtained a proof.
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