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Abstract

Certain arithmetic relations for the coefficients in the expansions of (q)r
∞, (q)r

∞(qt)s
∞, t =

2, 3, 4, were studied by M. Newman, S. Cooper, M. D. Hirschhorn, R. Lewis, S. Ahlgren and
R. Chapman. In this work, we prove similar identities for certain multi-product expansions
using an elementary method.

1. Introduction

For an integer r, let

(q)r
∞ =

∞∏
n=1

(1 − qn)r =
∑
n≥0

ar(n)qn, (1.1)

where q = e2πiz and Im(z) > 0 and let

fj(q) = (q)rj
∞(q2)sj

∞(q4)tj
∞, (1.2)

where rj, sj, tj are certain specific integers (see theorem). In this article we consider the
following products

fi(q
�)fk(q

m) =
∞∑

n=0

a(n)qn (l, m > 0),
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and prove certain identities involving the Fourier coefficients a(n) by elementary arguments.
Similar identities for eta powers and products of two eta functions were earlier obtained by
several authors [1, 3, 4, 5].

2. Statement of theorem

Let q be a complex number satisfying |q| < 1. It is readily checked that (−q)∞ =
(q2)3

∞
(q)∞(q4)∞

.

Let

f1(q) = (q)∞, f7(q) = f1(−q) =
(q2)3

∞
(q)∞(q4)∞

,

f2(q) = (q)3
∞, f8(q) = f2(−q) =

(q2)9
∞

(q)3
∞(q4)3

∞
,

f3(q) =
(q)2

∞
(q2)∞

, f9(q) = f3(−q) =
(q2)5

∞
(q)2

∞(q4)2
∞

,

f4(q) =
(q2)2

∞
(q)∞

, f10(q) = f4(−q) =
(q)∞(q4)∞

(q2)∞
,

f5(q) =
(q)5

∞
(q2)2

∞
, f11(q) = f5(−q) =

(q2)13
∞

(q)5
∞(q4)5

∞
,

f6(q) =
(q2)5

∞
(q)2

∞
, f12(q) = f6(−q) =

(q)2
∞(q4)2

∞
(q2)∞

.

Observe that each function fi(q) has the form fi(q) = (q)ri
∞(q2)si

∞(q4)ti
∞, for certain integers

ri, si, ti. By the triple product and quintuple product identities, we have [2, pp. 64–65 and
306–307], [4]

f1(q) =
∑

α≡1 (mod 6)

(−1)(α−1)/6q(α2−1)/24,

f2(q) =
∑

α≡1 (mod 4)

αq(α2−1)/8,

f3(q) =
∑
α

(−1)αqα2

,

f4(q) =
∑

α≡1 (mod 4)

q(α2−1)/8,

f5(q) =
∑

α≡1 (mod 6)

αq(α2−1)/24,

f6(q) =
∑

α≡1 (mod 3)

(−1)α−1αq(α2−1)/3, (2.1)

where in each case the sum is over all integers α, positive and negative, satisfying the given
congruence.
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For 1 ≤ i ≤ 12, let di = ri + 2si + 4ti and λi =
⌈

1
2
(ri + si + ti)

⌉
− 1. Let

(e1, e2, · · · , e12) = (1, 3, 24, 3, 1, 8, 1, 3, 24, 3, 1, 8),

(n1, n2, · · · , n12) = (6, 4, 1, 4, 6, 3, 6, 4, 1, 4, 6, 3).

Observe that di = ei unless i = 3 or 9, in which case d3 = d9 = 0. For 1 ≤ i ≤ 12 and p an

odd prime, define εi(p) =

(
ai

p

)
, where (a1, . . . , a12) = (3,−1, 1, 1,−3,−3, 6,−2, 1, 2,−6,−3).

The main purpose of this article is to prove the following result.

Theorem. Let � and m be positive integers, and let 1 ≤ j, k ≤ 12. Let p > 3 be any prime
satisfying

(−ejek�m

p

)
= −1 and put ∆ = p2−1

24
. Let fj(q

�)fk(q
m) =

∑∞
n=0 a(n)qn. Then the

coefficients a(n) satisfy

a(pn + (�dj + mdk)∆) = εj(p)εk(p)pλj+λka

(
n

p

)
.

Example. (j = 5, k = 10) We have f5(q) = (q)5
∞(q2)−2

∞ and f10(q) = (q)∞(q2)−1
∞ (q4)∞, so

(r5, s5, t5) = (5,−2, 0), (r10, s10, t10) = (1,−1, 1), d5 = r5 +2s5 +4t5 = 1, d10 = r10 +2s10 +

4t10 = 3, λ5 =
⌈

1
2
(r5 + s5 + t5)

⌉
− 1 = 1, λ10 =

⌈
1
2
(r5 + s5 + t5)

⌉
− 1 = 0.e5 = 1, e10 =

3, ε5(p) =
(
−3
p

)
, and ε10(p) =

(
2
p

)
. Let p be any prime satisfying

(
−e5e10�m

p

)
= −1, i.e.,(

−3�m

p

)
= −1. Let f5(q

�)f10(q
m) =

∑∞
n=0 a(n)qn. Then the Theorem implies

a(pn + (� + 3m)∆) =

(
−3

p

) (
2

p

)
p a

(
n

p

)
,

i.e.,

a(pn + (� + 3m)∆) =

(
−6

p

)
p a

(
n

p

)
.

3. Proofs

We shall require the following elementary lemma, which we state without further comment.

Lemma. Let � and m be positive integers and let p be an odd prime satisfying

(
−�m

p

)
= −1.

Let α and β be integers satisfying �α2 + mβ2 ≡ 0 (mod p). Then α ≡ 0 (mod p) and β ≡ 0
(mod p).

In order to illustrate the technique, we first prove the example, before proving the general
statement of the theorem.
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Proof of example. We have

f5(q
�)f10(q

m) =
∑

α≡1 (mod 6)

αq�(α2−1)/24
∑

β≡1 (mod 4)

(−qm)(β2−1)/8,

so

a(n) =
∑

α≡1 (mod 6), β≡1 (mod 4)

�(α2−1)/24+m(β2−1)/8=n

α(−1)(β2−1)/8

=
∑

α≡1 (mod 6), β≡1 (mod 4)

�α2+3mβ2=24n+�+3m

α(−1)(β2−1)/8.

Therefore
a(pn + (� + 3m)∆) =

∑
α≡1 (mod 6), β≡1 (mod 4)

�α2+3mβ2=24pn+(�+3m)p2

α(−1)(β2−1)/8. (3.1)

Now �α2 + 3mβ2 ≡ 0 (mod p), and the lemma implies p | α, p | β. Let

α =

(
−3

p

)
pα′, β =

(
−1

p

)
pβ′. (3.2)

Then α′ ≡ 1 (mod 6) and β′ ≡ 1 (mod 4). Also, modulo 2,

β2 − 1

8
− β′2 − 1

8
=

β2 − β′2

8

=
(p2 − 1)β′2

8

≡ p2 − 1

8

≡
{

0 if p ≡ 1 or 7 (mod 8)
1 if p ≡ 3 or 5 (mod 8)

Therefore

(−1)(β2−1)/8 =

(
2

p

)
(−1)(β′2−1)/8. (3.3)

Substituting (3.2) and (3.3) into (3.1) we get

a(pn + (� + 3m)∆) =
∑

α′≡1 (mod 6), β′≡1 (mod 4)

�α′2+3mβ′2=24n/p+�+3m

(
−3

p

)
pα′

(
2

p

)
(−1)(β′2−1)/8

=

(
−6

p

)
p a

(
n

p

)
.

This completes the proof of the example.

Proof of Theorem. Writing

fj(q
�)fk(q

m) =
∞∑

n=0

a(n)qn,
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we have, using (2.1),

a(n) =
∑

α≡1 (mod nj), β≡1 (mod nk)

ej�α2+ekmβ2=24n+dj�+dkm

φj(α)φk(β),

where
φ1(α) = (−1)(α−1)/6, φ7(α) = (−1)(α−1)/6+(α2−1)/24,

φ2(α) = α, φ8(α) = α(−1)(α2−1)/8,
φ3(α) = (−1)α, φ9(α) = 1,

φ4(α) = 1, φ10(α) = (−1)(α2−1)/8,

φ5(α) = α, φ11(α) = α(−1)(α2−1)/24,

φ6(α) = (−1)α−1α, φ12(α) = (−1)α−1+(α2−1)/3α.

Therefore
a(pn + (�dj + mdk)∆) =

∑
α≡1 (mod nj), β≡1 (mod nk)

ej�α2+ekmβ2=24pn+p2(dj�+dkm)

φj(α)φk(β).

Observe that ej�α
2 + ekmβ2 ≡ 0 (mod p). The Lemma implies p | α, p | β. Let

α =



(
−3

p

)
pα′ if j = 1, 5, 6, 7, 11 or 12

(
−1

p

)
pα′ if j = 2, 4, 8 or 10

pα′ if j = 3 or 9,

β =



(
−3

p

)
pβ′ if k = 1, 5, 6, 7, 11 or 12

(
−1

p

)
pβ′ if k = 2, 4, 8 or 10

pβ′ if k = 3 or 9.

Then it is easily verified that α′ ≡ 1 (mod nj) and β′ ≡ 1 (mod nk), and that φj(α) =
εj(p) pλj φj(α

′) and φk(β) = εk(p) pλk φk(β
′). Consequently,

a(pn + (�dj + mdk)∆) =
∑

α′≡1 (mod nj), β′≡1 (mod nk)

ej�α′2+ekmβ′2=24n/p+dj�+dkm

εj(p)εk(p)pλj+λkφj(α
′)φk(β

′)

= εj(p)εk(p)pλj+λk a
(

n
p

)
.

This completes the proof of the theorem.
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Remark. Though our theorem can be proved using the theory of lacunary modular forms,
we prefer to present an elementary proof for its simplicity.
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