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Abstract

We prove that for any k = 1, . . . , 2n the 2-adic order of the Stirling number S(2n, k) of the
second kind is exactly d(k) − 1, where d(k) denotes the number of 1’s among the binary
digits of k. This confirms a conjecture of Lengyel.

1. Introduction

For a nonzero integer m, if 2h is the highest power of two dividing m, then we say that the
2-adic order ρ2(m) of m is h. In this paper ρ2(·) is called the 2-adic valuation function.
Legendre observed that if n ∈ N = {0, 1, 2, . . . } then ρ2(n!) = n − d(n), where d(n) is
the number of 1’s in the binary representation of n, in other words d(n) =

∑∞
λ=0 ελ(n) if

n =
∑∞

λ=0 ελ(n)2λ with ελ(n) ∈ {0, 1}. Kummer proved that ρ2

((
n
k

))
= d(k)+d(n−k)−d(n)

whenever 0 ≤ k ≤ n.
Let n ∈ N. The Stirling numbers S(n, k) (k ∈ N) of the second kind are given by

xn =
∞∑

k=0

S(n, k)(x)k,

where (x)k = x(x − 1)(x − 2) . . . (x − k + 1) for k ∈ N \ {0} and (x)0 = 1. Actually S(n, k)
is the number of ways in which it is possible to partition a set with n elements into exactly
k nonempty subsets. For more details and basic results on Stirling numbers of the second
kind we refer the reader to [2] and [4].
In this paper we study 2-adic orders of Stirling numbers of the second kind, and establish
the following theorem which was conjectured by T.Lengyel [3] and verified by him in some
special cases.

Theorem 1. Let n, k ∈ N and 1 ≤ k ≤ 2n. Then we have

ρ2(S(2n, k)) = d(k) − 1.
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In the next section we reveal some useful properties of Stirling numbers of the second
kind. We are going to prove Theorem 1 in Section 3 on the basis of Section 2.

2. Auxiliary results on Stirling numbers of the second kind

The following identity relates the Stirling numbers of the second kind S(n + m, ·) to S(n, ·)
and S(m, ·).

Theorem 2. Let n, m, k ∈ N such that 0 ≤ k ≤ n + m. Then

S(n + m, k) =
k∑

i=0

k∑
j=i

(
j

i

)
(k − i)!

(k − j)!
S(n, k − i)S(m, j).

Proof. Let n, m ∈ N. Then

xn+m = xnxm =
n∑

r=0

S(n, r)(x)r

m∑
j=0

S(m, j)(x)j

=
n∑

r=0

S(n, r)(x)r

m∑
j=0

j!S(m, j)

(
x

j

)

=
n∑

r=0

S(n, r)(x)r

m∑
j=0

j!S(m, j)

j∑
i=0

(
x − r

i

)(
r

j − i

)
(by the Chu-Vandermonde identity)

=
n∑

r=0

S(n, r)
m∑

j=0

S(m, j)

j∑
i=0

j!

i!

(
r

j − i

)
(x)r+i

Thus, for any k = 0, 1, . . . , n + m we have

S(n + m, k) =
k∑

i=0

k∑
j=i

j!

i!

(
k − i

j − i

)
S(n, k − i)S(m, j)

=
k∑

i=0

k∑
j=i

(
j

i

)
(k − i)!

(k − j)!
S(n, k − i)S(m, j).

Remark: Stirling numbers of the second kind occur in a natural way while making calcu-
lations in the Witt ring (see [1] for further details). It was in this context that the previous
identity arose.
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Lemma 1. Let m, n ∈ N. Then

d(m + n) ≤ d(m) + d(n)

and equality holds if and only if

∞∑
λ=0

ελ(m)ελ(n) = 0,

i.e., when m and n have no non-zero binary digit in common.

Proof. If m and n have no non-zero binary digit in common then it is obvious that d(m+n) =∑
ελ(m + n) =

∑
(ελ(m) + ελ(n)) = d(m) + d(n). On the other hand, suppose that m and

n have a non-zero binary digit in common. Let us say that λ0 is the lowest natural number
such that ελ0(m) = ελ0(n) = 1. Then it is clear that ελ0(m + n) = 0 and 1 is added to
ελ0+1(m)+ελ0+1(n) to obtain an expression for ελ0+1(m+n). Anyhow, at least one non-zero
binary digit is lost in d(m + n).

Remark: The case d(m+n) = d(m)+d(n)−1 occurs if and only if ελ0+1(m) = ελ0+1(n) = 0
with λ0 the unique natural number such that ελ0(m) = ελ0(n) = 1.

A new lower bound on the 2-adic order of Stirling numbers of the second kind can be
obtained as follows.

Theorem 3. Let n, k ∈ N and 0 ≤ k ≤ n. Then

ρ2 (S(n, k)) ≥ d(k) − d(n).

Proof. We use induction on n.

For n = 0, ρ2(S(0, 0)) = ρ2(1) ≥ d(0) − d(0).

Assume now that the above inequality is true for all i < n. We will prove the theorem
for n. Observe that for k = 0 the result is obviously true.
Let 1 ≤ k ≤ n. The Stirling numbers of the second kind satisfy the well-known ‘vertical’
recurrence relation

S(n, k) =
n−1∑

i=k−1

(
n − 1

i

)
S(i, k − 1).

Combining this with the ‘triangular’ recurrence relation

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k)
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we obtain

kS(n, k) =
n−1∑

i=k−1

(
n

i

)
S(i, k − 1).

Thus

ρ2(kS(n, k)) = ρ2

(
n−1∑

i=k−1

(
n

i

)
S(i, k − 1)

)

≥ min
k−1≤i≤n−1

{ρ2

((
n

i

))
+ d(k − 1) − d(i)}

(by the induction hypothesis)

= min
k−1≤i≤n−1

{d(n − i) + d(k − 1) − d(n)}

(by the Kummer identity)

= d(k − 1) − d(n) + 1.

So,

ρ2(S(n, k)) ≥ d(k − 1) − ρ2(k) + 1 − d(n)

= d(k) − d(n).

3. Proof of Lengyel’s conjecture

We use induction on n. For n = 0, ρ2(S(1, 1)) = ρ2(1) = 0 = d(1) − 1. We assume the
theorem is true for all powers 2i where i < n. We will prove that the theorem holds for 2n.
By Theorem 2

S(2n, k) =
k∑

i=0

k∑
j=i

(
j

i

)
(k − i)!

(k − j)!
S(2n−1, k − i)S(2n−1, j). (1)
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We will take a closer look at the 2-adic valuation of each term in this sum (1).

ρ2

((
j

i

)
(k − i)!

(k − j)!
S(2n−1, k − i)S(2n−1, j)

)
= ρ2

((
j

i

))
+ ρ2((k − i)!) − ρ2((k − j)!) + ρ2(S(2n−1, k − i)) + ρ2(S(2n−1, j))

= ρ2

((
j

i

))
+ ρ2((k − i)!) − ρ2((k − j)!) + d(k − i) + d(j) − 2

(by the induction hypothesis)

= d(i) + d(j − i) − d(j) + (k − i) − d(k − i) − (k − j) + d(k − j) + d(k − i) + d(j) − 2

(by the Kummer and Legendre identities)

= d(i) + d(j − i) + j − i + d(k − j) − 2.

The inequality of Lemma 1 implies that

d(i) + d(j − i) + j − i + d(k − j) − 2 ≥ d(j) + j − i + d(k − j) − 2 ≥ d(k) − 2 + j − i.

Since j ≥ i, the 2-adic valuation of every term in the sum is at least d(k) − 2. To prove
that the 2-adic valuation of the global sum (1) equals d(k) − 1 we will calculate the num-
ber of terms with 2-adic valuation d(k) − 2 and the number of terms with 2-adic valuation
d(k)−1. These two results together will show that the 2-adic valuation of (1) equals d(k)−1.

For k = 1 the theorem holds since ρ2(S(2n, 1)) = ρ2(1) = 0 = d(1) − 1, for all n ∈ N.
So assume k �= 1.

Case 1 : d(i) + d(j − i) + j − i + d(k − j) − 2 = d(k) − 2.

Since d(i) + d(j − i) + d(k − j) ≥ d(k) and j ≥ i, this situation can occur only when j = i
and d(i) + d(k − i) = d(k). By Lemma 1 this holds only when i and k − i have no non-zero
binary digit in common, or equivalently, when ελ(i) + ελ(k − i) = ελ(k), for all λ ∈ N.
If ελ(k) = 1 (this occurs d(k) times), the possible values for ελ(i) are 0 and 1.
If ελ(k) = 0, then ελ(i) = 0 as well.
So, for a given k, there are 2d(k) possibilities for i = j. We need to modify this number of
possibilities since it includes the non-occurring situations i = j = 0 and i = j = k. This
means we have 2d(k) − 2 terms in (1) with 2-adic valuation d(k) − 2.
In the case where d(k) = 1, i.e. k = 2m, there are no terms satisfying the condition. When
d(k) > 1, these 2d(k) − 2 terms contribute, in total, M2d(k)−1 to (1).
We will show that M is odd. Let O(i) be the odd part of S(2n−1, i). Consider the sum in
this case
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k−1∑
i=1

d(i)+d(k−i)=d(k)

S(2n−1, k − i)S(2n−1, i)

=
k−1∑
i=1

d(i)+d(k−i)=d(k)

O(k − i)O(i)2d(k)−2.

The latter expression is invariant under switching i and k − i and since i = k/2 (in the case
k even) never occurs (d(k/2) + d(k/2) = 2d(k) �= d(k)) we obtain

k−1∑
i=1

d(i)+d(k−i)=d(k)
i<k/2

O(k − i)O(i)2d(k)−1.

This last expression consists of an odd number, 2d(k)−1 − 1, of terms, so it contributes, in
total, M2d(k)−1 to (1), where M is odd.

Case 2 : d(i) + d(j − i) + j − i + d(k − j) − 2 = d(k) − 1.

Since d(i)+d(j− i)+d(k− j) ≥ d(k) and j ≥ i, this situation can occur only when j = i+1
and d(i) + d(k − i − 1) = d(k) − 1 or when j = i and d(i) + d(k − i) = d(k) + 1.

Case 2.1 : d(i) + d(k − i − 1) = d(k) − 1 and j = i + 1.

Since d(k−1) ≤ d(i)+d(k− i−1) = d(k)−1, k must be odd. We have d(i)+d((k−1)− i) =
d(k − 1). As in Case 1, there are 2d(k−1) possible values for i (the case i = k doesn’t occur
and the case i = 0 and j = 1 is allowed). This is an even number of terms since k �= 1.

Case 2.2 : d(i) + d(k − i) = d(k) + 1 and j = i.

By Lemma 1 this can occur only when there is just one value of λ ∈ N for which ελ(i) =
ελ(k−i) = 1. Moreover one must have ελ+1(i) = ελ+1(k−i) = 0. This implies that ελ(k) = 0
and ελ+1(k) = 1. Following the same reasoning as in Case 1 with the remaining d(k) − 1
non-zero binary digits of k, we have 2d(k)−1 possibilities for i (the cases i = 0 and i = k don’t
occur).
So there are 2d(k)−1 terms in (1) which come under Case 2.2 (and thus have 2-adic valuation
d(k) − 1). When d(k) = 1, this number is 1, otherwise it is even.

After considering all the possible cases and counting the number of terms with 2-adic valu-
ation d(k) − 2 and 2-adic valuation d(k) − 1, we can conclude that ρ2(S(2n, k)) = d(k) − 1.
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An overview of all the cases is given in the following table.

Case 1

coefficient of 2d(k)−2

Case 2.1

coefficient of 2d(k)−1

Case 2.2

coefficient of 2d(k)−1
coefficient of 2d(k)−1

d(k) = 1 (k �= 1) 0 0 odd odd

d(k) > 1 & k odd 2 x odd even even odd

d(k) > 1 & k even 2 x odd 0 even odd
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