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Abstract

We prove that for any £ = 1,...,2" the 2-adic order of the Stirling number S(2", k) of the
second kind is exactly d(k) — 1, where d(k) denotes the number of 1’s among the binary
digits of k. This confirms a conjecture of Lengyel.

1. Introduction

For a nonzero integer m, if 2" is the highest power of two dividing m, then we say that the
2-adic order py(m) of m is h. In this paper ps(-) is called the 2-adic valuation function.
Legendre observed that if n € N = {0,1,2,...} then py(n!) = n — d(n), where d(n) is
the number of 1’s in the binary representation of n, in other words d(n) = >\ ex(n) if
n =33 ,ex(n)2* withex(n) € {0,1}. Kummer proved that ps ((})) = d(k)+d(n—k)—d(n)
whenever 0 < k < n.

Let n € N. The Stirling numbers S(n, k) (k € N) of the second kind are given by

S(n, k) (),

" =

o]
k=

where (z)y = z(x — 1)(z —2)...(x = k+1) for k € N\ {0} and (z)o = 1. Actually S(n, k)
is the number of ways in which it is possible to partition a set with n elements into exactly
k nonempty subsets. For more details and basic results on Stirling numbers of the second
kind we refer the reader to [2] and [4].

In this paper we study 2-adic orders of Stirling numbers of the second kind, and establish
the following theorem which was conjectured by T.Lengyel [3] and verified by him in some
special cases.

Theorem 1. Let n,k € N and 1 < k < 2". Then we have

p2(S(27, k) = d(k) — 1.
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In the next section we reveal some useful properties of Stirling numbers of the second
kind. We are going to prove Theorem 1 in Section 3 on the basis of Section 2.

2. Auxiliary results on Stirling numbers of the second kind

The following identity relates the Stirling numbers of the second kind S(n + m,-) to S(n,-)
and S(m, ).

Theorem 2. Let n,m,k € N such that 0 < k <n-+m. Then

NE=i
()5 stk - st

p = "™ =Y S(n,r)(x), Yy S(m, §)(x);

_ zn:S(n,r)(m)riﬂS(mJ) ,j (m;r)( : )

j—i
(by the Chu-Vandermonde identity)

Thus, for any £ =0,1,... ,n+m we have

k k . .
S(n+m, k) = sz—!(k_z> S(n, k — i)S(m, 5)

isz:ii! g
S (5 (k=) . .
— . Y n, -1 m,J).
S (1) =gy Stk st

O

Remark: Stirling numbers of the second kind occur in a natural way while making calcu-
lations in the Witt ring (see [1] for further details). It was in this context that the previous
identity arose.
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Lemma 1. Let m,n € N. Then
d(m+n) < d(m)+d(n)

and equality holds if and only if

o
E 6>\(m)6>\(n) = 0,
A=0
i.e., when m and n have no non-zero binary digit in common.

Proof. 1f m and n have no non-zero binary digit in common then it is obvious that d(m+n) =
Yoex(m+n) = (ex(m) +ex(n)) = d(m) 4+ d(n). On the other hand, suppose that m and
n have a non-zero binary digit in common. Let us say that \g is the lowest natural number
such that €),(m) = €),(n) = 1. Then it is clear that €),(m +n) = 0 and 1 is added to
Exot1(m)+ex,11(n) to obtain an expression for ), 11(m+n). Anyhow, at least one non-zero
binary digit is lost in d(m + n). O

Remark: The case d(m+n) = d(m)+d(n)—1 occurs if and only if £5,11(m) = er,41(n) =0
with Ag the unique natural number such that €),(m) = ¢),(n) = 1.

A new lower bound on the 2-adic order of Stirling numbers of the second kind can be
obtained as follows.

Theorem 3. Letn,k € N and 0 < k <n. Then

p2 (S(n, k) > d(k) —d(n).
Proof. We use induction on n.
For n = 0, pa(S(0,0)) = pa(1) = d(0) — d(0).

Assume now that the above inequality is true for all ¢ < n. We will prove the theorem
for n. Observe that for k = 0 the result is obviously true.

Let 1 < k < n. The Stirling numbers of the second kind satisfy the well-known ‘vertical’
recurrence relation

S(n, k) = ’n (”‘1

i=k—1

stk =1

i
Combining this with the ‘triangular’ recurrence relation

S(n,k)=Sn—-1,k—1)+kS(n—1,k)
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we obtain
n—1 n
=) (,)S(i,k— 1).
imho1 N
Thus
n—1
pa(kS(n, k)) (Z() zk—l))
i=k—1
. n .
(by the induction hypothesis)
= k—lrgilgn—l{d(n —i)+d(k—1)—d(n)}
(by the Kummer identity)
=d(k—1)—d(n)+ 1.
So,

3. Proof of Lengyel’s conjecture

We use induction on n. For n = 0, pa(S(1,1)) = p2(1) = 0 = d(1) — 1. We assume the
theorem is true for all powers 2¢ where ¢ < n. We will prove that the theorem holds for 2™.
By Theorem 2

5(2’1,@:22() Z P g(2n 1 k— i) 82", ). (1)

=0 j=t
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We will take a closer look at the 2-adic valuation of each term in this sum (1).

(= a5

=2 (1)) + oallh = 00 = palll = )0+ pu(SC2 = )+ S )

=2 (1)) * oallh = 00 = pallh = 31+ e =)+ )~ 2
(by the induction hypothesis)
=d(i)+d(j—1i)—df)+(k—1i)—dk—1i)—(k—j)+dk—j)+dk—1i)+d(j) — 2
(by the Kummer and Legendre identities)
=d(i)+d(j—i)+j—i+dk—j)—2

The inequality of Lemma 1 implies that
di@)+d(j—i)+j—i+dk—j)—2>d(y)+j—i+dk—j)—2>dk)—24+7—1i.

Since j > i, the 2-adic valuation of every term in the sum is at least d(k) — 2. To prove
that the 2-adic valuation of the global sum (1) equals d(k) — 1 we will calculate the num-
ber of terms with 2-adic valuation d(k) — 2 and the number of terms with 2-adic valuation
d(k)—1. These two results together will show that the 2-adic valuation of (1) equals d(k)—1.

For k =1 the theorem holds since po(S(2",1)) = p2(1) =0 =d(1) — 1, for all n € N.
So assume k # 1.

Case 1: d(i)+d(j—i)+j—i+dk—j)—2=d(k)—2.

Since d(i) + d(j — i) + d(k — j) > d(k) and j > i, this situation can occur only when j =i
and d(i) + d(k — i) = d(k). By Lemma 1 this holds only when ¢ and k — ¢ have no non-zero
binary digit in common, or equivalently, when £,(7) + ex(k — i) = e\(k), for all A € N.

If (k) = 1 (this occurs d(k) times), the possible values for (i) are 0 and 1.

If ex(k) =0, then ,(z) = 0 as well.

So, for a given k, there are 24*) possibilities for i = j. We need to modify this number of
possibilities since it includes the non-occurring situations ¢ = 7 = 0 and ¢ = j = k. This
means we have 2¢%) — 2 terms in (1) with 2-adic valuation d(k) — 2.

In the case where d(k) = 1, i.e. kK = 2™, there are no terms satisfying the condition. When
d(k) > 1, these 2%%) — 2 terms contribute, in total, M2*)~1 to (1).

We will show that M is odd. Let O(i) be the odd part of S(2"7! i). Consider the sum in
this case
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k-1

> S@ k=S

d(i)+d(k—i)=d(k)
k—1

= > O(k—1)0(i)2"M 2,
d(i)+d(ik:fli):d(k)
The latter expression is invariant under switching ¢ and k — ¢ and since ¢ = k/2 (in the case
k even) never occurs (d(k/2) + d(k/2) = 2d(k) # d(k)) we obtain
k-1
Y Ok — )02

=1
A()+d(k—i)=d(k)
i<k/2

This last expression consists of an odd number, 24¥)~1 — 1 of terms, so it contributes, in
total, M29K)=1 to (1), where M is odd.

Case 2 : d(i) +d(j—i)+j—i+dk—j)—2=d(k)—1.

Since d(i)+d(j —i)+d(k—j) > d(k) and j > i, this situation can occur only when j = i+1
and d(i) +d(k —i—1) =d(k) — 1 or when j =i and d(i) + d(k — i) = d(k) + 1.

Case 2.1 : d(i)+d(k—i—1)=d(k)—1and j =i+ 1.

Since d(k—1) < d(i)+d(k—i—1) = d(k) — 1, k must be odd. We have d(i)+d((k—1)—1i) =
d(k —1). As in Case 1, there are 2%*~1) possible values for i (the case i = k doesn’t occur
and the case i = 0 and j = 1 is allowed). This is an even number of terms since k # 1.

Case 2.2 : d(i) +d(k —i) =d(k)+1 and j =i.

By Lemma 1 this can occur only when there is just one value of A € N for which (i)
ex(k—1i) = 1. Moreover one must have £)11(i) = exy1(k—1i) = 0. This implies that £, (k) =
and €)41(k) = 1. Following the same reasoning as in Case 1 with the remaining d(k)
non-zero binary digits of k, we have 29%)~! possibilities for i (the cases i = 0 and i = k don’t
occur).

So there are 2¢*)=1 terms in (1) which come under Case 2.2 (and thus have 2-adic valuation
d(k) —1). When d(k) = 1, this number is 1, otherwise it is even.

0
1

After considering all the possible cases and counting the number of terms with 2-adic valu-
ation d(k) — 2 and 2-adic valuation d(k) — 1, we can conclude that po(S(2",k)) = d(k) — 1.
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An overview of all the cases is given in the following table.

Case 1

coefficient of 24(k)—2

Case 2.1

coefficient of 24(k)—1

Case 2.2

coefficient of 24(k)—1

coefficient of 2dk)-1

d(k) =1 (k #1)

d(k) > 1 & k odd

d(k) >1 & k even

2 x odd

2 x odd

even

odd

even

even

odd

odd

odd
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