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Abstract

In this article, we study short intervals that contain “almost squares” of the type: any integer
n which can be factored in two different ways n = a1b; = asby with ay, as, by, by close to v/n.

1. Introduction

In [1], the author studied the problem of finding “almost squares” in short intervals, namely:

Question 1. For0 < 0 < 1/2, what is the least f(0) such that, for some constants ¢y, cy > 0,
any interval [z —c270) x4+ 127 O] contains an integer n with n = ab, where a, b are integers
i the interval [:1:1/2 —cox? 2% + CQ.TH] ? Note: The constants ¢; and co may depend on 0.

A similar question is the following.

Question 2. For(0 < 0 < 1/2, what is the least g(0) such that, for some constants c1,cs > 0,
any interval [z — clazg(@),x + clxg(e)] contains an integer n with n = a;by = agby, where
ay < ay < by < by are integers in the interval [x'/? — coa® 2% 4 c,2%)? Note: The constants
c1 and co may depend on 6.

Note: We first considered Question 2 and then turned to Question 1, which has con-
nections to problems on the distribution of n?a (mod 1) and gaps between sums of two
squares.

In [1], we showed that f(f) =1/2 when 0 < 6 < 1/4, f(1/4) =1/4 and f(0) > 1/2 — 6.
We conjectured that f(f) = 1/2 — 6 for 1/4 < # < 1/2 and gave conditional result when
1/4 < 6 < 3/10. For Question 2, we have the following result.

Theorem 1. For 0 < 6 < 1/4, g(6) does not ezist (i.e. all possible products of pairs of
integers in [£1/% — cox? 2% + c22%) are necessarily distinct for large x).
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Theorem 2. For1/4 <60 <1/2, g(6) >1—26.

Theorem 3. For1/4<6<1/3, g(f) <1-—86.

We believe that the lower bound is closer to the truth.

Conjecture 1. For1/4 <6 <1/2, g(f) =1—26.

2. Preliminaries and 0 < 6 < 1/4

Suppose n = ab; = agby with 212 —co2? < ay < ay < by < by < 22492, Let dy = (ay, as)
and dy = (b1, be) be the greatest common divisors. Then we must have dy,dy > 1. Otherwise,
if d; = 1, then a divides b; which implies /2 + coz? > by > 2a9 > 222 — 2¢92?. This is
impossible for large x as 0 < 1/2. Now, let a1 = dyeq, as = dyea, by = dof) and by = da fo.
Here (e1,e3) =1 = (f1, f2). Then

n = dieidsfi = dieadafo  gives e fi = eafs.

Due to co-primality, es = f; and e; = f5. Therefore,

n = (d1€1)<d262) = <d1€2)<d2€1> (1)
with 1 < dj < ds, 1 < ey and (e, e3) = 1.

Now, from as — a1 < 2c02?, di < dies — dier < 2¢02%. Similarly, one can deduce that

da, €1, €3 < 2cq1 0 1,1/2-6 _ 1

, we have dqi,e; > 5es 5-

. Moreover, as die; = a; > z'/? — cox

Similarly, do, es > ﬁxl/%a — % Summing up, we have
L.ﬁlll/z*a — 1 < d17 dg, €1, €9 < 202Q30. (2)
202 2 -

From (2), we see that no such n exists for 0 < 6 < 1/4 and hence Theorem 1 follows.

3. Lower bound for ¢(0)

From (1) and (2), we see that an integer n = a1b; = asby, satisfying the conditions for
ai,as, by, by in Question 2, must be of the form:

1 1
n = (d1€1>(d2€2) with 2—‘%1/279 — 5 S dl, dg, €1, €9 S 262279
C2
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and 22 — coz? < dyey < dyey, dyey < dyes < V% + coz?. In particular, eady — eady < 202
which implies ey, — e; < 2¢p2? /dy. Similarly, dy — d; < 2co2?/e5. Thus, the number of such
tuples (dy, ds, €1, €2) is bounded by
x@ $9 LEQG 0, . 30—1/2+¢
< Z s < Sl = 2+
21/2-0 < dy eax?
21/2 —coxf<dses<al/2+coxf

for any € > 0 as the number of divisor function d(n) < n¢. It follows that there are at most
< 2%971/2%¢ such integers n in the interval [z — cox'/?+9/3 1 + cyz'/?+9/3]. Therefore, there
exist two consecutive such n’s with difference
21/2+0

> e =7

1-260—¢
$39_1/2+6 :

Pick y to be the midpoint between these two integers. Then, for some constant ¢ > 0,
the interval [y — cy'=%~¢ y + cy'~2~¢] does not contain any integer n = a;b; = asby with
Y2 — ey /2 < ay < ag < by < by <YY2 4+ cy?/2, as w — cpr/?0 )3 <y < + cpx'/?H0)/3.
Consequently, for any constants ¢, ¢ > 0, there is an arbitrarily large y such that the interval
[y — cy' =272y + cy'=2072¢] does not contain any integer n = ab; = asby with y*/2 — /y? <
ay < ag < by < by < y'? 4 y’. Therefore, g(f) > 1 — 20 — 2¢ which gives Theorem 2 by
letting € — 0.

4. Upper bound for g(0)

In this section, we prove Theorem 3. For any large x, set N = [2'/4] and & = {2'/*}, the

integer part and fractional part of 2'/4 respectively. Based on (1), we choose, for 0 < € < 1/2,
N +s N +s
di =qN +711, dy =qN + 13, € = . L ey = . 2 (3)

for some 1 < ¢ < N, 0 <7ry,r9 < N and s1,8, < g with N = —s; = —sy (mod ¢). Our
goal is to make

+ 51 N + s

v =(N €)' = N+ AN + O(N?) = (N + 1)

(gN +12)

:[N2+ <Q+31>N+ @} [N2+ (9 +32)N+ @]
q q q q

™+ 718 798 r r
:N4+( - , 2+sl+52>N3+ [%+%+(j+sl)<f+52)]l\ﬂ

7181 (T T9So (T 7151728
LY I Y B P
q9 \¢q q9 \q q
By Dirichlet’s Theorem on diophantine approximation, we can find an integer 1 < q¢ < N¢
such that

(4)

1
gN¢

1e—l<
q
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for some integer p. Fix such a ¢q. Then, pick s; < s3 < 0 to be the largest two integers

such that N = —s; = —sy (mod ¢). Clearly, s1,s2 < ¢q. Then, one simply picks some

0 < r; <ry < ¢?such that % + 81 + 89 = g. With these values for ¢, 7,79, 51, S2, (4)

becomes

r & N'+ AN+ O(N*) + O(¢°N?) + O(¢’N) + O(q").

Hence, we have just constructed an integer n = dje;dses which is within O(N37€)4+O(N?2%¢) =
O(z%4=</*) + O(2'/?+</%) = O(2*/*=</*) from = if ¢ < 1/3. One can easily check that a; =

dier, by = dyey, ag = dyey and by = dye; are in the interval [21/2 — Cg/4+e/4 g1/2 4 Cpt/4+e/4]

for some constant C' > 0. Set § = 1/4 + ¢/4. We have, for some C’ > 0, n = a;b; =

asby in the interval [z — C'2'~% x + C'217%] such that a; < a,by < b are integers in
[21/2 — C2?, 21/ + C2%), provided 1/4 < 6 < 1/4+1/12 = 1/3. This proves Theorem 3.

5. Open questions

Conjecture 1 may be too hard to prove at the moment. As a possible starting point, one
can attempt to show that g(1/4) = 1/2, or even just g(1/4) < 3/4. Another possibility is
to try to obtain some conditional results, as in [1]. Also, one may consider g(#) when 6 is
near 1/2. This leads to the problem about gaps between integers that have more than one
representation as a sum of two squares.
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