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Abstract

Let Fq be a finite field with q elements, F̄q an algebraic closure of Fq, and An
(
F̄q

)
an n-

dimensional affine space over F̄q. Let C be an affine absolutely irreducible curve in An
(
F̄q

)
.

We interpret the points of C over Fq as points in the cube [−1, 1]n−1. The main result of
this paper is an asymptotic formula for the distribution of points of C in [−1, 1]n−1 provided
the characteristic p of Fq is large, while n, logp q are fixed, and the degree of C is bounded.
When p = q, this becomes a recent result of Cobeli and Zaharescu.

Keywords: finite field, curves over finite fields, distribution of points, Bombieri’s inequality, principle of
Lipschitz, Weil’s theorem.
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1. Introduction

This paper gives a generalization the main result of Cobeli and Zaharescu [3]. The main
result of [3] generalizes that of Zheng [7] and partially generalizes that of Zhang [6]. This
will be explained in detail below.

Let p be prime number, and q = pm. Let C be a curve of degree d in an affine space
Ar(F̄q), where F̄q is an algebraic closure of a finite field with q elements Fq. The goal of this
paper is to study the distribution of the points of C in the cube [−1, 1]mr−1 ⊆ Rmr−1.

Let us begin by explaining how the points of C are interpreted as points of [−1, 1]mr−1.

The resulting set will be called ÑC. We assume that C is not contained in a hyperplane 1 of
Amr(F̄p). There is a bijection between Fp = Z/pZ and {0, . . . , p − 1} via l + pZ �→ l. Then

1In this paper, all hyperplanes are assumed to be affine, i.e. given by an equation
∑mr

k=1 αkxk = c for
some c, α1, . . . , αmr ∈ Fp.
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Fq can be identified with {0, . . . , p − 1}m, and it makes sense to consider the set

NC = {x = (x1, . . . , xmr) ∈ {0, . . . , p − 1}mr | x ∈ C}. (1)

In general, each such an identification of C with NC corresponds to a basis of Fq over Fp.
Nevertheless, the main result of this paper, Theorem 1, is independent of this choice.

Sometimes we will prefer to think of NC as a subset of Fmr
p . This is legitimate because

NC will be regarded as the domain of some p-periodic functions related to the exponential

function e
2πix

p .

Definition 1 We will write e(t) instead of e2πit.

Next we consider the map

˜ : Rmr → Rmr−1, x = (x1, . . . , xmr) �→ x̃ = (x̃1, . . . , x̃mr−1), (2)

where

x̃j =
xj+1 − xj

p
. (3)

In this paper we obtain some asymptotic results about the the set

ÑC (4)

endowed with the probability measure µC defined by the formula

µC(Ω) =
#{x ∈ NC | x̃ ∈ Ω}

#NC
. (5)

By placing some restrictions on C, the denominator of (5) may be estimated by a well
known theorem of A. Weil. Therefore, the point of this paper is to estimate the numerator
of (5). This will involve the theorems of Bombieri ([1], Th. 6, p. 97), Davenport [4], and
Weil. Our proof extends that of Cobeli and Zaharescu [3].

Before formulating the main result of this paper, Theorem 1, we would like to describe a
certain class Dn(h) of subsets in Rn. (A more general class has been introduced in an impor-
tant paper of Davenport [4].) Our Definition 3 below is more restrictive than Davenport’s
because we additionally impose Conditions 4 and 5.

Remark 1 It would be desirable not only to relax these restrictions in Definition 3, but also
to generalize the main result of [4].

To make the formulation of Definition 3 less cumbersome, we introduce the following
auxiliary
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Definition 2 Let X ⊆ Rn and τ > 0. We introduce the following tessellation of Rn:

Rn =
⋃
t∈Zn

(1/τ)t + [0, 1/τ ]n. (6)

1. We define the sets Iτ (X) and Eτ (X) to be the unions of cubes in (6) contained in X

and intersecting X, respectively.

2. For any ε > 0, we define the set Eτ,ε (X) = X ∪∆τ,ε , where ∆τ,ε consists of the points
of Eτ (X) whose standard distance to the boundary of Eτ (X) is at least ε.

Now we are ready to give the following

Definition 3 Let X ⊆ Rn and h a positive integer. Then X ∈ Dn(h) if all of the following
conditions are satisfied:

1. X is compact.

2. Any line parallel to one of the n coordinate axes intersects X in at most h intervals.

3. The same is true for any m ∈ {1, . . . , n − 1} and any projection of X on any of the
m-dimensional coordinate subspaces.

4. Let V (·) denote the (n-dimensional) volume of the set. Then V (X) exists and has the
following properties: V (X)−V (Iτ (X)) = OX(1/τ) and V (X)−V (Eτ (X)) = OX(1/τ)
as τ → +∞.

5. There exists τ0 ≥ 1, depending on X, such that for any τ ≥ τ0,

(a) All but OX(τn−1) vertices of the grid (6) in Iτ (X) possess the following property.
For a vertex v there exists a cube Cv of (6) with v ∈ Cv ⊆ X.

(b) Any vertex w ∈ Eτ (X)�X of the grid (6) is a boundary point of Eτ (X).

(c) The sets Iτ (X), Eτ (X), and Eτ,ε (X), for any ε > 0, satisfy Conditions 2 and 3
of this definition.

In some situations, the values of h or n are irrelevant. Therefore, we consecutively define
the following two classes of sets:

Definition 4 Dn =
⋃∞

h=1 Dn(h).

Definition 5 D =
⋃∞

n=1 Dn.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5 (2005), #A04 4

At this point, we would like to recall the main result of Davenport [4]. We state it for a
possibly smaller class of sets, as explained above.

Remark 2 Let X ∈ Dn(h), N(X) the number of points with integral coordinates in X,
V (X) the n-dimensional volume of X, Vj(X) the sum of the j-dimensional volumes of the
projections of X on all the j-dimensional coordinate subspaces, and V0(X) = 1 by definition.
Then

|N(X) − V (X)| ≤
n−1∑
j=0

hn−jVj(X). (7)

Next we define the function gn. Its support is a polytope contained in the cube [−1, 1]n.
The function gn will be used to define the probability measure µC in Theorem 1.

Definition 6

gn(t1, . . . , tn) = max

{
0, min

1≤k≤n

{
1, 1 −

k∑
s=1

ts

}
+ min

1≤k≤n

{
0,

k∑
s=1

ts

}}
. (8)

The main result of this paper is the following

Theorem 1 Let {qj} an increasing sequence of powers of primes {pj} with logpj
qj = m =

const. Let Cj be an irreducible affine algebraic curve in Ar(F̄qj
) of degree ≤ d = const.

Suppose that Cj is not contained in a hyperplane of Amr(F̄pj
). Then for any Ω ∈ Dmr−1,

µCj
(Ω) =

∫
Ω

gmr−1(t)dt + Om,r,d,Ω

(
q
− 1

2(mr+1)

j ln
mr

mr+1 qj

)
(9)

as j → +∞. (Here ln(·) denotes the logarithm to base e.)

In other words, the measures µCj
weakly converge, as j → +∞, to µmr−1 with density

function gmr−1. We believe that Theorem 1 is of interest because gmr−1 is independent of d,
{qj}, {Cj}.

Corollary 2 If m = 1, then Theorem 1 becomes the main result of Cobeli and Zaharescu
[3]. In turn, let f ∈ Z[x, y] be of degree d ≥ 2, and suppose that f is absolutely irreducible
modulo all large primes. If Cj is a plane curve obtained by reducing f modulo pj, then we
obtain the main result of Zheng [7]. Finally, if the curve is of the form f(x, y) = xy − 1,
then we partially recover the main result of Zhang [6].
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Remark 3 Theorem 1 may be strengthened as follows: m and r may be allowed to depend
on the curve, provided they are bounded. This formulation of Theorem 1 leaves only finitely
many possibilities for the values of m and r, and therefore the same proof is valid in this
situation as well.

Remark 4 It may be of interest to prove that the formula

νC(Ω) =
#ÑC ∩ Ω

#ÑC

defines an asymptotically well defined conditional probability measure on Rmr−1, and to com-
pare its asymptotic behavior to that of µC.

Remark 5 By Weil’s theorem, the number of points in the projective closure of the curve

Cj is qj +Om,r,d

(
q
1/2
j

)
. By the assumptions in Theorem 1, however, the same estimate holds

for the curve Cj itself. A similar observation about the more general Lang-Weil estimates
of [5] has been made in [2], p. 120. This observation also allows us to apply the result of
Bombieri ([1], Th. 6, p. 97).

Acknowledgments. I thank Alexandru Zaharescu for suggesting the problem to me and for
his generous sharing of ideas with me. I thank Nigel Boston for many very helpful discussions
and for his wonderful hospitality. Anand Pilay has kindly pointed my attention to the paper
of Z. Chatzidakis, L. van den Dries, and A. Macintyre [2]. Jeremy Tyson has very helpfully
commented on the definition of Dn(h).

2. Proof of Theorem 1

To simplify the notation, we will denote pj, qj, Cj by p, q, C, respectively.

2.1 The map ∗.

If (x1, . . . , xmr) ∈ Rmr, then define

y =
x1

p
, t1 =

x2 − x1

p
, . . . , tmr−1 =

xmr − xmr−1

p
. (10)

Let (x1, . . . , xmr) ∈ NC, then 0 ≤ x1, . . . , xmr ≤ p − 1. Therefore

0 ≤ y, y +
k∑

j=1

tj =
xk+1

p
≤ 1, where k ∈ {1, . . . , mr − 1}. (11)
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This can be restated as follows:

0 ≤ y ≤ 1, −
k∑

j=1

tj ≤ y ≤ 1 −
k∑

j=1

tj, k ∈ {1, . . . , mr − 1}. (12)

Based on these considerations, for Ω ∈ Dmr−1, we define the set Ω∗ by

Ω∗ = {(y, t1, . . . , tmr−1) ∈ R × Ω | y, t1, . . . , tmr−1 satisfy (12)}. (13)

We remark that Ω∗ ∈ Dmr.

From (13), we see that the set Ω∗ can be described as a cylinder bounded by some two
hypersurfaces, h(t1, . . . , tmr−1) and H(t1, . . . , tmr−1), as follows:

Ω∗ = {(y, t) ∈ Rmr | 0 ≤ y ≤ 1, t ∈ Ω, h(t) ≤ H(t)} . (14)

We proceed to find equations of these hypersurfaces based on (12).

1. For a given t ∈ Ω, the smallest value of y is

h(t1, . . . , tmr−1) = max{0,−t1, . . . ,−t1, + . . . + tmr−1} =

− min{0, t1, . . . , t1 + . . . + tmr−1}. (15)

2. For a given t ∈ Ω, the largest value of y is

H(t1, . . . , tmr−1) = min{1, 1 − t1, . . . , 1 − t1 − . . . − tmr−1}. (16)

We see that

gmr−1(t) = max {0, H(t) − h(t)} . (17)

Therefore, the volume of Ω∗ may be written as follows:

V(Ω∗) =

∫
Ω

gmr−1(t1, . . . , tmr−1)dt1 . . . dtmr−1. (18)

We will use this formula in (54) of 2.4.3.

2.2 Main idea

We will use several rescalings below. One could think of them as changing the unit of length.
We firstly pass from Ω∗ to pΩ∗, because there is a bijection between NC and the set of integral
points of pΩ∗, namely,

(x1, . . . , xmr) = x �→ px∗ = (x1, x2 − x1, . . . , xmr − xmr−1) . (19)
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In particular, we may express the numerator of (5) as follows:

#{x ∈ NC | x̃ ∈ Ω} = N (preimage of Ω under ˜) = N(pΩ∗). (20)

Therefore, the problem is reduced to estimating N(pΩ∗).

Let T ≥ 1. We further restrict the value of T in (39) and (49), and finally specify it in
(53). Now we explain how T is used. We represent Rmr as a disjoint union of cubes:

Rmr =
⋃

k1,... ,kmr∈Z

(
k1

p

T
+

[
0,

p

T

))
× . . . ×

(
kmr

p

T
+

[
0,

p

T

))
. (21)

Let Ip/T (pΩ∗) be the union of cubes in (21) contained in pΩ∗, and Ep/T (pΩ∗) the union
of cubes in (21) intersecting pΩ∗. Then

Ip/T (pΩ∗) ⊆ pΩ∗ ⊆ Ep/T (pΩ∗) . (22)

In below, we will show that each of the two sets Ip/T (pΩ∗) and Ep/T (pΩ∗) contain

TmrV(Ω∗) + OΩ(Tmr−1) (23)

cubes of the tessellation (21). Then in (48) we will estimate the number of integral points
each such a cube contains. This in turn will yield (51), an estimate for N(pΩ∗).

2.3 Proof of (23)

For the purpose of proving (23), we may assume that the cubes in (21) are replaced with the
closed cubes. Indeed, since pΩ∗ is closed, the number AT of cubes in (21) contained in pΩ∗

equals the number Ac,T of the closures of cubes in (21) contained in pΩ∗. Also, the number
BT of cubes in (21) intersecting pΩ∗ is at most the number Bc,T of the closures of cubes in
(21) intersecting pΩ∗. Then Ac,T = AT ≤ BT ≤ Bc,T . Hence, if we prove that both Ac,T and
Bc,T are TmrV(Ω∗) + OΩ(Tmr−1), then the same estimate will hold for AT and BT .

Now we rescale pΩ∗ to Ω∗ ⊆ [−1, 1]mr, the cube [−1, 1]mr being tessellated with the
cubes of side length 1/T . We will refer to them in this section only as the “tessellation
cubes”. From Ω ∈ Dmr−1 we conclude that Ω∗ ∈ Dmr. Then Ω∗ ∈ Dmr(h) for some positive
integer h. We will prove the estimate (23) in three steps below. We will also assume that T

is chosen large enough to satisfy the conditions of Definition 3. This is legitimate, because
from (53) it will follow that T → +∞ as p → +∞.

1. Let IT (Ω∗) be the union of the tessellation cubes contained in Ω∗. Then

(a) IT (Ω∗) ⊆ Ω∗.

(b) IT (Ω∗) ∈ Dmr(h) by Condition 5c of Definition 3.
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(c) NT (IT (Ω∗)) = NT (Ω∗) + OΩ (Tmr−1), where NT (·) denotes the number of points
whose coordinates are multiples of 1/T . This claim follows from Condition 5a of Definition
3.

(d) The number of cubes of (21) contained in Ip/T (pΩ∗) is VT (IT (Ω∗)) = TmrV (IT (Ω∗)) =
AT , where VT (·) denotes the (mr-dimensional) volume of the set measured with respect to
the unit length 1/T .

(e) By the inequality (7), rescaled with respect to the unit length 1/T ,

|VT (IT (Ω∗)) − NT (Ω∗)| ≤ OΩ

(
Tmr−1

)
+

mr−1∑
j=0

VT,j (IT (Ω∗)) hmr−1 ≤

OΩ

(
Tmr−1

)
+

mr−1∑
j=0

T jVj (Ω∗) hmr−j = OΩ

(
Tmr−1

)
. (24)

In the next step, we obtain a similar estimate for |VT (ET (Ω∗)) − NT (Ω∗)|, where ET (Ω∗)
is the union of the tessellation cubes intersecting Ω∗.

2. We observe the following properties of ET (Ω∗).

(a) Ω∗ ⊆ ET (Ω∗).

(b) ET (Ω∗) ∈ Dmr(h) by Condition 5c of Definition 3.

(c) NT (ET,ε (Ω∗)) = NT (Ω∗), by Condition 5b of Definition 3.

(d) VT (ET,ε (Ω∗)) = TmrV (ET,ε (Ω∗)) → TmrV (ET (Ω∗)) = BT as ε → 0. Also BT is equal
to the number of cubes of (21) contained in ET (Ω∗)

(e) From ET (Ω∗) ⊆ [−1, 1]mr, we conclude that there is a positive number κ (independent
of T ) such that Vj (ET (Ω∗)) ≤ κ for all j.

(f) By the inequality (7),

|VT (ET,ε (Ω∗)) − NT (Ω∗)| ≤ κ

mr−1∑
j=0

T jhmr−j. (25)

Therefore, taking the limit as ε → 0, we obtain

|VT (ET (Ω∗)) − NT (Ω∗)| = OΩ

(
Tmr−1

)
. (26)

3. By the triangle inequality, (24), and (26), we conclude that
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|AT − BT | = OΩ

(
Tmr−1

)
. (27)

At this point, we would like to recall that by Condition 4 of Definition 3, V (IT (Ω∗)) −
V (Ω∗) = OΩ (1/T ) and V (ET (Ω∗)) − V (Ω∗) = OΩ (1/T ). This remark together with (27)
finally proves (23).

Next section will deal with the number N(J) of integral points x of NC such that px∗

belongs to a cube of the subdivision (21). The estimation of µC(Ω) will be done in 2.4.3.

2.4 Estimating N(J)

Let J be a cube in the subdivision (21). Then

N(J) = #{x ∈ NC | px∗ = (x1, x2 − x1, . . . , xmr − xmr−1) ∈ J}. (28)

We write the cube J as a direct product of intervals:

J = T1 × . . . × Tmr. (29)

This allows us to express N(J) in terms of the characteristic functions χTj
of the intervals

T1, . . . , Tmr as follows:

N(J) =
∑

y=(y1,... ,ymr)∈J

χT1
(y1)χT2

(y2) . . . χTmr
(ymr) =

{recall that y1 = x1, y2 = x2 − x1, . . . , ymr = xmr − xmr−1}∑
x=(x1,... ,xmr)∈NC

χT1
(x1)χT2

(x2 − x1) . . . χTmr
(xmr − xmr−1). (30)

Now we can write the characteristic function χT (x) as an exponential sum. In the the next
formula, we assume that x ∈ J , where J is an interval (closed or not) of length ≤ p.

χT (x) = p−1
∑
z∈T

∑
k(modp)

e(k(x − z)/p), (31)

where the sum
∑

z∈T is taken over the integral points of T . We substitute (31) in (30), and
change the order of summation:

N(J) = p−mr
∑

k=(k1,... ,kmr)∈Fmr
p

mr∏
j=1

 ∑
yj∈Tj

e(−kjyj/p)

 Sk, (32)

where

Sk =
∑
x∈NC

e(Lk(x)/p) (33)
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and, in turn,

Lk(x) = kmrxmr +
mr−1∑
s=1

(ks − ks+1)xs. (34)

Since we require that C does not lie in a hyperplane of Amr(F̄p), the linear form Lk(x) is
constant on C if and only if k1 = . . . = kmr = 0. (At this point we would like to recall that
that our hyperplanes are assumed to be affine). We next show that the sum of the terms in
(32) with k1 = . . . = kmr = 0 is the main term in (32). The sum of the remaining terms will
be proved to be of the lower order of magnitude, and therefore is the error term. We denote
the main term and the error term by M(J) and E(J), respectively. Then

N(J) = M(J) + E(J) (35)

We will make this formula more precise below, with the final result stated in (50) of 2.4.3.

2.4.1 The main term in (35)

Each Tj has length p/T (we denote this by |Tj| = p/T ); therefore

V(J) = (p/T )mr. (36)

By (32) and (36),

M(J)

p−mr#C(Fq)
=

mr∏
j=1

N(Tj) =
mr∏
j=1

(p/T + Om,r,d(1)) = V(J) (1 + Om,r,d (T/p)) . (37)

Hence, substituting (36) in (37), we have

M(J) = T−mr#C(Fq) (1 + Om,r,d (T/p)) . (38)

At this point we further assume that

1 ≤ T ≤ p1/2. (39)

We substitute (39) in (38):

M(J) = T−mr#C(Fq)
(
1 + Om,r,d

(
p−1/2

))
. (40)

2.4.2 The error term in (35)

We need to estimate the error term

E(J) = p−mr
∑

(0,... ,0) �=(k1,... ,kmr)∈Fmr
p

mr∏
j=1

 ∑
yj∈Tj

e

(−kjyj

p

) Sk. (41)

To estimate the sums of the form
∑

yj∈Tj
in (41), we need the following well known

lemma.
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Lemma 3 Let ‖·‖ denote the distance to the nearest integer on the real line. Then for any
real a and integers l ≥ 1 and n, we have∣∣∣∣∣

n+l∑
j=n+1

e(ja)

∣∣∣∣∣ ≤ min

(
l,

1

2‖a‖

)
(42)

Remark 6 We assume that if a = 0, then min (l, 1/(2‖a‖)) = l.

Now we return to the question of estimating the sums of the form
∑

yj∈Tj
in (41). By

Lemma 3,

∣∣∣∣∣∣
∑
yj∈Tj

e (−kjyj/p)

∣∣∣∣∣∣ ≤ min

{
|Tj| + 1,

1

2‖kj/p)‖

}
. (43)

We use the inequalities 1/x ≤ 2/(x + 1) and 1 + 1/x ≤ 2, for x ≥ 1, and substitute (43) in
(41):

E(J) ≤
∑

(0,... ,0) �=(k1,... ,kmr)∈Fmr
p

mr∏
j=1

1

p

(
min

{
p + 1,

p

|kj|

})
|Sk| �mr

∑
(0,... ,0) �=(k1,... ,kmr)∈Fmr

p

mr∏
j=1

(
1

1 + |kj|

)
|Sk| . (44)

Next, for each x �= 0, our hypotheses on the curve C (see also Remark 5 above) allow us to
apply Bombieri’s inequality (see [1], Th. 6, p. 97):

Sk = Om,r,d

(
q1/2

)
. (45)

We substitute (45) in (44):

|E(J)| = Om,r,d

(
q1/2 lnmr q

)
. (46)

2.4.3 Conclusion

We recall that Weil’s theorem states that (see also Remark 5 above)

#C(Fq) = #NC = q + Om,r,d

(
q1/2

)
. (47)

We substitute (40), (46), and (47) in (35):

N(J) = T−mr
(
1 + Om,r

(
p−1/2

)) (
q + Om,r,d

(
q1/2

))
+ Om,r,d

(
q1/2 lnmr q

)
=

qT−mr
(
1 + Om,r,d

(
q

1
2

)
+ Om,r,d

(
q1− 1

2m

)
+ Om,r,d

(
q

1
2
− 1

2m

))
+ Om,r,d

(
q

1
2 lnmr q

)
. (48)
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At this point, we further restrict T as follows:

q1− 1
2m

Tmr
≤ q

1
2 lnmr q. (49)

This allows us to simplify (48) in the following way:

N(J) = q/Tmr + Om,r,d

(
q1/2 lnmr q

)
. (50)

2.5 Estimating µC(Ω)

The formula (20) allows us to estimate the numerator in (5) as the product of the right-hand
sides of (23) and (50):

#{x ∈ NC | x̃ ∈ Ω} = N(pΩ∗) =(
q/Tmr + Om,r,d

(
q1/2 lnmr q

)) (
TmrV(Ω∗) + OΩ

(
Tmr−1

))
=

qV(Ω∗) + Om,r,d,Ω (q/T ) + Om,r,d,Ω

(
Tmrq1/2 lnmr q

)
. (51)

Next, the denominator in (5) can be estimated by (47). This yields

µC(Ω) = V(Ω∗) + Om,r,d,Ω

(
Tmrq−1/2 lnmr q

)
+ Om,r,d,Ω(1/T ). (52)

Now we specify T as the root of the equation Tmrq−1/2 lnmr q = 1/T :

T = q
1

2(mr+1) ln
−mr
mr+1 q. (53)

(We remark that (39), (49), and (53) agree with each other.) The value of T given by (53)
allows us to have only one error term in (52):

µC(Ω) = V(Ω∗) + Om,r,d,Ω

(
q

−1
2(mr+1) ln

mr
mr+1 q

)
, (54)

and we may apply (18). This finally proves Theorem 1.
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