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Abstract

A dual approach to defining the triangle sequence (a type of multidimensional continued
fraction algorithm, initially developed in [9]) for a pair of real numbers is presented, providing
a new, clean geometric interpretation of the triangle sequence. We give a new criterion for
when a triangle sequence uniquely describes a pair of numbers and give the first explicit
examples of triangle sequences that do not uniquely describe a pair of reals. Finally, this
dual approach yields that the triangle sequence is topologically strongly mixing, meaning in
particular that it is topologically ergodic.

1This work was partially supported by the NSF’s REU grant to the Williams College SMALL program.
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1. Introduction

In 1848, Hermite asked Jacobi for methods of expressing a real number as a sequence of

integers such that the algebraic properties of the real number are reflected in the periodicity
of its sequence. In other words, Hermite wanted a generalization to cubic and higher degree

algebraic numbers of the fact that the decimal expansion of a real number is periodic if and
only if the real is rational and, more importantly, of the fact that the continued fraction

expansion of a real number is periodic if and only if the real is a quadratic irrational. Such
attempts are called multidimensional continued fractions.

For a good survey of work on multidimensional continued fractions, see Schweiger’s Mul-
tidimensional Continued Fractions [29] (his earlier works [28] and [26] should also be con-

sulted). For many of the algorithms that existed as of 1980, see Brentjes’ Multi-Dimensional
Continued Fraction Algorithms [2]. There is also the deep work of Minkowski [22] [23]. Other

work is in [8], [10], [12], [15], [16], [17], [18], [19]. We will be concentrating on understanding
the multidimensional continued fraction given in [9].

None of these techniques provides a link that will precisely identify periodicity of integer

sequences with algebraic numbers. Almost all of these methods have the property that the
periodicity of the sequence will imply algebraicity; none proves the converse. Probably there

is no single such technique that will fully answer Hermite’s initial question. It is more likely
that there is a whole family of techniques, each providing a periodic sequence for different

classes of algebraic numbers. For now, each existing method has its own strengths and
weaknesses. One way of measuring a method’s strength is how many of the properties of

traditional continued fractions are generalized by the method.

The method presented in [9] generalizes the Gauss map of the unit interval to a map

(called the triangle map) of a simplex to itself. This paper shows that the geometric approach
to continued fractions (which approximates a line in the plane by better and better integer

lattice points) also has an extremely natural interpretation in terms of the triangle map.
Further, this method provides a clean description for one of the more interesting features of

the triangle map, namely that a given integer sequence need not uniquely describe a point.
(This is in marked contrast to most other multidimensional continued fractions.) With this

paper’s approach, we have a clean description for when a triangle sequence corresponds to

a unique point. This description also allows us to determine dynamical properties of the
triangle sequence. (Most of the other multidimensional continued fraction algorithms can be

shown to have ergodic properties; what prevents us from applying these techniques to the
triangle map is the problem of uniqueness, forcing us to develop other techniques.)

We review the relevant facts of continued fractions in Section 2 and of triangle sequences
in Section 3. Section 4 (which is the start of what is new in this paper) gives a clean

description of the vertices of the defining triangles for a given triangle sequence. This leads
us in Section 5 to see how the triangle map has a good geometric description in terms of

how certain planes move in space about a given ray, in direct analogue to how continued
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fractions can be defined via adding vectors to get as close as possible to a given ray without
crossing the ray. Section 6 is the longest and most difficult of this paper. The goal of this

section is to give a sharp description of precisely when a triangle sequence corresponds to
a unique pair of numbers (α, β). By Section 6.6, enough structure has been developed so

that explicit examples of both uniqueness and non-uniqueness can be given. We view the
fact that there exists any structure at all as interesting. In Section 7, using the machinery

developed in the previous section, we show that the triangle map is topologically strongly

mixing, which implies, for example, that it is topologically ergodic.

We have developed a Mathematica package for calculating triangle sequences that is avail-

able at the web site http://www.williams.edu/Mathematics/tgarrity/triangle.html .

We would like to thank Lori Pedersen for providing all but the first of the diagrams and for

providing many comments. We would also like to thank Cesar Silva for useful conversations
about erogidic theory and the referee for a number of useful comments. Also, T. Garrity

would like to thank the mathematics department at the University of Michigan, where part
of this paper was written while he was on sabbatical.

2. Continued Fractions

The quickest method for defining the continued fraction expansion for a real number α ∈ (0, 1]

is to use the Gauss map. Set

I = {x | 0 < x ≤ 1}
Ik = {x ∈ I | k ≤ 1

x
< k + 1}.

The Gauss map G : I → I ∪ {0} is:

G(x) =
1

x
− k

for x ∈ Ik. Then the continued fraction expansion for any α ∈ I is the sequence of positive

integers (a1, a2, . . .) such that for each k ≥ 0,

Gk(α) ∈ Iak+1
,

where it is understood that if, for some k, we have Gk(α) = 0, then the continued fraction

expansion sequence stops. It is this approach that was directly generalized in [9], where
we replaced the unit interval, and its partitioning into subintervals, by a triangle, and its

partitioning into subtriangles.

There is a more geometric approach to continued fractions, as explained in [30] on page

187. It is this approach that we will generalize, though as with continued fractions, this
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approach will yield the same sequence as that in [9]. Given a real number α ∈ I, consider
the line L defined by y = αx. Define vectors

V0 = (1, 0) and V−1 = (0, 1).

Note that these two vectors lie on opposite sides of the line L. Define a1 to be the unique

positive integer such that the vector

V1 = V−1 + a1V0

either lies on the line L or on the same side of L as does the vector V−1 and the vector

V−1 + (a1 + 1)V0

lies on the other side of L. If we have constructed vectors V−1, V0, V1, . . . , Vn−1 such that the
odd vectors V2k+1 lie on one side of L and the even vectors V2k lie on the other side, then

define an to be the unique largest positive integer such that the vector

Vn = Vn−2 + anVn−1

lies on L or on the same side of L as does Vn−2 but that

Vn−2 + (an + 1)Vn−1

lies on the other side of L. If any vector Vn lands on L, stop. As shown in [30], this
sequence of positive integers (a1, a2, . . .) is the continued fraction expansion of the number

α. (Note that we do not start with an a0 term, unlike Stark in [30], since we make the initial
assumption that the number α is between zero and one.)

3. Triangle Sequences

Recall the triangle sequence as developed in [9]. Consider pairs of real numbers (α, β) in the
triangle � = {(x, y) : 1 ≥ x ≥ y > 0}. Partition � into disjoint triangles

�k = {(x, y) ∈ � : 1 − x − ky ≥ 0 > 1 − x − (k + 1)y},
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and define T : � → �∪ {(x, 0) : 0 ≤ x ≤ 1} by

T (α, β) =

(
β

α
,
1 − α − kβ

α

)
,

if the pair (α, β) ∈ �k. Then the triangle sequence for a pair (α, β) will be the infinite
sequence of nonnegative integers (a0, a1, a2, . . .) if T k(α, β) ∈ �ak

. Note that the triangle

sequence is said to terminate at step k if T k(α, β) lands on the interval {(t, 0) : 0 ≤ t ≤ 1}.
As discussed in [9], the hope is that interesting properties of this sequence reflect interesting

properties of the original pair (α, β). For example, if the sequence is eventually periodic,
then both α and β are contained in the same number field of degree at most three.

Another way of thinking about triangle sequences is as a method for producing integer
lattice vectors in space that approximate the plane x+αy +βz = 0. Since the normal to this

plane is the vector (1, α, β), we need to produce vectors whose dot products with (1, α, β)
are small. We do this inductively as follows. Set

C−3 =


 1

0
0


 , C−2 =


 0

1
0


 , C−1 =


 0

0
1


 .

If the triangle sequence for (α, β) is (a0, a1, a2, . . .), set

Ck = Ck−3 − Ck−2 − akCk−1.

The triangle sequence can in fact be defined in terms of the dot products

dk = (1, α, β) · Ck.

Assuming we know the numbers a0, . . . , ak, then ak+1 is the nonnegative integer such that

dk−2 − dk−1 − ak+1dk ≥ 0 > dk−2 − dk−1 − (ak+1 + 1)dk.

Then
dk+1 = dk−2 − dk−1 − ak+1dk.

4. Vertices of Triangles

Let (a0, a1, a2, . . .) be a sequence of nonnegative integers. Define

�(a0, . . . , an) = {(x, y) : T k(x, y) ∈ �(ak), for all k ≤ n}.

Thus �(a0, . . . , an) consists of all those points whose first n + 1 terms in their triangle
sequence are (a0, . . . , an). As shown in [9], each �(a0, . . . , an) is indeed a triangle. This

section will find a clean formula for the vertices of each of these triangles in terms of the
approximating vectors Ck.
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Define
Xk = Ck × Ck+1.

By using the recursion formula for the vectors Ck, we have by direct calculation

Proposition 1

Xk = Xk−3 + akXk−2 + Xk−1

Denote each Xk as

Xk =


 xk

yk

zk


 .

Then we have by the above formula:

Corollary 2 The sequence {xk} is a strictly increasing sequence of positive reals, for k ≥ 0.

We need one more piece of notation before we can find the vertices of the triangles �(a0, . . . , an).
For any vectors

T =


 a

b
c


 and S =


 d

e
f




with a, d, a + d �= 0, define

T̂ =
( b

a
c
a

)

and further, define

T +̂S =

(
b+e
a+d
c+f
a+d

)
.

(Such a sum is called a Farey sum.) We can now cleanly describe the vertices for the triangle

�(a0, . . . , an).

Theorem 3 The vertices for the triangle �(a0, . . . , an) are X̂n−1, X̂n and Xn+̂Xn−2.

Proof. We do this by induction. The base case is a straightforward calculation. Thus suppose
that the vertices for �(a0, . . . , an−1) are X̂n−2, X̂n−1 and Xn−1+̂Xn−3.
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Every point in this triangle has (a0, . . . , an−1) as its first n terms in its triangle sequence.
Those points (x, y) whose next term will be an are those such that

(1, x, y) · (Cn−3 − Cn−2 − anCn−1) ≥ 0 > (1, x, y) · (Cn−3 − Cn−2 − (an + 1)Cn−1).

We must put this in terms of our conjectured vertices.

Geometrically, in three space with coordinates labeled by (z, x, y), our triangles can be

viewed as living in the plane (z = 1). For any vector T =


 a

b
c


, then the vector T̂ can be

viewed as the intersection of the ray spanned by T with the plane (z = 1). We can see that,

on the segment connecting X̂n−2 and Xn−1+̂Xn−3, lie the two points X̂n and Xn+̂Xn−2. Let
P denote the plane spanned by the vectors Xn−1 and by Xn, and let Q denote the plane

spanned by the vectors Xn−1 and Xn+Xn−2. In terms of the above diagram, the line segment
from X̂n−1 to X̂n is precisely the intersection of the plane P with the triangle �, (which,

again, is assumed here to be in the plane (z = 1). Likewise, the line segment from X̂n−1 to
Xn+̂Xn−2 is the intersection of the plane Q with �.

In the first octant, we want to show that the rays spanned by vectors (1, x, y) for points
(x, y) ∈ �(a0, . . . , an) lie between the planes P and Q. By taking cross products of the

defining vectors for each plane, note that the normal vectors to the planes P and Q are
Cn = (Cn−3 −Cn−2 − anCn−1) and Cn −Cn−1 = (Cn−3 −Cn−2 − (an + 1)Cn−1), respectively.

Since the basis Xn−1, Xn+Xn−2 and Cn has the same orientation as the basis Xn−1, Xn+Xn−2

and Cn −Cn−1, the condition that the ray (1, x, y) is between the planes P and Q in the first

octant is precisely that

(1, x, y) · (Ck−3 − Ck−2 − akCk−1) ≥ 0 > (1, x, y) · (Ck−3 − Ck−2 − (ak + 1)Ck−1),

which is what we need. �
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5. The Dual Approach to Triangle Sequences

Given our point (α, β) ∈ �, we have constructed a nested sequence of triangles

� ⊃ �(a0) ⊃ �(a0, a1) ⊃ · · · ⊃ �(a0, a1, . . . , an) ⊃ · · · .

We will see in the rest of this paper that this nested sequence either converges to the initial

point (α, β) or to a line segment containing (α, β).

We now want to see how this provides another clean generalization of continued fractions.

Let (a0, a1, . . .) be the continued fraction expansion for a positive real number α and denote

the partial convergents by pk/qk = (a0, . . . , ak). We have that

(
qk+1

pk+1

)
=
(

ak+1qk

ak+1pk

)
+
(

qk−1

pk−1

)
=
(

ak+1qk + qk−1

ak+1pk + pk−1

)
.

Geometrically, we have, for vk =
(

qk

pk

)

Thus the vectors
(

qk−1

pk−1

)
and

(
qk

pk

)
lie on opposite sides of the ray y = αx and ak+1 is

that positive integer such that the vector

ak+1

(
qk

pk

)
+
(

qk−1

pk−1

)

lies on the same side of y = αx as
(

qk−1

pk−1

)
. These partial convergents also produce for us a

nested sequence of intervals I1 ⊃ I2 ⊃ . . . about the point α, where

I2k = [p2k/q2k, p2k−1/q2k−1] and I2k+1 = [p2k/q2k, p2k+1/q2k+1].
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Now to see how our nested sequence of triangles generalizes this, as in the previous section,

we put our triangle into the plane z = 1. The analogue of the ray y = αx will be the line
(x = αz, y = βz). Consider the cone through the origin over each triangle �(a0, a1, . . . , an).

Then the triangle sequence is producing a nested sequence of such cones over the nested

sequence of triangles. The analogue of the adding of vectors to get ak+1

(
qk

pk

)
+
(

qk−1

pk−1

)
will

be planes spanned by vectors Xn−1 and by the vector Xn−1 + Xn−3 + anXn−2.

Fix a positive integer n. For each nonnegative integer k, let Pk denote the plane spanned

by the vector Xn−1 and by the vector Xn−1 +Xn−3 + kXn−2. In the notation from the above
proof, we have Pan = P and Pan+1 = Q. Assume we have our pair of numbers (α, β) and that

we have already found the first n terms of the pair’s triangle sequence, (a0, a1, . . . , an−1). We
want to see how to find the next term of the triangle sequence solely in terms of the vectors

Xn−1, Xn−2 and Xn−1 +Xn−3. The planes Pk form a family of planes rotating about the ray

spanned by Xn−1, moving away from the plane P0 towards the plane spanned by the vectors
Xn−1 and Xn−2. Choose an to be that positive integer such that the vector (1, α, β) lies

between the planes Pan and Pan+1. This is in direct analogue to the geometric development
of continued fractions as given in [30].
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6. Problems with Uniqueness

Triangle sequences have the interesting property that a sequence of non-negative integers

need not correspond to a unique pair of real numbers (α, β) ∈ � but could correspond to
an entire line segment. The goal of this section is a clean description in terms of the growth

of the numbers ak for when the sequence does correspond to a unique pair (α, β). Crudely,
we will see that if the terms in the triangle sequence grow sufficiently fast, then we will

have non-uniqueness. The existence of a clean criterion for uniqueness and non-uniqueness
indicates that the triangle iteration has interesting hidden structure. As an added benefit,

the machinery developed here will be critical for our results in Section 7 on the topological
dynamics of the triangle map. As a word of warning, this section is long and detailed.

6.1 Parity Results

Before we can address concerns of uniqueness, we need to examine more closely the triangles

�(a0, . . . , an). As shown in [9] (this can also be directly calculated), if two pairs of real
numbers are both in some �(a0, . . . , an), then every point on the line segment connecting

the pairs must be in �(a0, . . . , an). Since the determinant of the Jacobian of the each map
Tk is greater than one, this means that only single isolated points or line segments can have

the same triangle sequences.

We know that the vertices of the triangle �(a0, . . . , an) are X̂n−1, X̂n and Xn+̂Xn−2.

Let sn be the length of the longest side for �(a0, . . . , an). If the triangle sequence uniquely
describes a point, then limn→∞ sn = 0. If the triangle sequence does not uniquely describe a

point but instead describes a line segment L, of length, say, l, then we have limn→∞ sn = l.
We want to show that the even vertices X̂2n converge to a point and that the odd vertices

X̂2n+1 converge to a point, and further that each converges to one of the endpoints of the
segment L. This will take some work.

Lemma 4 For all n, the point Xn+̂Xn+2 is closer to the point X̂n+2 than to the point X̂n.

The idea is that Xn+̂Xn+2 is a weighted average of the vectors X̂n+2 and X̂n. Since Xn+2

is a longer vector than Xn, the result should be true. The actual proof is a straightforward
calculation.

Proof. Denote the distance from a vector X to a vector Y by d(X, Y ).

By direct calculation, the vector from X̂n to Xn+̂Xn+2 is:

1

xn + xn+2
(Xn+2 + Xn) − 1

xn
Xn =

1

xn + xn+2
Xn+2 − xn+2

xn(xn + xn+2)
Xn
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This vector, while technically in space, is the same as the plane vector

xn+2

xn + xn+2

X̂n+2 − xn+2

xn + xn+2

X̂n,

which equals
xn+2

xn + xn+2
(X̂n+2 − X̂n).

Thus

d(X̂n, Xn+̂Xn+2) =
xn+2

xn + xn+2
d(X̂n, X̂n+2).

By a similar calculation, we have

d(X̂n+2, Xn+̂Xn+2) =
xn

xn + xn+2
d(X̂n, X̂n+2).

Since the xk are an increasing sequence, we have our result. �

Our next lemma, whose proof we omit, is straightforward and is a simple geometric fact,

but one which we will critically need.

Lemma 5 Let A,B and C be the three vertices of a triangle and let D be any point on the

edge connecting the vertices B and C. Then

d(A, D) ≤ max(d(A, B), d(A, C)).

The theorem for this subsection is:

Theorem 6
lim

n→∞ d(X̂n, X̂n+2) = 0.

Note that this theorem is indeed simply stating that points X̂k of the same parity con-

verge.

Proof. Consider our triangle �(a0, . . . , an).
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Set:

�ρn = vector from X̂n to Xn+̂Xn−2

�τn = vector from X̂n−1 to X̂n

�µn = vector from X̂n−1 to Xn+̂Xn−2

�bn = vector from X̂n−1 to Xn−1+̂Xn+1,

By ρn, we mean the length of the vector �ρn, etc.

We know from the first lemma of this subsection that d(X̂n, Xn+̂Xn−2) ≤ d(X̂n−2, Xn+̂Xn−2).

Then, since the points X̂n, X̂n−2 and Xn+̂Xn−2 are collinear, we have that

ρn ≤ 1

2
d(X̂n, X̂n−2).

We have that the longest side lengths of each triangle, denoted by sn, must approach �.
If � = 0, then all of the triangles converge to a point and the lemma is true. Suppose, then,

that � �= 0. For any positve ε, we can find an N such that for all n ≥ N ,

� ≤ sn < � + ε.
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Choose any such ε such that ε < �. From the above diagram we see that, for n ≥ N + 1,

ρn ≤ 1

2
d(X̂n, X̂n−2)

≤ 1

2
d(Xn−1+̂Xn−3, X̂n−2)

≤ 1

2
sn−1

≤ 1

2
(� + ε)

< �.

Thus for large enough n, we have ρn < � and ρn+1 < �. This combined with the fact that

� ≤ sn+1 = max{τn+1, µn+1, ρn+1} shows that � ≤ max{τn+1, µn+1}. By our lemma on the
triangle with

vertices A,B and C (here the vertex X̂n is playing the role of A and the vertices X̂n−1 and

Xn+̂Xn−2 are playing the roles of B and C), we have � ≤ max{τn, ρn}. But ρn < �, meaning
that τn ≥ �.

Assume for a moment that we can show, for large enough n, that τn ≤ µn. Then for these
large n, we know both that sn = µn and that � ≤ τn ≤ sn. Then

τn → �.

Since the intersection of all of the �(a0, . . . , an) is the line segment �, we have our result,
again provided that τn ≤ µn. Thus we must prove this last inequality.

If the angle at the vertex Xn+̂Xn−2 is obtuse or right, then we can see from a diagram
similar to the one above that τn+1 ≤ µn+1.

Assume then that this angle is acute. Let p be the foot of the perpendicular drawn from
the point X̂n to the line spanned by X̂n−1 and Xn+̂Xn−2.
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We have that the the point X̂n+1 is between p and Xn−1+̂Xn+1, since we know that ρn < τn+1,
giving us that τn+1 ≤ µn+1 is true also in this case. �

6.2 First Lemma Towards Uniqueness Results

We will need the fact that making any finite number of changes in a triangle sequence will

not effect questions of uniqueness. More precisely, we have the following:

Lemma 7 A triangle sequence (a0, a1, a2, . . .) uniquely defines a pair of numbers if and

only if the triangle sequence (an, an+1, . . .), for any n > 0, also uniquely describes a pair of
numbers.

This follows from the fact that locally, in the interior of any �n, the triangle map T is
bijective.

6.3 Uniqueness when an = 0 for Infinitely Many n

Lemma 8 Let (a0, a1, a2, . . .) be a triangle sequence. If, for infinitely many of the n, we

have an = 0, then the triangle sequence will describe a unique point.

Proof. Recall that sn denotes the length of the longest edge of the triangle �(a0, . . . , an). We

have seen that our triangle sequence will describe a unique point precisely when limn→∞ sn =
0. Suppose that this does not happen. We keep the notation that � = limn→∞ sn.

Set ε = �/2. Recall that ρn denotes the side length from the vertex X̂n to Xn+̂Xn−2 and
that we have shown in the proof about the convergence of vertices of the same parity that

lim
n→∞ ρn = 0.
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Then there exists a positive integer M , which we can make as large as we want, such that

ρM < ε

ρM+1 < �

aM+1 = 0

sM < � + ε.

Note that it is here that we are using our assumption that infinitely many of the an are zero.

Since we always have that Xn+1 = Xn−2 + an+1Xn−1 + Xn, we have

XM+1 = XM−2 + XM

and thus τM+1 = ρM , where, recall, τM+1 denotes the side length from the vertex X̂M to the

vertex XM+1+̂XM−1. In the parity proof, we showed, for large enough n, that τn ≥ �. By
choosing M large enough, we have the desired contradiction: � ≤ τM+1 = ρM < ε < �. �

6.4
∏

(1 − λn) = 0 Implies Uniqueness

From the last two sections, we can assume that we have an infinite triangle sequence (a0, . . .)
such that an �= 0 for all n. Define for each �(a0, . . . , an) the ratio

λn =
Distance from X̂n−1 to X̂n+1

Distance from X̂n−1 to Xn+̂Xn−2

.

We will see that the question of uniqueness is linked to the size of the various λn. The goal
of this section and the next is:

Theorem 9 Assume that (a0, . . .) is a triangle sequence such that for all n, an �= 0. Then

this triangle sequence describes a unique pair (α, β) precisely when

∞∏
n=0

(1 − λn) = 0.

In this section we show that if
∏

(1− λn) = 0, then we have uniqueness. In the next section

we show that if
∏

(1 − λn) �= 0, then we have non-uniqueness. Then we will show that the
infinite product

∏
(1 − λn) �= 0 when the individual an grow sufficiently fast.

For the rest of this section, assume that
∏

(1− λn) = 0. We continue to use the notation
that τn is the length of the side from the vertex X̂n−1 to the vertex X̂n. We have shown that

lim
n→∞ τn = �

and that uniqueness is equivalent to � = 0.

We will break the proof into a number of lemmas involving inequalities. Assume for a
moment the following lemma:
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Lemma 10 For large enough n, assume that

τn+1

τn
≤
√

1 − λn.

Then

lim
n→∞ τn = 0,

and thus the triangle sequence will describe a unique pair (α, β).

Assuming this lemma, we have for any fixed M ,

τn = τM

n−1∏
i=M

τi+1

τi

< τM

√√√√n−1∏
i=M

(1 − λi)

= τM

(
M−1∏
i=0

(1 − λi)

)− 1
2

√√√√n−1∏
i=0

(1 − λi),

which converges to 0 as n → ∞. (Here we used the fact that ai > 0 for all i, so that
1 − λi > 0 for all i.) Thus limn→∞ τn = 0, which in turn means that � = 0 and that the

triangle sequence {an} corresponds to a unique point.

To prove that τn+1

τn
≤ √

1 − λn, we need:

Lemma 11 If, for all n, we have

1 − λn

(
1 − ρn

τn

)
≤
√

1 − λn,

then
τn+1

τn
≤
√

1 − λn.

Proof. This will be a simple geometric argument using �(a0, . . . , an). Our notation is such

that τn+1 is the length of the vector �τn+1 from the point X̂n to the point X̂n+1.
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Then
�τn+1 = λn�µn − �τn.

But �µn = �τn + �ρn. Then we have

�τn+1 = λn�ρn − (1 − λn)�τn.

Then

τn+1

τn
=

1

τn
|λn�ρn − (1 − λn)�τn|

≤ 1

τn
(λnρn + (1 − λn)τn)

= 1 − λn

(
1 − ρn

τn

)

<
√

1 − λn.

and we are done with the lemma. �

Thus we need to show that for large enough n, 1−λn

(
1 − ρn

τn

)
≤ √

1 − λn. This will take

some work.

If we somehow know that � = 0, we already know that the triangle sequence describes a

unique point. We can assume, then, that � > 0. Since limn→∞ ρn = 0, there is some M such

that ρn < �
3

for all n ≥ M . Let P be the point closest to X̂n−1 on the ray
�

X̂n−1(Xn+̂Xn−2)

such that d(X̂n, P ) = 2ρn.

Since

d(X̂n, X̂n−1) = τn > � > 2ρn = d(X̂n, P ) > ρn = d(X̂n, Xn+̂Xn−2),

we know that P is on the line segment X̂n−1(Xn+̂Xn−2).

By choosing M large enough, we can see that X̂n+1 is on the segment X̂n−1P . Thus

(1 − λn)µn = d(X̂n+1, Xn+̂Xn−2)

> d(P, Xn+̂Xn−2)

≥ d(P, X̂n) − d(Xn+̂Xn−2, X̂n)

= 2ρn − ρn = ρn.
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Since µn = d(X̂n−1, Xn+̂Xn−2) ≤ d(X̂n−1, X̂n)+d(Xn+̂Xn−2, X̂n) = τn+ρn, we have 1−λn >
ρn

τn+ρn
and hence

λn < 1 − ρn

τn + ρn

.

We claim that 1− λn

(
1 − ρn

τn

)
<

√
1 − λn, which is the inequality that we need to finish

the proof of the theorem. The claim is equivalent to

1 − 2λn

(
1 − ρn

τn

)
+ λn

2
(
1 − ρn

τn

)2
< 1 − λn

⇐⇒ λn
2
(
1 − ρn

τn

)2
< λn

(
1 − 2ρn

τn

)
⇐⇒ λn <

1− 2ρn
τn

1− 2ρn
τn

+ ρn2

τn2

= 1 − ρn
2

(τn−ρn)2

Thus it suffices to show that 1 − ρn

τn+ρn
≤ 1 − ρn

2

(τn−ρn)2
. But that is equivalent to

ρn
2

(τn−ρn)2
≤ ρn

τn+ρn

⇐⇒ ρn(τn + ρn) ≤ (τn − ρn)2

⇐⇒ 0 ≤ τn
2 − 3τnρn = τn(τn − 3ρn),

which is true because τn − 3ρn > � − 3 · �
3

= 0. Our claim and hence theorem is proved.

6.5
∏

(1 − λn) �= 0 Implies Non-uniqueness

This is the most complicated section of this paper. Our goal is:

Theorem 12 Suppose that the sequence {an} contains at most a finite number of zeros,
such that an > 0 for n > N and that

∞∏
n=N

(1 − λn) > 0.

Then the triangle sequence {an} does not correspond to a unique point.

As seen earlier, we can assume that an �= 0 for all n. We will show nonuniqueness by
showing, under the hypothesis of the theorem, that

lim
n→∞ τn = � > 0.

As in the proof of the converse, this argument will come down to finding bounds on the
ratios τn+1

τn
, so that we will be able to reduce the above theorem to the following lemma:
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Lemma 13 If for large n, we have the bounds

τn+1

τn

> (1 − λn)2,

then
lim

n→∞ τn = � > 0.

Proof. For large enough n, we have

τn = τM

n−1∏
i=M

τi+1

τi

> τM

n−1∏
i=M

(1 − λi)
2

= τM

(
M−1∏
i=0

(1 − λi)

)−2 (n−1∏
i=0

(1 − λi)

)2

,

which converges to a positive constant. Hence � = limn→∞ τn is a positive constant, and we
have non-uniqueness. �

It will take serious work to show that τn+1

τn
> (1−λn)2 for large n. First, if

∏∞
n=0(1−λn) >

0, then 1−λn ≤ 3
4

for finitely many values of n. Thus there exists an M such that 1−λn > 3
4

whenever n ≥ M . Thus 1
λn

> 4 whenever n ≥ M .

We will show first:

Lemma 14 There exists an M ′ ≥ M such that

ρM ′ ≤ 2τM ′ .

Proof. The proof is not at all obvious, but the heart of it lies in distinguishing six cases and
dealing with each geometrically.

Set

γn = � X̂n−1X̂n(Xn+̂Xn−2)

φn = � X̂nX̂n−1(Xn+̂Xn−2),

φ′
n = � X̂n(Xn+̂Xn−2)X̂n−1.
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Let Pn be the foot of the perpendicular from X̂n to line X̂n−1(Xn+̂Xn−2).

The relationships between different lengths are configuration-dependent, so we will need

to treat the different configurations as the six separate cases listed below. Intuitively, the
worst case scenario, Case 6, is when � PMX̂MX̂M−1 is large, allowing τM+1 to approximate

the tiny height PMX̂M while leaving ρM+1 to be possibly the same order of magnitude as the
long PMX̂M+1. Fortunately, the other cases are not difficult, and Case 6 eventually stops

occurring after a finite number of steps.

1. ρM ≤ 2τM .

Then let M ′ = M .

2. ρM > 2τM and φM ≥ π
2
.

The latter condition implies that φ′
M+1 is obtuse, so that X̂MX̂M+1 is the longest side

of �X̂MX̂M+1(XM−1+̂XM+1). This means that ρM+1 < τM+1 < 2τM+1. Thus we have

Case 1 for M + 1 and can let M ′ = M + 1.

3. ρM > 2τM , φM < π
2
, and γM ≤ 3π

4
.
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In the following, we will be freely using the inequalities shown in the appendix. Note
that ρM > 2τM implies that τM is not the longest side of �X̂M−1X̂M(XM+̂XM−2).

Therefore, φ′
M < π

2
and PM lies on line segment X̂M−1(XM+̂XM−2). (The same will

be true for the remaining cases.)

Let y = d(X̂M , PM). Then ρM > τM means that

cos � PMX̂M(XM+̂XM−2) =
y

ρM

<
y

τM

= cos � PMX̂MX̂M−1.

Since cosine is a decreasing function from 0 to π/2, we have

� PMX̂M(XM+̂XM−2) > � PMX̂MX̂M−1.

Then
� PMX̂MX̂M−1 <

1

2
( � PMX̂M(XM+̂XM−2) + � PMX̂MX̂M−1),

which in turn, since (� PMX̂M(XM+̂XM−2) + � PMX̂MX̂M−1) = γM ,

� PMX̂MX̂M−1 <
1

2
γM ≤ 3π

8
.

This gives us the bound that we will need in the next paragraph:

τM =
y

cos � PMX̂MX̂M−1

≤ y

cos 3π
8

≤ τM+1

cos 3π
8

.

Using Lemma 4 from Section 6.1, we have:

ρM+1 ≤ 1

2
d(X̂M+1, X̂M−1)

≤ 1

2
(τM+1 + τM)

≤ 1

2

(
τM+1 +

τM+1

cos 3π
8

)

< 2τM+1.

Thus we have Case 1 for M + 1 and can let M ′ = M + 1.

4. ρM > 2τM , φM < π
2
, γM > 3π

4
, and XM−1+̂XM+1 lies on line segment (XM+̂XM−2)PM .

Then φ′
M+1 = � X̂M(XM−1+̂XM+1)X̂M+1 is obtuse, making X̂MX̂M+1 the longest side

of �X̂MX̂M+1(XM−1+̂XM+1). This means that ρM+1 < τM+1 < 2τM+1. Thus we have
Case 1 for M + 1 and can simply let M ′ = M + 1.

5. ρM > 2τM , φM < π
2
, γM > 3π

4
, XM−1+̂XM+1 lies on line segment PMX̂M−1, and

π − γM+1 ≤ 2(π − γM).
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We will be freely using the numbers λn, λ̃n and λ′
n, which are defined in the appendix.

Since ρM > τM and since φM < π
2
, we see that π

2
> φM > φ′

M . Thus

d(PM , X̂M−1)

d(XM+̂XM−2, PM)
=

τM

ρM

· d(PM , X̂M−1)/τM

d(XM+̂XM−2, PM)/ρM

=
τM

ρM

· cos φM

cos φ′
M

<
τM

ρM
.

This implies that

λ̃M =
d(XM−1+̂XM+1, X̂M−1)

d(XM+̂XM−2, X̂M−1)

≤ d(PM , X̂M−1)

d(XM+̂XM−2, PM) + d(PM , X̂M−1)

<
d(PM , X̂M−1)

ρM

τM
d(PM , X̂M−1) + d(PM , X̂M−1)

=
τM

ρM + τM

.

From the definition of λ′
M and from Lemma 25, in the appendix, we have:

ρM+1 = λ′
MµM ≤ µM

1
λ̃M

(
1

λ̃M
− 1

) .

Since µM < ρM + τM (these are the three side lengths of a triangle) and using the

above inequality on λ̃M , we have

ρM+1 <
ρM + τM

ρM+τM

τM

(
ρM+τM

τM
− 1

) =
τM

2

ρM

.

Using that sin φM

τM+1
= sin γM+1

τM
and that sin γM

µM
= sinφM

ρM
(both following from the law of

sines), we also have

τM+1 = τM+1

(
sin φM

τM+1

· τM

sin γM+1

)(
ρM

sin φM

· sin γM

µM

)

=
τMρM

µM

· sin(π − γM)

sin(π − γM+1)
.

But 0 < π − γM+1 ≤ 2(π − γM) < π
2
, so

sin(π − γM)

sin(π − γM+1)
≥ sin(π − γM)

sin(2(π − γM))
=

1

2 cos(π − γM)
≥ 1

2
.
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Hence
τM+1 ≥ τMρM

2µM

>
τMρM

2(ρM + τM)
.

Therefore,

ρM+1

τM+1

<
τM

2

ρM

· 2(ρM + τM )

τMρM

=
2τM(ρM + τM )

ρM
2

<
ρM

(
ρM + 1

2
ρM

)
ρM

2
=

3

2
,

and ρM+1 < 2τM+1. Thus we have Case 1 for M + 1 and can let M ′ = M + 1.

6. ρM > 2τM , φM < π
2
, γM > 3π

4
, XM−1+̂XM+1 lies on line segment PMX̂M−1, and

π − γM+1 > 2(π − γM).

We will see that this case cannot occur for all n ≥ M . Suppose that it does. Then we

will get π − γn+1 > 2(π − γn) for n ≥ M . Thus, we have π − γM+i > 2i(π − γM). But
then we can make π− γM+i as large as we like, by choosing large enough i. This is not

possible, implying that we cannot be in Case 6 for all n ≥ M . But then there is some
n ≥ M such that we are in one of the first five cases, in which case we know we are

done.

�

Our next technical lemma is:

Lemma 15 Assume that ρM ≤ 2τM and that, for all n ≥ M , λn ≤ 1
4
. Then for all

n ≥ M + 2, we have

ρn ≤ 1

2
τn.

Proof. We argue by induction on n. We will be freely using the inequalities of the last

lemma in the second section of the appendix. For the base case, we first find the inequality

for ρM+1 ≤ 3
5
τM+1 and then show ρM+2 ≤ 1

2
τM+2.. We have from Lemma 26 in the appendix

that

τM+1 ≥ τM − λM(ρM + τM) ≥ τM − 1

4
(2τM + τM ) =

1

4
τM

and, also from Lemma 26,

ρM+1 ≤ ρM + τM

1
λM

(
1

λM
+ 1

) ≤ 2τM + τM

4(4 + 1)
=

3

20
τM .

Hence

ρM+1 − 1

2
τM+1 ≤

(
3

20
− 1

2
· 1

4

)
τM =

1

40
τM
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Using that τM ≤ 4τM+1, then

ρM+1 ≤ 1

2
τM+1 +

1

40
τM

≤ (
1

2
+

1

10
)τM+1

=
3

5
τM+1.

We have

τM+2 ≥ τM+1 − λM+1(ρM+1 + τM+1) ≥ τM+1 − 1

4

(
3

5
τM+1 + τM+1

)
=

3

5
τM+1

and

ρM+2 ≤ ρM+1 + τM+1

1
λM+1

(
1

λM+1
+ 1

) ≤
3
5
τM+1 + τM+1

4(4 + 1)
=

8

100
τM+1.

Then

ρM+2 − 1

2
τM+2 ≤

(
8

100
− 1

2
· 3

5

)
τM+1 < 0

and the base case is proved.

Now suppose that ρi ≤ 1
2
τi for some i ≥ M + 2. Then

τi+1 ≥ τi − λi(ρi + τi) ≥ τi − 1

4

(
1

2
τi + τi

)
=

5

8
τi

and

ρi+1 ≤ ρi + τi

1
λi

(
1
λi

+ 1
) ≤

1
2
τi + τi

4(4 + 1)
=

3

40
τi.

Hence

ρi+1 − 1

2
τi+1 ≤

(
3

40
− 1

2
· 5

8

)
τi = −19

80
τi < 0

and induction is complete. �

Lemma 16 With the same assumptions as in the previous lemma, we have

1 − λn

(
1 +

ρn

τn

)
> (1 − λn)2

for n ≥ M ′ + 1.

Proof. This equality is equivalent to

1 − λn

(
1 +

ρn

τn

)
> 1 − 2λn + λn

2 ⇐⇒ λn
2 < λn

(
1 − ρn

τn

)
⇐⇒ λn < 1 − ρn

τn
,
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which is true since

λn <
1

4
< 1 − 1

2
≤ 1 − ρn

τn
.

�

The above lemma is important since for n ≥ M ′ + 1, by Lemma 26 in the appendix,

τn+1

τn
≥ 1 − λn

(
1 +

ρn

τn

)
> (1 − λn)2,

which is precisely the inequality needed to show non-uniqueness.

6.6 Explicit Examples of Non-uniqueness

The following restatement sums up the above results:

The triangle sequence {an} does not correspond to a unique point if and only if it contains

a finite number of zeros and
∏∞

n=N(1 − λn) > 0 (where N is such that an > 0 for n > N).

But what is this nebulous 1 − λn thing? There turns out to be a nice simplification of

this expression:

1 − λn = 1 −
xn+xn−2

xn−1

an+1 + xn+xn−2

xn−1

=
an+1

an+1 + xn+xn−2

xn−1

=
an+1xn−1

an+1xn−1 + xn + xn−2

=
an+1xn−1

xn+1
,

since, by Proposition 1, we always have xn+1 = an+1xn−1 + xn + xn−2. Hence

∞∏
n=N

(1 − λn) = lim
M→∞

M∏
n=N

an+1xn−1

xn+1

= lim
M→∞

xN−1xN

xMxM+1

M+1∏
n=N+1

an

= xN−1xN lim
M→∞

1

xMxM+1

M+1∏
n=N+1

an.

The question of uniqueness thus boils down to whether or not this limit is zero. For

the following examples we obtain estimates on 1 − λn in order to use the above crite-
rion. Again, these are the first examples of non-uniqueness found, though other non-

unique triangle sequences are easy to generate empirically using the Mathematica package
at http://www.williams.edu/Mathematics/tgarrity/triangle.html .
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6.6.1 an = n

We claim that the triangle sequence {1, 2, 3, . . .} corresponds to a unique point. Observe
that

1 − λn =
an+1

an+1 + xn+xn−2

xn−1

≤ an+1

an+1 + 1
=

n + 1

n + 2
.

(Here we are using that the xn form an increasing sequence of integers.) Thus

∞∏
n=0

(1 − λn) ≤ 1

2
· 2

3
· 3

4
· . . . = 0.

6.6.2 an = n2

We claim that the triangle sequence {1, 4, 9, . . .} corresponds to a unique point.

We first must find a lower bound on various xn

xn−1
. More precisely, as we will see, we need

to show that, for each n, either
xn

xn−1

≥ n + 1

or
xn−1

xn−2
≥ n.

This follows from
xn−1

xn−2

+
xn

xn−1

=
xn−1

xn−2

+
xn−1 + anxn−2 + xn−3

xn−1

≥ xn−1

xn−2
+ 1 +

an
xn−1

xn−2

,

using that xn−3 > 0. But this last term is greater than or equal to

2


xn−1

xn−2

· an
xn−1

xn−2




1/2

+ 1 = n + (n + 1),

giving us our bound on either xn

xn−1
or xn−1

xn−2
.

We need one more bound before we show uniqueness. We know that there are infinitely
many n such that xn

xn−1
≥ n + 1. Choose such an n. Then

1 − λn =
an+1

an+1 + xn+xn−2

xn−1

≤ an+1

an+1 + xn

xn−1

≤ (n + 1)2

(n + 1)2 + (n + 1)

= 1 − 1

n + 2
.
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Now we know for each k, that either x2k

x2k−1
≥ 2k + 1 or x2k−1

x2k−2
≥ 2k. Then, letting n = 2k or

n = 2k − 1, from the the above inequality, we have

1 − λn ≤ 1 − 1

2k + 2
.

We want to show that ∞∏
n=0

(1 − λn) = 0.

No matter what is the integer n, we know that

1 − λn ≤ 1.

Thus for
∏∞

n=0(1− λn), we will only take the product over those integers n such that xn

xn−1
≥

n + 1. The terms that we have dropped can only make the product smaller.

Thus
∞∏

n=0

(1 − λn) ≤
∞∏

k=1

(
1 − 1

2k + 2

)

=
3

4
· 5

6
· 7

8
· . . .

≤
(

3

4
· 4

5

) 1
2 ·
(

5

6
· 6

7

) 1
2 ·
(

7

8
· 8

9

) 1
2 · . . .

= 0.

Thus this sequence corresponds to a unique point in the triangle.

6.6.3 an = nth prime

We claim that the triangle sequence consisting of the primes corresponds to a unique point.

Let pn denote the nth prime. Observe that

1 − λn = 1 −
xn+xn−2

xn−1

an+1 + xn+xn−2

xn−1

≤ 1 − 1

an+1 + 1
= 1 − 1

pn+1 + 1
.

Further note that (
1 − 1

p

)
−
(

1 − 1

p + 1

)2

=
(p + 1)2(p − 1) − p3

p(p + 1)2

=
p2 − p − 1

p(p + 1)2

> 0.

Hence
∞∏

n=0

(1 − λn) ≤
∞∏

n=1

(
1 − 1

pn + 1

)
≤
( ∞∏

n=1

(
1 − 1

pn

)) 1
2

= 0.
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Thus ∞∏
n=0

(1 − λn) = 0.

6.6.4 an = 2n−1

Here we set a0 = 0 and an = 2n−1 for n > 0.

We claim that the triangle sequence {0, 1, 2, 4, 8, . . .} does not correspond to a unique
point. We first establish by induction that for n ≥ 6,

1 + 2
n−1

2 ≤ xn

xn−1
≤ 2

n
2 .

The base case n = 6 can be checked computationally as follows. By direct calculation we

have
(x0, x1, x2 . . .) = (1, 3, 6, 19, 70, 380, 2639, . . .),

and thus

1 + 2
6−1
2 <

2639

380
=

x6

x5

< 2
6
2 .

Suppose our claim is true for some k ≥ 6. Then

xk+1

xk

=
xk + ak+1xk−1 + xk−2

xk

≥ 1 +
ak+1

xk

xk−1

≥ 1 +
2k

2
k
2

= 2
k
2 + 1.

Also,
xk+1

xk
≤ xk + ak+1xk−1 + xk−1

xk
= 1 +

ak+1 + 1
xk

xk−1

≤ 1 +
2k + 1

2
k−1
2 + 1

≤ 2
k+1
2 .

We have proven our estimates for xn

xn−1
.

Using the upper bound for xn

xn−1
, we can obtain a lower bound for 1 − λn for n ≥ 7:

1 − λn =
an+1

an+1 + xn+xn−2

xn−1

≥ an+1

an+1 + xn+xn

xn−1

≥ 2n

2n + 2 · 2n
2

=
2n

2n + 2
n
2
+1

= 1 − 1

2
n
2
−1 + 1

> 1 − 2−
n
2
+1.
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Hence ∞∏
n=7

(1 − λn) ≥
∞∏

n=7

(
1 − 2−

n
2
+1
)

=
∞∏

n=5

(
1 − 2−

n
2

)
.

Now

− log

( ∞∏
n=5

(
1 − 2−

n
2

))
=

∞∑
n=5

− log
(
1 − 2−

n
2

)

=
∑
n≥5

∑
j≥1

2−
jn
2

j

=
∑
j≥1

1

j

∑
n≥5

2−
jn
2

=
∑
j≥1

1

j
· 2−2j

1 − 2−
j
2

≤ ∑
j≥1

4

j
·
(

1

4

)j

= c

for a positive constant c. Therefore
∞∏

n=4

(1 − λn) ≥
∞∏

n=4

(
1 − 2−

n
2

)
≥ e−c > 0.

7. Topological Dynamics of the Triangle Iteration

Since the traditional continued fraction algorithm gives an ergodic transformation of the unit

interval, it is natural to ask about the dynamical properties of the triangle map. For most
of the other types of multidimensional continued fractions, such questions have been asked

and in fact answered. Although most of these algorithms have been shown to be ergodic
(see F. Schweiger’s work in [29], [28] and [26]), the techniques that are used do not appear

to be immediately applicable to the triangle sequence We are thus not yet able to determine
whether or not the triangle sequence is ergodic, but can show that it is topologically strongly

mixing, which implies that it is topologically ergodic and transitive. (We will give these
definitions in a moment; a general reference is in [6], in Chapter 2, Section 4.) We suspect,

though, that the triangle map is ergodic. The referee kindly pointed out that h(x, y) = 1
x(1+y)

is an invariant measure for the triangle map, as can be shown using the Kuzmin equation
(see page 18 in [29]).

7.1 On open sets and partition triangles

This section will give us the needed lemmas for triangle sequences that will allow us to prove
dynamical properties in the next section. We have partitioned our initial triangle � into
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infinitely many smaller triangles �(a0, a1, . . . , an). We call these �(a0, a1, . . . , an) partition
triangles.

Lemma 17 The union of the edges of all partition triangles is dense in �.

Proof. The set of rational points is dense in �. These points yield terminating triangle

sequences [9] and are thus on the edges of partition triangles. �

Lemma 18 The union of all partition triangle edges of the form

X̂n−1(Xn+̂Xn−2)

is dense.

Proof. Given an open ball Bε(w) of radius ε about a point w in the triangle, by the above

lemma we know that there exists w′ ∈ Bε(w) that is on an edge of a partition trian-
gle �X̂n−1X̂n(Xn+̂Xn−2) that corresponds to a terminating triangle sequence {a0, . . . , an}.
From this triangle sequence, we want to construct a possibly new triangle sequence such that
the appropiate edge of the new triangle intersects the open ball Bε(w). The point w′ is on

one of the three edges of the triangle formed from {a0, . . . , an}, giving us the following three
cases to consider.

1. w′ ∈ X̂n−1(Xn+̂Xn−2). Then we are done.

2. w′ ∈ X̂n−1X̂n. As an+1 → ∞, Xn−1+̂Xn+1 → X̂n−1. But X̂n−1X̂n passes through

Bε(w) (i.e., at w′). Thus we can take a sufficiently large an+1 such that (Xn−1+̂Xn+1)X̂n

also passes through Bε(w).
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3. w′ ∈ X̂n(Xn+̂Xn−2). Let an+1 = 0. Then Xn+̂Xn−2 = X̂n+1, so that w′ ∈ X̂nX̂n+1.
Hence we are back in Case 2.

�

Theorem 19 The set of all partition triangle vertices is dense in �. In fact, the set of

vertices of the form X̂n are dense.

Proof. Given any open ball Bε(w), by the above lemma we know that there exists a triangle

sequence {a0, . . . , an} such that X̂n−1(Xn+̂Xn−2) intersects B ε
2
(w). Let w0 ∈ B ε

2
(w) ∩

X̂n−1(Xn+̂Xn−2) and let �0 = d(X̂n−1, Xn+̂Xn−2).

We will inductively define the rest of the ai’s, three at a time. Suppose that for some

k ≥ 0, we have defined a1, . . . , a3k+n and

wk ∈ B ε
2
(w) ∩ X̂3k+n−1(X3k+n+̂X3k+n−2).

Then choose a3k+n+1 such that

wk ∈ X̂3k+n+1(X3k+n+1+̂X3k+n−1).

Next, let a3k+n+2 = 0, so that X3k+n+1+̂X3k+n−1 = X3k+n+2 and wk ∈ X̂3k+n+1X̂3k+n+2.

Lastly, choose a sufficiently large a3k+n+3 so that

1. B ε
2
(w) and X̂3k+n+2(X3k+n+3+̂X3k+n+1) intersect (say at wk+1), and

2. d(X̂3k+n+2, X3k+n+3+̂X3k+n+1) < 3
2
d(X̂3k+n+2, X̂3k+n+1).

Our inductive definition is complete.
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Let �k = d(X̂3k+n−1, X3k+n+̂X3k+n−2). Then

�k+1 = d(X̂3k+n+2, X3k+n+3+̂X3k+n+1)

<
3

2
d(X̂3k+n+2, X̂3k+n+1)

=
3

2
d(X3k+n+1+̂X3k+n−1, X̂3k+n+1)

≤ 3

2
· 1

2
d(X̂3k+n−1, X3k+n+̂X3k+n−2)

=
3

4
�k,

using Lemma 4 for the inequality

d(X3k+n+1+̂X3k+n−1, X̂3k+n+1) ≤ 1

2
d(X̂3k+n−1, X̂3k+n+1)

≤ 1

2
d(X̂3k+n−1, X3k+n+̂X3k+n−2).

Hence �k <
(

3
4

)k
�0, and thus �k → 0. Choose a large enough k such that �k < ε

2
. Then

d(X3k+n−1, w) ≤ d(X3k+n−1, wk) + d(wk, w)

≤ �k +
ε

2
< ε.

Hence Bε(w) contains the partition triangle vertex X3k+n−1. �

The key theorem for dynamical properties is:

Theorem 20 Any given open ball Bε(w) contains a partition triangle.

Proof. By the above theorem, we can choose a1, . . . , an such that X̂n ∈ B ε
2
(w). We will now

inductively define the rest of the ai’s, two at a time, so that X̂2k+n ∈ B ε
2
(w) for all k ≥ 0.

Suppose we have defined a1, . . . , a2k+n properly. Let a2k+n+1 = 0. Now as a2k+n+2 → ∞,

X̂2k+n+2 → X̂2k+n. Since X̂2k+n ∈ B ε
2
(w), we can choose a sufficiently large a2k+n+2 such

that X̂2k+n+2 ∈ B ε
2
(w) too. The inductive definition is complete.

By the above construction, the sequence {a1, a2, . . .} contains infinitely many 0’s and

hence corresponds to a unique point. Thus the largest side length of �a1...an converges
to 0 as n approaches infinity. Hence there exists N such that the longest side length of

�X̂2N+n−1X̂2N+n(X2N+n+̂X2N+n−2) is less than ε
2
. But X̂2N+n ∈ B ε

2
(w). Therefore, the

partition triangle

�X̂2N+n−1X̂2N+n(X2N+n+̂X2N+n−2)

is contained in Bε(w). �

Thus every open set contains a partition triangle.
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7.2 The triangle map is topologically strongly mixing

We will first give the basic definitions and then show that the triangle map is topologically
strongly mixing (which implies a number of other dynamical properties). We follow [6] from

Chapter II, Section 4.2.

Definition 21 A map T : X → X on a topological space X is topologically strongly mixing
if for any open sets U and V in X, there is a positive integer N such that for all k ≥ N , we

have
T kU ∩ V �= ∅.

As discussed in Chapter II, Section 4.4 in [6], topologically strongly mixing implies that

the map is topologically ergodic (meaning that given any two open sets U and V , there

exists some positive integer N such that TNU ∩ V is not empty). The point for us is that
topologically strongly mixing is a quite strong condition for topological dynamics.

Theorem 22 The triangle map T : � → � is topologically strongly mixing.

Proof. Recall our notation that a partition triangle �(a0, . . . , an) denotes all points (x, y) ∈
� such that

(x, y) ∈ �(a0)

T (x, y) ∈ �(a1)

T 2(x, y) ∈ �(a2)
...

T n(x, y) ∈ �(an).

Let U and V be two open sets in �. By the lemma in the last section, each of these open
sets contains a partition triangle.

Denote the partition triangle in U by �(a0, . . . , an) and the partition triangle in V by
�(b0, . . . , bm). Then �(a0, . . . , an, b0, . . . , bm) is contained in �(a0, . . . , an) and

T n � (a0, . . . , an, b0, . . . , bm) = �(b0, . . . , bm).

We set N = n. For any positive integer i, consider �(a0, . . . , an, 0, . . . , 0, b0, . . . , bm), where
there are i zeros. This partition triangle is contained in �(a0, . . . , an) and has the property

that
T n+i � (a0, . . . , an, 0, . . . , 0, b0, . . . , bm) = �(b0, . . . , bm).

Since �(a0, . . . , an, 0, . . . , 0, b0, . . . , bm) is contained in �(a0, . . . , an), which in turn is con-

tained in the open set U and since �(b0, . . . , bm) is contained in the open set V , we must
have for all k ≥ N , T kU ∩ V �= ∅. �
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8. Future Work

The triangle map has a simple generalization to higher dimensional maps of simplices to

themselves, but the corresponding proofs become quite a bit more complicated, at least using
the techniques of this paper. Thus one future direction would be to find less cumbersome

and more natural arguments for uniqueness and nonuniqueness.

Of course, the main problem is to find an answer to the original Hermite question. For

example, is there any way of having the triangle map as a member of a family of maps, each
picking up via periodicity a different collection of cubic irrationalities.

Also, the triangle sequence determines a sequence of elements in SL(3,Z). It would be
interesting to put this in terms of discrete paths in the group SL(3,Z) (in particular to relate

it to [20].)

9. Appendix

This appendix contains derivations of formulae that are used in the earlier parts of this

paper. The proofs are straightforward calculations and the formulae themselves give some
intuition as to why these ratios and approximations will be useful. Despite this, the precise

applicability and usefulness of many of the results of this section can only be seen in context.

9.1 Definitions and General Results

The following ratios of side length are important in looking at the behavior of non-unique

sequences.

Set

λn = d(X̂n−1, X̂n+1)/d(X̂n−1, Xn+̂Xn−2)

λ′
n = d(Xn−1+̂Xn+1, X̂n+1)/d(X̂n−1, Xn+̂Xn−2)

λ̃n = d(X̂n−1, Xn−1+̂Xn+1)/d(X̂n−1, Xn+̂Xn−2).

Then

Proposition 23

λn =

xn+xn−2

xn−1

an+1 + xn+xn−2

xn−1

λ̃n =

xn+xn−2

xn−1

an+1 + 1 + xn+xn−2

xn−1
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λ′
n = λn − λ̃n

=

xn+xn−2

xn−1

(an+1 + xn+xn−2

xn−1
)(an+1 + 1 + xn+xn−2

xn−1
)

Proof. Consider the vector

�µn = (Xn+̂Xn−2) − X̂n−1

=
1

xn + xn−2
(Xn + Xn−2) − 1

xn−1
Xn−1.

Now we have

�
X̂n−1X̂n+1 =

1

xn+1
Xn+1 − 1

xn−1
Xn−1

=
1

xn + xn−2 + an+1xn−1
(Xn + Xn−2 + an+1Xn−1) −

1

xn−1
Xn−1

=
1

xn + xn−2 + an+1xn−1
(Xn + Xn−2) −

xn + xn−2

xn−1(xn + xn−2 + an+1xn−1)
Xn−1

=
xn + xn−2

xn + xn−2 + an+1xn−1

�µn.

Thus

λn =
d(X̂n−1, X̂n+1)

µn
=

xn + xn−2

xn + xn−2 + an+1xn−1
,

as desired.

Similarly,

�
X̂n−1(Xn−1+̂Xn+1) =

1

xn+1 + xn−1
(Xn+1 + Xn−1) − 1

xn−1
Xn−1

=
1

xn + xn−2 + (an+1 + 1)xn−1
(Xn + Xn−2 +

(an+1 + 1)Xn−1) − 1

xn−1

Xn−1

=
1

xn + xn−2 + (an+1 + 1)xn−1

(Xn + Xn−2)

− xn + xn−2

xn−1(xn + xn−2 + (an+1 + 1)xn−1)
Xn−1

=
xn + xn−2

xn + xn−2 + (an+1 + 1)xn−1
�µn.
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Then

λ′
n =

d(Xn−1+̂Xn+1, X̂n+1)

µn
=

xn + xn−2

xn + xn−2 + (an+1 + 1)xn−1
.

The formula for λ̃n follows from the above two formulas. �

Corollary 24 We have that λn, λ̃n, and λ′
n all decrease as an+1 increases.

9.2 Approximations

The following approximations were useful in proving the latter part of the biconditional

regarding uniqueness.

Lemma 25 Using notation from the previous section, we have

λ′
n ≤ 1

1
λn

(
1

λn
+ 1

)

and also

λ′
n ≤ 1

1
λ̃n

(
1

λ̃n
− 1

) .

Proof. We have

λn =

xn+xn−2

xn−1

an+1 + xn+xn−2

xn−1

and thus

an+1 =
xn + xn−2

xn−1

(
1

λn

− 1
)
≥ 1

λn

− 1.

Hence

λ′
n =

xn+xn−2

xn−1

(an+1 + xn+xn−2

xn−1
)(an+1 + 1 + xn+xn−2

xn−1
)

=
λn

an+1 + 1 + xn+xn−2

xn−1

≤ λn(
1

λn
− 1

)
+ 1 + 1

=
1

1
λn

(
1

λn
+ 1

) .
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Similarly,

λ̃n =

xn+xn−2

xn−1

an+1 + 1 + xn+xn−2

xn−1

implies that

an+1 =
xn + xn−2

xn−1

(
1

λ̃n

− 1

)
− 1

≥ 1

(
1

λ̃n

− 1

)
− 1

=
1

λ̃n

− 2.

Hence a similar argument as above yields the second desired inequality. �

Lemma 26 We have
τn+1 ≥ τn − λn(ρn + τn)

and

ρn+1 ≤ ρn + τn

1
λn

(
1

λn
+ 1

) .

Proof. The length of the vector �τn+1 is:

τn+1 = |λn�ρn − (1 − λn)�τn|
≥ |λn�ρn| − |(1 − λn)�τn|
= λnρn − (1 − λn)τn

= τn − λn(ρn + τn).

Second,

ρn+1 = λ′
nd(Xn+̂Xn−2, X̂n−1)

≤ λ′
n

(
d(Xn+̂Xn−2, X̂n) + d(X̂n, X̂n−1)

)
= λ′

n(ρn + τn)

≤ ρn + τn

1
λn

(
1

λn
+ 1

) .

�
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