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Abstract

Moulton and Develin have investigated the notion of representing various sets S of positive
integers, of size m say, as subset sums of smaller sets. The rank of a given set S is the smallest
positive integer rk(S) ≤ m such that S is represented by an integer set of size rk(S). In this
note, we primarily consider sets of the form {1, 2m, 3m, . . .} for positive integer m ≥ 2. Given
a positive integer k, we ask for the smallest M such that {1, 2m, 3m, . . . , km} is independent
for all m ≥ M , and provide some answers. We then use a result of Sprague to show that
any nondecreasing positive integer sequence a = {a1, a2, . . .} that grows polynomially, and
in particular the set {1, 2m, 3m, . . .} for fixed exponent m, has limiting rank zero.

1. Introduction

The concept of representing sets of positive integers, and more generally sets of rationals,
in an “efficient” manner according to the operation of addition, has received some attention
in recent years, specifically in a pair of companion papers published in 2001 by Moulton [5]
and Develin [1]. Lev [4] and Ilie and Salomaa [2] have also considered questions related to
subset sums.

By efficient representation, we mean the following, as illustrated by way of example. The
set of powers of 2 given by S = {1, 2, 4, 8, 16} can be represented by P = {−5, 1, 7, 9}, for
1 ∈ P , 2 = −5 + 7, 4 = −5 + 9, 8 = 1 + 7, and 16 = 7 + 9. Thus S has a subset sum
representation given by P . As the cardinality of P , denoted |P |, is less than |S|, S is said
to be dependent .

We give some definitions that will be useful later. The terms given below, with the
exception of total dependence, are taken from [5].
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Definition 1.1 (Span, Representation) The span of a set B, denoted by sp(B), is the
set of all sums of subsets of B. In other words, sp(B) = {

∑
b∈A b : A ⊆ B, A &= ∅}. Hence,

B represents P , when P ⊆ sp(B).

Definition 1.2 (Rank, Optimal Set) For any set P the rank of P , denoted by rk(P ), is
the smallest size of a set representing P . Any set representing P with size rk(P ) is said to
be optimal.

Moulton shows that {−5, 1, 7, 9} is one of the 19 optimal representing sets of S =
{1, 2, 4, 8, 16}. Hence, rk(S) = 4 here. In general, it is clear that rk(P ) ≤ |P |.

Definition 1.3 (Independent Set) A set P for which rk(P ) = |P | is an independent set.
Else, P is said to be dependent.

Definition 1.4 (Limiting Rank, Total Dependence) For any infinite set of distinct pos-
itive integers A = {an}n≥1 with Am = {a1, a2, . . . , am} for each m, we define the limiting rank
of A by

ρ(A) = lim
m→∞

rk(Am)

m
,

provided said limit exists. Thus, if ρ(A) = 1, A is an independent set, while A is dependent
if ρ(A) < 1. If ρ(A) = 0 we will say that A is totally dependent.

In Section 2 we consider the following problem: For sets of the form A(k,m) = {1, 2m, 3m,
. . . , km}, where k, m ≥ 2 are positive integers and k is fixed, find the smallest M such that
A(k,m) is independent for all m ≥ M . In Section 3, we use a result of Sprague to show that,
for fixed exponent m, the set Pm = {1, 2m, 3m, . . .} has limiting rank zero. This is, so far as
the author knows, the first class of sets for which the limiting rank is known.

2. Independent Sets of nth Powers

In contrast to Moulton and Develin, who are interested in sets of the form {1, r, r2, . . . , rn}
for integer (Moulton) and rational (Develin) r, we are interested in sets of the form A(k,m) =
{1, 2m, 3m, . . . , km} for integral m ≥ 2. In this section, we determine, for certain sets A(k,m)

with fixed size k, the minimum M such that A(k,m) is independent for all m ≥ M . Contrast-

ingly, in Section 3 we show that for fixed m, lim
k→∞

rk(A(k,m))

k
= 0.

First, consider m = 2. A simple argument shows that A(3,2) = {1, 4, 9} is indepen-
dent, while the set {1, 4, 9, 16} can be represented by S4 = {−3, 4, 12}, and hence A(k,2) is
dependent for all k ≥ 4.
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Next, consider m = 3. It is easy to show that A(3,3) = {1, 8, 27} is independent, and
an adaptation of Moulton’s arguments for powers of 2 (Proposition 2 of [5]) shows that
A(4,3) = {1, 8, 27, 64} is also independent. However, {1, 8, 27, 64, 125} can be represented by
{−34, 8, 27, 98} or {−26, 27, 34, 90}, and so A(k,3) is dependent for all k ≥ 5.

As the first three squares and the first four cubes are independent, we ask the following.

Question 2.1 For k ≥ 3, is A(k,m) independent for m ≥ k − 1? More generally, given k
and m, what is necessary to guarantee the independence of A(k,m)?

We make progress below towards answering this. First, we note the following.

Theorem 2.2 A(3,m) is an independent set for m ≥ 2.

Proof. The case m = 2 is resolved (see above). For m ≥ 3, we note that, if a set P = {a, b},
a < b, represents A(3,m), then we must have a = 1 and b = 2m. But then a + b = 3m, which
cannot happen by Fermat’s Last Theorem. !

Theorem 2.3 A(4,m) is an independent set for m ≥ 3.

Proof. The method of proof is like that of Proposition 2 in Moulton’s paper. Suppose by
way of contradiction that S = {a, b, c} represents A(4,m). Note that each element of A(4,m) is
equal to one of a, b, c, a + b, a + c, b + c, or a + b + c. We have four possibilities.

• Case 1: All three of a, b, c belong to A(4,m). Then A(4,m) = {a, b, c, d} for some d, and
so d is the sum of either two of a, b, and c, or the sum of all three. For the first case,
we have an integer solution to the Diophantine equation

xm + ym = zm, (1)

an impossibility by Fermat’s Last Theorem. If d = a + b + c then we have an integer
solution to xm +ym +zm = wm. One observes that the only possibility is 1+2m +3m =
4m, that is, 3m = 4m − 2m − 1. As m ≥ 3, we have

4m − 2m − 1 ≥
(

55

64

)
4m

where the fraction 55
64 is obtained by setting m = 3. Hence by the above, we conclude(

4
3

)m ≤ 64
55 , which is impossible.
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• Case 2: Exactly two of a, b, c belong to A(4,m). Suppose without loss of generality
that a, b ∈ A(4,m), so that A(4,m) = {a, b, d1, d2}. Observe that both d1 and d2 require
c as a summand, otherwise we have an integer solution to (1), a contradiction. By
appealing to (1), we are able to eliminate the cases (d1, d2) = (a + b + c, a + c) and
(d1, d2) = (a + b + c, b + c) as possibilities, and thus A(4,m) = {a, b, a + c, b + c}. Thus
we have an integer solution to the equation xm + ym = zm + wm, and in particular we
must have 2m + 3m = 4m + 1. Equivalently, 3m = 4m − 2m + 1. We then argue as in
Case 1 to conclude that such a scenario is impossible.

• Case 3: Exactly one of a, b, c is in A(4,m). Suppose without loss of generality that
a ∈ A(4,m). There are four possibilities for the remaining elements of A(4,m), and
of these only the following two are viable: A(4,m) = {a, a + b, a + c, a + b + c} and
A(4,m) = {a, a + b, a + c, b + c}. The reason that these are the only two acceptable
choices for A(4,m) is that, with a ∈ A(4,m), b + c and a + b + c cannot both belong to
A(4,m), otherwise there exists a pair of positive integers s, u such that sm + a = um, a
contradiction to Fermat’s Last Theorem as m ≥ 3.

For the first representation, we see that the sum of the first and fourth elements
equals the sum of the second and third elements in A(4,m), and we are led to the same
contradiction as in Case 2. If the second representation is possible, we have integral
solutions to the set of equations

xm + b = wm,

xm + c = zm, and

b + c = ym,

which in turns yields an integral solution to 2xm + ym = zm + wm. As m ≥ 3, the only
possibility is 2 + 4m = 2m + 3m, that is, 3m = 4m − 2m + 2. An argument similar to
that given in Case 1 shows that such a scenario is impossible.

• Case 4: None of a, b, c lie in A(4,m). Thus, A(4,m) = {a + b, a + c, b + c, a + b + c}.
Since (a + b) + (a + c) + (b + c) = 2(a + b + c), we must have an integer solution
to 2xm = ym + zm + wm. The only possibility is 2(4m) = 3m + 2m + 1, that is,
22m+1 − 2m − 1 = 3m. Since 22m+1 − 2m − 1 ≥

(
119
64

)
4m, we have

(
4
3

)m ≤ 64
119 , which is

a contradiction. This completes the proof.

!

Remark. As we have made reference to Moulton’s Proposition 2, we should also note that
his proof has a small hole, which is easily corrected. Namely, Moulton states that the set
{a, a + b, a + c, b + c} has the property that the sum of two of its elements equals the sum of
the other two, but a quick check denies this assertion. However, one can still verify the claim
of independence for {1, 2, 4, 8} in this case by way of contradiction. Specifically, if a = 1,
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then 1 + b = 2m1 , 1 + c = 2m2 , and b + c = 2m3 , where we assume WLOG m1 < m2. A little
work shows, however, that m1 must then be 1, so that a = b = 1, contradiction. If a = 2n

for 1 ≤ n ≤ 3, then we have the equations 2n + b = 1, 2n + c = d, and b + c = e, where
(d, e) ∈ {(2, 4), (4, 2), (2, 8), (8, 2), (4, 8), (8, 4)}. Each of these cases can be easily shown to
be impossible.

Theorem 2.3 serves as a “base case” in the following sense. We recall Lemma 3 from
Moulton:

Lemma 2.4 If P = {p1, . . . , pn} is a set such that P \ {pn} is independent and pn satisfies

|pn| > ∆n−1

n−1∑

j=1

|pj| (2)

(where ∆k, for k ≥ 1, denotes the maximum determinant of k × k 0 − 1 matrices), then P
is independent.

The well-known Hadamard bound is ∆k ≤ kk/2 (see for instance [3]). Using this bound
and the above lemma allows us to extend Theorem 2.3 in the following manner.

Theorem 2.5 The following statements hold.

1. A(5,m) is independent for all m ≥ 19.

2. A(6,m) is independent for all m ≥ 30.

3. A(7,m) is independent for all m ≥ 45.

Thus, in view of Question 2.1, Theorem 2.5 resolves all cases for A(5,m) except 4 ≤ m ≤ 18,
while the remaining cases of A(6,m) and A(7,m) are 5 ≤ m ≤ 29 and 6 ≤ m ≤ 44, respectively.

Resolution of the above problem would likely involve, in light of Theorem 2.5, finding
better lower bounds for m, coupled with the use of a sieve.

3. Total Dependence of Polynomially Growing Sequences

While it is certainly possible to construct independent sets of nth powers for any positive
integer n ≥ 2, as we observed in the previous section, the question remains as to what, given
such an n, the limiting rank of the set Pn = {1, 2n, 3n, . . . .} is, provided the limit exists.

We shall answer a more general version of this question. First, we give the following
definition.
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Definition 3.1 A sequence of real numbers {a1, a2, a3, . . .} grows polynomially in k if there
exists a polynomial P (of degree n, say) with real coefficients, and a positive integer K, such
that ak ≤ P (k) for all k ≥ K.

Let a = {a1, a2, . . .} be a nondecreasing positive integer sequence that grows polynomially
in k, with limk→∞ ak = ∞. Thus, ak ≤ P (k) for k ≥ K, say, where the degree of P is n, say.
In particular, there exists a positive constant C such that ak ≤ Ckn for all k ≥ K.

We claim that ρ(a) exists, and equals 0. It is known (thanks to R. Sprague, see [6]) that,
for every integer n ≥ 2, there exists a largest positive integer rn that is not expressible as
a sum of distinct nth powers of positive integers. Let q be the largest positive integer such
that qn+1 ≤ rn+1, and let w = max{v, K − 1}, where v is the largest integer k such that
ak ≤ rn+1. Set T (0) = {a1, a2, . . . , aw}, and S(0) = T (0) ∪ {1, 2n+1, . . . , qn+1}, with λ = |S(0)|.
Clearly, S(0) represents T (0). We view the above setup as the zeroth stage of an algorithm
whose purpose is to, ultimately, efficiently represent a.

At the jth stage, j ≥ 1, we represent T (j) = {a1, a2, . . . , aw, . . . , aw+j}. To do this, we
append, as necessary, (q + 1)n+1, (q + 2)n+1, . . . , (q + mj)n+1 to S(j−1) to create S(j). Here

mj < a1/(n+1)
w+j − q ≤ (C(w + j)n)

1
n+1 − q and is maximally chosen, thus ensuring (using

Sprague’s result) that S(j) represents T (j). Observe that, as j grows without bound, mj > 0
for infinitely many j.

Now observe that

0 <
rk(T (j))

|T (j)| ≤ |S(j)|
|T (j)| =

mj + λ

w + j
<

(C(w + j)n)
1

n+1 − q + λ

w + j
−→ 0

as j → ∞, which completes the proof of the following statement.

Theorem 3.2 Let a = {a1, a2, . . .} be a nondecreasing positive integer sequence that grows
polynomially in k, with limk→∞ ak = ∞. Then ρ(a) = 0.

Corollary 3.3 Let n be a positive integer. For the set Pn = {1, 2n, 3n, . . . .}, we have ρ(Pn) =
0.

The converse, namely what can be said of a given set S for which ρ(S) = 0, seems to be
more difficult, and is left as an open problem.

4. Summary

For sets consisting of nth powers, we have contrasted the notion of building independent sets
using these powers with the limiting rank of such a set. In so doing, we have illustrated the
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crucial role that rate of growth plays in determining, both for finite and infinite sets, whether
a set is independent, and if not, the level of dependence under which the set operates. In
particular, we now know that the limiting rank of any polynomially growing positive integer
sequence a with infinite limit, and in particular the set Pn = {1, 2n, 3n, . . . .} for n a positive
integer, exists and equals zero. On the other hand, sets of powers of a positive integer r ≥ 2
have limiting rank at most (2r − 2)/(2r − 1) (see [1] and [5]), while the factorial sequence
has limiting rank at least 1/2 [1].

The above observations provoke the following question, an answer to which would be
most welcome.

Problem 4.1 For a given set S of positive integers whose elements are listed in increasing
fashion, determine ρ(S) if it exists, or at least offer reasonable upper and lower bounds for
such. If ρ(S) does not exist, explain why the limit fails to exist, and in so doing, describe the
behavior of the sequence of ratios {rk(S1), rk(S2)/2, rk(S3)/3, . . .}, where Sm is the subset
of S consisting of the first m elements of S.
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