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Abstract

We determine a threshold function for Bj, and additive basis properties in Z,.

1. Introduction

We use the following notations: Z denotes the integers 0,4+1,+2,...; N is the set of
positive integers; Z, is the additive cyclic group of order n. Members of a set S are
referred to as {sy, so,... }. The cardinality of a finite set S is denoted by |S|. A multiset
a={q,-..,q}m can be formally defined as a pair (@), m), where @ is the set of distinct
elements of q and m : @ — N, where m(q) is the multiplicity of ¢ € q for each ¢ € Q.
The number of distinct elements of q is denoted by |q|s. The usual set operations such
as union, intersection and Cartesian product can be easily generalized for multisets. In
this paper we use the intersection: suppose that (A, m) and (B,n) are multisets, then
the intersection can be defined as (AN B, f), where f(x) = min{m(x),n(x)}.

For a given S C Z,, and x € Z,, denote by rg(z) the number of different representa-
tions x = s1 + - - + s, with s; € .S, that is

rsn(®) = [{{s1,- - Sntm s+ s =, s € S}

A set S C Z, is called By, set if the number of distinct representation of x as s;+-- -+ sy,
s; € S is at most 1, that is rg,(z) < 1 for all z € Z,,. A set S C Z, is called additive
h-basis if every element in Z, can be represented as the sum of not necessarily distinct
h elements of the set S, that is rgj(z) > 1 for every x € Z,.

For n a positive integer, let 0 < p,, < 1. The random subset S(n, p,) is a probabilistic
space over the set of subsets of Z, determined by Pr(k € S,) = p, for every k € Z,,
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with these events being mutually independent. This model is often used for proving the
existence of certain sequences. Given any combinatorial number theoretic property P,
there is a probability that S(n,p,) satisfies P, which we write Pr{S(n,p,) = P}. The
function r(n) is called a threshold function for a combinatorial number theoretic property
P if

(i) When p,, = o(r(n)), lim,, o Pr{S(n,p,) = P} =0,

(ii) When r(n) = o(p(n)), lim, . Pr{S(n,p,) E P} =1,

or visa versa.

The goal of this paper is to determine a threshold function for Bj sets and additive
h-bases in Z,. We use the typical notation exp (z) = e*

Theorem 1.1. Let ¢ > 0 be arbitrary. Let us suppose that p, = —— and the random
2h

set A,, C Zy, is defined the following way: For every k € Z, we have Pr(k € A,) = pa.

2h
Then 7}1—{20 Pr{A, is a By, set} = exp (—ﬁ)

Theorem 1.2. Let ¢ be an arbitrary real number. Suppose that p, =
and the random set A, C Z, is defined the following way: For every k € Z we have
Pr{k € A,} = p,. Then lim Pr(A, is an additive h-basis) = exp (— exp (—c)).

n—oo

(h'nlogn)l/h(l—s— hl(fgn)

2. Proofs

In order to prove the theorems we need two lemmas from probability theory (see e.g. [1]
p. 41, 95-98.). In many instances, we would like to bound the probability that none of the
bad events B;, i € I, occur. If the events are mutually independent, then Pr(N;e;B;) =
[Lc: Pr(B;). When the B; are "mostly” 1ndependent the Janson’s inequality allows us,
sometimes, to say that these two quantities are "nearly” equal. Let ) be a finite universal
set and R be a random subset of ) given by Pr(r € R) = p,, these events being mutually
independent over r € Q. Let E;, i € I be subsets of €, where I a finite index set. Let B;
be the event E; C R. Let X; be the indicator random variable for B; and X = )., X
be the number of E;s contained in R. The event N;c;B; and X = 0 are then 1dentlcal
Fori,j € I, we write i ~ j if i # j and E; N E; # (. We define A =Y. . Pr(B; N By),
here the sum is over ordered pairs. We set M = [],., Pr(B;).

’LN]

Lemma 1.3 (Janson’s inequality). Let B;,i € I, A, M be as above and assume that
Pr(B;) <€ for alli. Then

M < Pr <ﬂ§1> < M exp (%%)
— €

el
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The more traditional approach to the Poisson paradigm is called Brun’s sieve, for its
use by the number theorist T. Brun. Let Fi, ..., F}, be events, X; the indicator random
variable for F;, and X = X; + --- + X,, the number of B; that hold. Let there be a
hidden parameter n (so that actually m = m(n), B; = Bi(”), X = X™) which will define
our O notations. Define

ST = "Pr{B;, A---AB,},

where the sum is over all sets {iy,...,4,.} C {1,...,m}. The inclusion-exclusion principle
gives that Pr{X =0} = Pr{B;A---ABp,}=1-5S0 4+ 8@ ... 4 (—1)rs0 ...

Lemma 1.4. Suppose there is a constant yi so that E(X) = S — u and such that for

every fixed r,

r!

t

Then Pr{X = 0} — exp (—u) and, for every t, we have Pr(X =t) — % exp (—u).

In order to prove the theorems we need two lemmas. In the sequel, for the sake of
brevity, we write u = {uy, ..., up}tm and v = {vq, ..., v}, with u # v. For every a € Z,
and h,t e N, 0 <t < h, let

h
Seme=1{u: w€Zy > wi=a, |ug=1t}
=1

and for every ay,as € Z, and h,t,s, k € N with 0 < & < min{s, ¢} let

h h
Cahaz,h,t,s,k = {{U,V} : Zuz = day, Zvi = ag, |u|d =S, |V|d - t, |u N V|d - k} .
i=1 i=1
Lemma 1.5. For every a € Z,, and h > 2 we have

1. Sa,h,h = % -+ Oh(nh_Q);

2. Sant=O0p(n'1) for1 <t < h-—1.

Proof. Case (1): By the definition of S, 55

h
P Sann = [{(ur,...;up) 1 u; € Zy, Zui:a, and u; #u; for i#j}. (1)
i=1

An upper bound for (1) isn(n—1)...(n—h+2) and a lower bound is n(n —1)...(n —
h+3)(n—(h—2)—(h—2)—2) because we have n(n —1)...(n — (h — 3)) possibilities
for uy,...,up_o and the conditions wup_1 # w;, up # w; for 1 <i < h — 2 and up_1 # uy
exclude at most h — 2 + h — 2 + 2 choices for uj,_1.
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¢
Case (2): The condition |u|s = ¢ implies that there is a partition {1,...,h} = U A;
i=1

such that u; = u; if and only if 1 < 4,5 < h are in the same A;. Fix such a partition.
Then there are n choices for the elements w;,7 € Ay, then (n — 1) possibilities for the
elements u;,i € As etc. and finally (n — (¢t — 2)) choices for the elements u;,i € A; ;.
It follows from this that if we have already chosen the elements u;, i € UZ;} A; then we
have at most ¢t < h possibilities for the elements u;,7 € A;. In order to finish the proof
we mention that the number of suitable partitions is Op(1). O

Lemma 1.6. For every a,,as € Z,, and h > 2 we have

n2h—2

1. Cal,ag,h,h,h,o = U2 + Oh(nzh—g);
2. Coyaphtsk = On(n'*7F72) fort > s and t > k > 0;

3. Couyanhsss = On(n®=2) for every 2 < s < h.

Proof. Case (1): By the definition of Cy, 4y 5110

2(M)?Coy g inno = |{((wr, - un) s (v, o) ) 0w # ug, v # vg, w0 # vj,

h h
dui=a, Y vi=as}. (2)
=1 i=1

An upper bound for (2) is n"~'n"~! and a lower bound for (2) is n(n —1)...(n — (h —
3))n—(h—2)—(h—2)=2)(n—h)(n—(h+1))...(n —h—(h—3))(n— (2h — 2) —
(2h — 2) — 2), because we have n(n —1)...(n — (h — 3)) choices for uy, ..., up_o. After
choosing uy,...,u,_o there are at least n — (h — 2) — (h — 2) — 2 possibilities left for
up—1 because up—1 # uj and uy, # u; for 1 < j < h —2 and up—1 # uy. After fixing
Uy, ..., u, we have (n — h)...(n — (2h — 2)) choices for vy, ..., v,_o. Finally, we have at
least n — 2h — (2h — 4) — 2 choices for v,_; because v,_1 # uj, v, # uj, for 1 < j < h,
Up—1 7# v;, vp #v; for 1 < j < h —2 and vp_1 # vp.

Case (2): Obviously,

h h
Carashtstk < [{((ur, ..o up), (v, 0p)) Zuz = Qy, Zvi = Gy,
i=1 i=1
|u|d:t, |V|d:S,|uﬂV|d:k}'. (3)

By the conditions |ulq = s, |v|g = t there are partitions {1,...,h} = U._A;, = J,_, B;
such that u; = u; if and only if there exists an 1 <1 <t such that ¢, j € A;, and v; = v; if
and only if there exists an 1 < < s such that 4, j € B;. We have at most hn*~! choices
for (vy,...,vs) with 33" v; = ay. The condition |u N v|y = k implies that there are
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injections x, : {1,...,k} — {1,...,t} and x, : {1,...,k} — {1,..., s} such that u; = v;
if and only if there exists a 1 <[ < k such that u; € A, and v; € B, ;). Hence we get
that there are at most hn'=*~! choices for the v;s, i € {1,...,h} \ Ule B, @i)- Since the
numbers of partitions and injections are Op(1), the proof is completed.

Case (3): Evidently,

h h
Cayashsss < |[{((ur, ..., up), (v1,...,0)) : Zu, = a, Zvi =, u#V,
i=1 i=1

. )

lulg = s, |v]g = s, lunv|; = s}

By the conditions |u|q = s, |v|q = s there are partitions {1,...,h} = U;_; A4 = U;_, B;

such that u; = u; if and only if there exists an 1 <[ < s such that i,j € A; and v; = v;

if and only if there exists an 1 < m < s such that i,j € B,,. The condition jlunNvl|; =k

implies that there is a bijection x : {1,...,s} — {1,..., s} such that u; = v; if and only

if there exists a 1 <[ < s such that i € A; and j € B,(;. Since u # v, therefore there

exists a 1 <1 < s such that |A;| # |B,|. Fix such an [. Then there exists a 1 <k <'s
| 4]

|Ak] A : —
such that B # B because otherwise |Ay| = | By B for every 1 < k < s, but

- Al < | Al
h=" 1A = Byl = o ih
kz:; [ Byl kz:; x® | Byl

which is a contradiction. Fix such a k. Let {iy,...,is2} ={1,...,s} \ {k,{}. We have

n(n —1)---(n — (s — 3)) choices for the elements u;, i € (JI_; Aj;. After fixing the

J

s—2 s—2
. -2
elements u;, © € szl Aij let E E U, = U and E E v, = V. Then we need
7j=1 mEAij 7=1 mEBX(i],>

x,y € Ly such that U + |Ag|z + |Aily = a1 and V + |Bywy |z + | By |y = as. Hence,

(1A By | = 1Akl | By )y = a1l By + VIAkl = Ul By | — a2| Axl. (5)
s—2

After fixing 1 < k,l < s and the elements u;, ¢ € UAij’ the elements U and V' are
j=1

determined, therefore the right-hand side in (3) is unique. Since 0 < ||A;||Byw)| —
| Ax||Byay|] < h?, therefore the number of possible y’s is at most h? and after fixing y we
have at most h choices for z. Finally we mention that we have got Op(1) choices for the
partitions and bijection. 0

Proof of Theorem 1. For each unordered, different uy,...,uy € Z, and vy,...,v, € Z,
with Z?:l u; = Z?Zl v;. Let Byy be the event that uy,...,up,vy,..., v, € A,. In the
following we suppose that S  u; = S ;. If we prove A = > tuvifunylys0 PT{Buv} =
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o(1), then by the Janson inequality we have

Pr{A, is By set} = (1+o0(1)) H Pr{Buv}

{uv}
= (14o0(1)) 11 Pr{Buv}
{u,v}:lulg=h,|v]a=h,[unv|q=0
h—1
X 11 Pr{Buv}
k=1 {u,v}:|u|g=h,|V|g=h,|unv|s=k
h—1
X 11 Pr{Buv}
s=2 {u,v}:ulg=s,|v[q=s,|unv]s=s
h—1s—1
X 11 Pr{Buv}
s=1 k=0 {u,v}:|ulg=s,|v]|a=s,|unv|s=k
h—1 h s
<(IT 1I TI 11 Pr{Buv}
s=1t=s+1 k=0 {u,v}:|u|g=s,|v|q=t,|unv]s=k
= PIPP3PyPs,

where, by Lemma 1.6.1,

P = H H Pr{Buv}

a€Zn  {uv}:|ulg=h,|v|g=h,|unv]g=0,"" uw; SF vi=a
2h—1 1

< 2h Samz (140n(3))

= 1

n2h—1

= (1+o0(1))exp (—%),

by Lemma 1.6.2,

h—1
no T I Pr(B
a€ln k=1 fuv}:[ulg=h,|v|g=h,lunv|g=k I ui=3" vi=a
h—1

_ H(l o p2h—k)0h(n2h’k*1)
k=1
h—1 )

= [Jexp ((pnn)Qh_kOh (ﬁ>)
k=1

= exp(o(1)),
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by Lemma 1.6.3,

h—1
=1 1] 11 Pr{Buv}

a€ln  $=2  fuvklulg=s,|v]g=sunv|g=s " =", vi=a
h—1
= H(l_pn)Oh( )
s=2
- flon(cnoren(2)
= exp(o(1)),
by Lemma 1.6.3,
h—1 s—1
Py = 11 Pr{Buv}
a€n =1 k=0 fuv}i|ulg=s,|v]a=sunv]e=k ] u;=3"1_ vi=a
h s—1
— HH(l p2sfk‘)0h(n2g_k_1)
s=1k=0
h s—1 1
= T (- o))
s=1k=0
= exp(o(1)),

and, by Lemma 1.6.2,

m- I I I I Il Pr{Buv)

a€ln  s=1 t=s+1 k=0 {u,v}:|u\d:s,|v\d:t,\uﬂv\d:k,2?:1 ui:Z?zl v;=a

— H H H pettk) (Ht*k*l):exp(o(l)).

s=1t=s+1k=0

Hence, it remains to prove that A = o(1). In order to prove A = o(1) we partition A as

A = > Pr{Buy}

{u,v}:lunv|z>0

h—1
= > > Pr{Byy}

s=1  {u,v}:|ulg=s,|v[q=s,|unv|s=s
h s—1
53y S win
s=2 k=1 {uyv}:|ulg=s,|v]¢=s,|unv]s=k
s

h—1 h
W IND DY 2 Pr{Buy}
s=1

t=s+1 k=0 {u,v} |ulg=s,|v]¢=t,|unv|s=k

= zl:+22:+23:.
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By Lemma 1.6.3,

Z _ Z Pr{Buv}

1 a€ly  s=1 {u,v}:|u\d:5,|v|d:s,|uﬁv|d:s,zzh:1 ui:Zthl v;=a
h—1
— s—1\, s
- Oh(n )pn
s=2
1h—1
= On[ o)) = o),
s=2

by Lemma 1.6.2,

h
Y o= > y Pr{Byy}
=2

2 A€y S

Il
@)
=
VRS
Sl &
=
3
Do
V2l
>
~_—
|
S
=

oY Yoy > Pe{Bus)

3 a€ln  s=1 t=s+l k=0 fuv}|ulg=s,|v]s=t,Junv]e=k,> " wi=3" vi=a
h—1 h s
_ 2: t+s—k—1\ t+s—k
- Oh(n )pn
s=1 t=s+1 k=1

I
)
>
N
S|
V)
iR
=

=1 t

Il
®
+
—
i
—

which completes the proof. O

Proof of Theorem 2. For a fixed x € Z, and y1,...,y, € Z, with Z?Zl yi=1x let y =
{y1,...,yn} and let By, be the event y;,...,y, € A,. For a fixed z € Z, let C, =
By .. Obviously,

ﬂy,ZLl yi=z Y
Pr{A, is an h-basis} = Pr(N,ez,C,).

By Lemma 1.4 it is sufficient to show that for every fixed positive integer r we have

Z Pr{Cxlﬂ~--ﬂCM}—> M‘

7!
{z1,02r} 10 €Ly xiF x5
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In order to estimate

Z Pr{C’xl N---N er} = Z Pr{ﬂlgigm ﬂy:Z?:1 yj=z; Ey,xi}

{z1,....0r }:0; €L, xiFx) {z1,. T }:0i€Ln @i #

we use Janson’s inequality. Obviously, Pr{By ,,} = o(1). If we prove A = o(1), then by
Lemmas 1.3 and 1.5, and the definition of p,

> Py (1 M B

{&1,0 s } 10 €2 i #a 1<i<rn y;Z?i1 yj=m;

— (1+o0(1 H H II (1 =)

) £ o)
x<exp{—(ph7_’)h (1—|—Oh(pn))( +oh( ))})]

h!nlogn 1+ 0Oy, 1012n
— (1+40(1)) (exp{ alia h)!< * Oneliggrm)

= (1+ 0(1))6}{1’(—_”)'

3|*—‘

)

Therefore,

S melCan G = o) (1) P 1o P,

n’ 7!
{z1,....0r },2; €ELniF#T;

Let u={uy,...,up} withuy +---+up = 2; and v = {vy,..., v} with vy +-- -+ v, = ;.
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In order to finish the proof, we separate A as

A=) > Pr{Buz, N By, }

1<i,j<r {u7xi}7{v7xj}:|umv|d>0

-y 3 5 ”

1<ig<r  s=2  {uah{v.e;bilula=s,[vla=slunv]s=s

> >

1<i,j<r s=2 k=1 {u,z;},{v,z;}:|ulg=s,|v]g=s,Junv|g=k

™=

T
L

s

Py Y Y Y 5

1<i,5<r s k=1 {u,z;} {v,z;}:|lulg=s,|v]q=t,[un{vi...,vr }|a=Fk

= > +> +

1

Il
A
~+
I
v
A

7

N

where, by Lemma 1.6.3,

h—1
Z S 72 prloh(n872> = Oh,r 2 (pnn)s = 0<1>7
1 5=2

by Lemma 1.6.2,

h s—1 h
_ o 1
<12 Y o) = Oy, <$ 2

h—1 h s 1 h—1 h s
Z < T2 Z pf;rs—kO (nt+s—k> _ Oh,r ﬁ Z (pnn)t“ Ey _ 0(1)
3 s=1 t=s+1 k=1 s=1 t=s+1 k=1
which completes the proof. O
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